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Background. Te growth in participation in collegiate athletics has been accompanied by increased sport-related injuries. Te
complex and multifactorial nature of sports injuries highlights the importance of monitoring athletes prospectively using a novel
and integrated biopsychosocial approach, as opposed to contemporary practices that silo these facets of health. Methods. Data
collected over two competitive basketball seasons were used in a principal component analysis (PCA) model with the following
objectives: (i) investigate whether biomechanical PCs (i.e., on-court and countermovement jump (CMJ) metrics) were correlated
with psychological state across a season and (ii) explore whether subject-specifc signifcant fuctuations could be detected using
minimum detectable change statistics. Weekly CMJ (force plates) and on-court data (inertial measurement units), as well as
psychological state (questionnaire) data, were collected on the female collegiate basketball team for two seasons. Results. While
some relationships (n= 2) were identifed between biomechanical PCs and psychological state metrics, the magnitude of these
associations was weak (r= |0.18-0.19|, p< 0.05), and no other overarching associations were identifed at the group level. However,
post-hoc case study analysis showed subject-specifc relationships that highlight the potential utility of red-fagging meaningful
fuctuations from normative biomechanical and psychological patterns. Conclusion. Overall, this work demonstrates the potential
of advanced analytical modeling to characterize components of and detect statistically and clinically relevant fuctuations in
student-athlete performance, health, and well-being and the need for more tailored and athlete-centered monitoring practices.

1. Introduction

Collegiate-level athletics have demonstrated unprecedented
growth in participation over the past two-to-three decades
[1–3]. Unfortunately, this increase in participation has been
noted to be accompanied by an increase in injury burden
[4, 5], which has been reported to be more pronounced in
female athletes [6–8], and ultimately reduces the ability of an
individual and a team to perform optimally during com-
petition. Many of these sports-induced injuries are non-
contact [1, 6, 7] and may be related to the exceedance of
musculoskeletal (MSK) structure load tolerance from

repeated bouts of vertical jumping, cutting, and pivoting
tasks experienced during training and competition [1, 9–11].
Additionally, it has been demonstrated that between-limb
diferences (e.g., biomechanical defciencies in strength, etc.)
can continue throughout a seemingly successful re-
habilitation and persist well after athletes have returned-to-
sport [5, 12–15], and more limited evidence suggests that
asymmetry may also be related to sports performance
[16–23] and injury risk [18, 24–27] in healthy, competitive
athletic populations.

MSK overuse injuries may be preventable by pro-
spectively monitoring athlete workload, training intensity,
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and biomechanical defciencies (e.g., jump asymmetry)
[28–31]. However, biomechanics are often assessed in labo-
ratory settings using proxies for sport-specifc loading pa-
rameters using movements such as vertical jump testing
[32–34], which might not necessarily be indicative of the
biomechanical patterns that individuals exhibit in their
sporting environments due to the principle of specifcity
[35–38]. Additionally, these traditional laboratory bio-
mechanical assessments are costly and time consuming, which
limits the practicality of employing these methodologies in
regular, longitudinal athletic monitoring practices. To address
this challenge, biomechanics has seen tremendous growth in
the availability of accessible and more cost-efective modalities
(e.g., inertial measurement units (IMUs) and portable force
plate systems) that can be seamlessly applied in sport-specifc
settings to monitor individualized biomechanical patterns and
fuctuations in real-world settings [39–42].

Nevertheless, assessing sports performance and injury
susceptibility through a purely biomechanical lens may
neglect important aspects of an athlete’s adaptive potential
[43]. For example, psychological stressors may be modifable
risk factors for injury and reinjury in and of themselves
[44–51] or may add to the demands of a task in conjunction
with the biomechanical stressors experienced [44, 52]. Re-
markably, very limited research has directly examined the
link between biomechanical outcomes and psychological
state as it relates to sports performance and risk of injury,
with even fewer research studies doing so longitudinally
throughout several competitive seasons [53].

Te complex and multifactorial nature of sports injuries
[1, 7, 54–56] highlights the importance of monitoring athletes
prospectively using a novel and integrated biopsychosocial
approach. Specifcally, defning a more comprehensive bio-
mechanical profle consisting of on- and of-court patterns
and contextualizing biomechanical changes with concurrent
changes in psychological state might improve our un-
derstanding of specifc underlying domains or facets that lead
to sport injuries. However, in taking this approach, an issue
may arise, namely, how best to summarize and interpret the
multiple and diverse forms of data being collected [43, 57, 58].
Typically, key performance indicators for athlete monitoring
are identifed via evidence-based research or expert opinion
[28, 29, 31, 34, 44]. However, this approach may overlook the
presence of potentially signifcant variables that could con-
tribute to the development of sports injuries [57, 59]. Al-
ternatively, methods like the principal component analysis
(PCA) are becoming more common for efciently summa-
rizing vast amounts of important information from numerous
variables into a reduced number of key metrics or principal
components (PCs) [57–62]. While this is a growing area of
study, the application of the PCA in athlete monitoring
programs to condense biomechanical profles, including on-
and of-court patterns, alongside concurrent changes in
psychological state, remains unexplored.

Te overarching aim of this project was to examine the
utility of integrating on- and of-court biomechanical data into
more holistic biomechanical metrics (e.g., PCs), with concurrent
longitudinal monitoring of psychological state to contextualize
these subject-specifc biomechanical fuctuations. Specifcally,

data collected over two competitive collegiate female basketball
seasons were used in a PCA to support the following research
questions: (i) are PC scores derived from a biomechanical model
(i.e., on-court and vertical jump data) signifcantly correlated
with introspective, psychological state (e.g., self-reported pain,
etc.) across a season and (ii) can we detect subject-specifc
meaningful changes in these measures using PCs and associ-
ated minimum detectable change (MDC) statistics?

2. Methods

2.1. Study Design. A longitudinal cohort design was used to
collect repeated data on athletes across multiple seasons.
Specifcally, biomechanical and psychological data were
collected in two consecutive seven-month collegiate female
basketball seasons (i.e., the 2021-2022 and 2022-2023
competitive seasons) at McMaster University. Tese data
were collected during three consecutive training phases,
namely, one month of ofseason training, two months of
preseason training, and during the four-month regular
season. Data were collected weekly, including CMJ testing
and psychological state questionnaires administered on
Monday mornings, while on-court biomechanical assess-
ments with IMUs were completed during three weekly
basketball practices. All data (i.e., CMJ, on-court IMU, and
psychological state) were summarized as weekly averages.
Te correlation between the array of metrics, both on- and
of-court, gave credence to the use of a PCA as it suggested
that these metrics may have some redundancy and share
commonalities to similar, underlying components of bio-
mechanical movement patterns (Supplementary Table 1).
Additionally, the reliability of the biomechanical PCs and
introspective and psychological state metrics were assessed
across fve consecutive and unperturbed (i.e., no scheduled
periods of intensifed competition or extended rest that
would implicate the consistency of these measures) weeks in
the 2022-2023 preseason using the same statistical approach
previously outlined in a similar work by our laboratory [63].
Te results of the current reliability analysis can be found in
Supplementary Table 2. After determining the need for and
reliability of the biomechanical PCA, we applied this model
to research questions (i) and (ii). Tis PCA model was
developed from 2021 to 2022 data and applied to 2022-2023
season data to assess the relationship between biomechanical
PCs and introspective and psychological state data and to
highlight the ability to identify meaningful changes (i.e., red-
fag) subject-specifc alterations in these outcome measures.

2.2. Sample. Sixteen female collegiate basketball athletes
(eight guards, fve forwards, and three centers) from
McMaster University who were free from MSK injury or
disorder at initial screening volunteered to participate in the
study: age 20 (2) years, height 178 (9) cm, body mass 73 (11)
kg, and training experience 3 (1) years. Participants were
informed of the potential risks, benefts, study protocol, and
were made fully aware of their ability to withdraw from the
study at any time. Written consent was obtained from all
participants. Tis study was reviewed and approved by the
university research ethics board.
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2.3. Protocol

2.3.1. Data Collected. First, four on-court impact accelera-
tion asymmetry metrics (i.e., low- (1–5 g), moderate-
(6−20 g), high- (21–200 + g), and total impact acceleration
asymmetry [38]), impact load, step count, and average in-
tensity (i.e., n� 7 on-court metrics) were assessed as weekly
average values using peak resultant linear accelerations
recorded with IMUs (iMeasureU, Vicon) placed bilaterally
anterosuperior to the medial malleoli during on-court
practices. Interlimb asymmetry metrics were chosen due
to the previously identifed implications to sport perfor-
mance and risk of injury [16, 17], while impact load, step
count, and average intensity were included given that the
most frequent mechanism of injury in basketball relates to
improper landings from vertical jumping or during change-
of-direction-related tasks [1, 64], and these metrics may
provide a surrogate measure for the volume of such on-court
activities. Second, four between-limb CMJ asymmetry
measures (peak braking-, propulsive-, and landing-force,
and average braking rate of force development asymmetry
[63]), peak power production during the braking and
propulsive phases of movement, countermovement depth
(CMD), time to takeof, jump height (JH), and the modifed
reactive strength index (RSI mod� JH/time to takeof) were
assessed weekly with the CMJ without an arm-swing using
a portable bilateral force plate system (Hawkin Dynamics)
with a sampling frequency of 1000Hz. Tis method of
biomechanical assessment during vertical jump testing has
been deemed valid when compared to the in-laboratory gold
standard [65, 66]. Moreover, the reliability and ecological
validity of these CMJ metrics were assessed in work par-
alleled to this investigation by our laboratory and were found
to be highly reliable (ICC≥ 0.90) when assessed longitudi-
nally, while the asymmetry metrics were relatively in-
dependent of one another which highlighted the need to
concurrently collect traditional and sport-specifc asym-
metry measures [38, 63]. Finally, weekly questionnaires were
completed via Google Forms on the athletes own volition on
Monday mornings using a questionnaire built by a multi-
disciplinary team of researchers in collaboration with the
McMaster University Strength and Conditioning team.
Specifcally, this weekly questionnaire was composed of the
following self-report measures: self-reported pain, sleep
quality and sleep quantity, a general feeling scale, and ac-
ademic workload, which were assessed using the Visual
Analogue Pain Scale [67], a subsection of the Pittsburgh
Sleep Quality Index [68], and a 0–10 Likert scale for feeling
and academic workload, respectively. Self-reported pain was
scored from 0 to 10, with 0 representing no pain, 2 repre-
senting mild pain, 4 representing moderate pain, 6 repre-
senting severe pain, 8 representing very severe pain, and 10
representing the worst pain imaginable. Athletes scored
their perceived pain according to the body region (i.e., ankle,
knee, hip, back, shoulder, quadriceps, hamstrings, glutes,
calves, none, or other), while the pain measures that were
utilized for statistical purposes were generalized to the lower
extremity. Sleep quality and sleep quantity were separately
scored from 0 to 3, with 0 representing very good and

>7 hours, 1 representing fairly good and 6-7 hours, 2 rep-
resenting fairly bad and 5-6 hours, and 3 representing very
bad sleep quality and <5 hours of sleep for sleep quality and
quantity, respectively. General feeling was scored from 0 to
10, with 0 representing very bad, 2 representing bad, 4
representing fairly bad, 5 representing neutral, 6 repre-
senting fairly good, 8 representing good, and 10 representing
very good general feeling as a proxy for overall mental
health. Last, academic workload was scored from 0 to 10,
with 0 representing none, 3 representing light, 5 repre-
senting average, 7 representing heavy, and 10 representing
an overwhelming academic workload.

2.3.2. Testing Procedures. Te CMJ testing and on-court
session procedures have been previously outlined and can
be found in other works conducted by Keogh and colleagues
[38, 63]. Briefy, CMJ testing was conducted on Monday
mornings after the completion of a low-to-moderate-
intensity dynamic warm-up to prepare the neuromuscular
system. Participants performed three CMJ attempts without
an arm-swing, self-selected their CMD, were cued to jump as
high and quickly as possible, and were provided a minimum
of 30-seconds of rest between successive attempts [63]. On-
court sessions were completed between two and three times
per week in which IMUs were positioned bilaterally ante-
rosuperior to the medial malleoli throughout 90- to 120-
minute basketball practices [38]. CMJ outcome measures
were calculated from the vertical ground reaction force data,
and on-court outcome measures were obtained from the
resultant accelerometer data from IMUs. All outcome
measures were obtained from the respective manufacturer-
provided software.

2.3.3. Model Development. A total of seven months of data
were collected during the 2021-2022 season, resulting in
a total of 448 possible weekly observations (28weeks× 16
athletes) of the abovementioned 22 variables. Te resulting
data matrix (e.g., 448 rows of observations by 22 columns of
variables) was used to depict the variability in this dataset
through the PCA accomplished using the “pca” function in
MATLAB R2021a (MathWorks, Inc., Natick, MA, USA).
Tis function utilizes the singular value decomposition
approach which aims to consolidate commonalities or
correlations between the original biomechanical variables by
uniquely loading (i.e., rotating) them onto new variables
called PCs. Given the varying scales of our biomechanical
variables, standardization of variables (i.e., mean of zero and
standard deviation of one) was required for the PCA [57, 69].
Tese newly developed PCs are uncorrelated with each other
but can efectively represent overarching structures (i.e.,
principal components) within the data and the variability
present. Te PCs were derived based on the maximum
variance explained in the data and presented in descending
order from PC1 to n-PC (i.e., the number of PCs required to
explain ≥90% of the data variance) [57, 69]. Tis method
aligned well with other approaches to retain PCs (e.g., scree
plot and 0.7 eigenvalue cutof) [57, 69, 70]. In other words,
the frst PC highlights commonalities in variables that
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represent data with the greatest variability across the sample.
Further, these new independent variables (PCs) depict
scores for each individual relating to a more holistic or
summarized assessment of important biomechanical data
and, using the coefcients which defne the interrelationship
between original variables, can be computed weekly for each
athlete during the 2022-2023 season to address research
questions (i) and (ii).

2.4. Statistical Analysis

(i) Association between biomechanical and introspective,
psychological state: Te relationships of bio-
mechanical PC scores to introspective, psychological
state metrics were assessed using a repeated mea-
sures correlation statistical approach [71]. Te re-
peated measures correlation was used to determine
the common within-individual associations between
these continuous variables (i.e., biomechanical PCs
and psychological state), while ensuring that the
assumption of independence of observations was not
violated by controlling for the efect of between-
individual variance [71].

(ii) Detection of Subject-Specifc Fluctuations from Nor-
mative, Baseline Patterns: standardized error of the
measurement (SEM) and MDC statistics [72] were
computed for red-fagging and identifying subject-
specifc statistically important levels of change in our
biomechanical PCs and introspective, psychological
state metrics across the 2022-2023 season. Tese
MDC statistics were defned using preseason data as
normative baseline values and were carried forth
across the season to discern when subjects had
exhibited fuctuations outside of their normative
patterns demonstrated in the preseason. In turn,
a red-fag event would occur if an athlete’s data
changed greater than the defned MDC, highlighting
a deviation that is larger than the expected level of
between collection variance for a given PC. Tis
methodological approach has been proven reliable
and was applied in a similar longitudinal use-case
example by our laboratory. [63] All statistical ana-
lyses (α� 0.05, and β� 0.20) aside from the repeated
measures correlation (i.e., completed using RStudio
(RStudio Team, 2021) and the “rmcorr” R package)
were performed using MATLAB R2021a (Math-
Works, Inc., Natick, MA, USA).

3. Results

3.1. Summary of Data Collected. Te sixteen female bas-
ketball athletes were prospectively monitored across two
competitive collegiate basketball seasons, which consisted of
(i) between two and three on-court sessions per week, (ii)
one three-jump CMJ session per week, and (iii) weekly
questionnaires which were completed once per week to
obtain introspective, psychological state data. Fifteen ath-
letes were monitored across the frst competitive season,
with one athlete discontinuing participation between the

frst and second seasons. Another athlete joined the team in
the second season, resulting in a total of ffteen athletes
monitored in season two; however, two of the athletes in
season two discontinued their participation prior to the
conclusion of the season, and thus, were only monitored for
part of the season. Across the two competitive collegiate
basketball seasons, a total of 1,226 on-court sessions were
collected (mean per athlete = 77; SD per athlete = 26), 1,936
CMJ trials were performed (mean per athlete = 121; SD per
athlete = 42), and 910 weekly self-reported questionnaires
were completed (mean per athlete = 57; SD per athlete = 28).
Te average value and standard deviation for each outcome
measure across all athletes stratifed by season are presented
in Table 1.

3.2. Biomechanical PCA Model Development. Given the
highly correlated nature and redundancy of the included
biomechanical metrics (Supplementary Table 1), a bio-
mechanically focused PCA was trained using on-court and
CMJ testing data obtained across two competitive seasons
(i.e., 14months of training). Initially, there were 865 weekly
observations (i.e., on-court, CMJ, or self-reported in-
trospective, psychological state data) amongst the cohort of
16 female basketball athletes. After fltering for weeks in
which there were no missing biomechanical data, 394
synonymous weekly observations were identifed and in-
cluded in the PCA model (i.e., on-court and CMJ data
collected during the same week of training; mean number of
weeks that biomechanical data were collected per
athlete� 25 (9)).

Following suggestions made by Bartholomew and Jollife
et al. [57, 69], we retained n-PCs that explained ≥90% of the
variance in our biomechanical data, which resulted in a total
of eight extracted PCs (Table 2 and Supplementary Figure 1).
Te preseason reliability of the biomechanical PCs and the
introspective, psychological state metrics are presented in
Supplementary Table 2, while the correlations between the
original biomechanical metrics and the newly derived PCs
are presented in Supplementary Table 3.

While the loading coefcients for the biomechanical PCs
represent complex relationships between the on-court and
CMJ metrics used in the PCA, some general interpretations
can bemade of each biomechanical PC. Specifcally, PC1 was
loaded across a number of biomechanical metrics, signifying
an “Overall Magnitude Component,” as is often the case for
the frst PC in a model. [73, 74] Specifcally, higher scores in
PC1 would relate to greater jump power and on-court
impact intensity. Next, PC2 depicted an “On-Court
Asymmetry Component,” reiterating the task-specifc na-
ture of biomechanical asymmetry [36–38]. Interestingly,
PC1 (Overall Biomechanical Magnitude) and PC2 (On-
Court Asymmetry) accounted for ∼50% of the variance in
the data, suggesting the importance of both biomechanical
constructs in our cohort. While PC3 was loaded with some
on-court loading metrics, it was most heavily loaded with
CMJ movement strategy metrics, signifying a “Jump
Movement Strategy Component.” Next, PC4 was loaded
with vertical jump braking power production and time-to-
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Table 1: Descriptive statistics of biomechanical and psychological state metrics stratifed by study year.

Measure
Study year 2021-2022 Study year 2022-2023

Mean SD Mean SD
Total impact load (sum of steps at each intensity in g’s) 72,150 25,766 83,873 33,751
Total step count 6004 1199 6705 1549
Ave. intensity (g) 11.83 2.72 12.30 3.37
Impact Asym. (%) 4.32 3.36 3.77 3.36
Low-G Asym. (%) 2.02 2.0 1.86 1.57
Medium-G Asym. (%) 3.77 2.86 3.13 2.60
High-G Asym. (%) 7.27 5.44 6.57 5.97
Jump height (m) 0.24 0.05 0.26 0.05
CMD (m) −0.28 0.04 −0.28 0.04
Time to takeof (s) 0.84 0.11 0.79 0.10
Pk Rel. Brk power (W/kg) −13.84 3.19 −14.51 2.99
Pk Rel. Prop power (W/kg) 39.90 5.03 41.91 5.74
Pk Brk force Asym. (%) 5.58 4.88 5.43 4.12
Pk Prop force Asym. (%) 3.74 3.11 3.70 3.07
Ave. Brk RFD Asym. (%) 9.69 8.03 8.81 6.53
Pk Lnd force Asym. (%) 11.24 9.34 9.70 10.17
RSI Mod. (JH/contact time) 0.29 0.06 0.33 0.08
Academic workload (0–10) 5.85 1.84 5.28 2.38
Feeling (0–10) 6.36 1.52 5.88 1.60
Sleep quantity–PSQI component 3 (0–3) N/A N/A 0.58 0.74
Sleep quality–PSQI component 1 (0–3) N/A N/A 0.99 0.75
Pain (0–10) 2.99 1.50 1.36 1.69
SD� standard deviation; Ave.� average; Asym.� asymmetry; CMD� countermovement depth; Pk� peak; Rel.� relative; Brk� braking; Prop� propulsive;
RFD� rate of force development; Lnd� landing; RSI Mod.� the modifed reactive strength index; PSQI� Pittsburgh sleep quality index. Note. Asymmetry
metrics computed as absolute values to demonstrate the within- and between-season variability in the magnitude of asymmetry across a team but is blinded to
the nuances of fuctuations in limb dominance in doing so. Sleep quantity and quality collected too inconsistently in season one to report and provide
between-season comparisons. Higher scores in feeling represent better mental health, while higher scores in academic workload and pain represent a greater
workload and level of perceived pain, respectively. Lower scores on sleep scales represent greater sleep quality and quantity.

Table 2: Summary of principal component analysis loading coefcients.

PC� principal component; Ave.� average; Asym.� asymmetry; CMD� countermovement depth; Pk� peak; Rel.� relative; Brk� braking; Prop� propulsive;
RFD� rate of force development; Lnd� landing; RSI Mod.� the modifed reactive strength index; % Var. Exp.� percent variance explained. Te magnitude
and direction of the relationships found are indicated using a colour-coded scale, such that the relationships become increasingly more negative with darker
shades of yellow, while the relationships become increasingly more positive with deeper shades of blue.
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takeof and on-court impact loading metrics, signifying an
“On-Court Impact Loading Component” with interplay
with the braking phase of vertical jump completion. PC5 was
heavily loaded toward between-limb diference metrics from
vertical jump testing and signifed a “Jump Asymmetry
Component.” While the relative importance of jump
asymmetry was less than that of on-court asymmetry in our
model (explained 7%, and 15% of the variance in the data,
respectively), the composition of this PC further demon-
strates the task specifcity of biomechanical asymmetry. PC6
and PC7 presented similar, albeit inverse, loadings of initial
biomechanical metrics, suggesting that on-court asymmetry
in low-to medium-intensity bins may be associated with
vertical jump power production. Lastly, PC8 was almost
entirely related to the asymmetry that exists during the
landing phase of movement during vertical jump testing and
thus signifes a “Jump Landing-Phase Asymmetry
Component.”

3.3. Association between Biomechanics and Introspective,
Psychological State. Associations between biomechanical
PCs and psychological state metrics were examined within
each subject across the 2022-2023 season, which are sum-
marized in this section and Supplementary Figures 2–6, with
the longitudinal trends in these constructs highlighted in
Supplementary Figures 7–11. It is important to note that even
though data have been vastly reduced using the PCA (17
initial biomechanical variables to 5–8 PCs), there are still
numerous relationships to examine in this context. Of these,
the only relationships that reached statistical signifcance were
pain with PC3 (i.e., jump movement strategy component;
r� 0.19, p< 0.05) and with PC4 (i.e., on-court impact loading
component; r� −0.18, p< 0.05) (Supplementary Figure 6).
Otherwise, no overarching associations were identifed at the
group level between psychological state and biomechanical
PCs. Nevertheless, it is important to note that these results
depict signifcant in-phase relationships (i.e., does not account
for possible phase-lagged relationships) and more temporally
complex relationships which occur at the individual level may
be missed. Terefore, the following section of the results will
provide two use-case examples in our cohort of how such data
could be used with calculated MDCs on an individual level to
identify subject specifc relationships.

3.4. Longitudinal PCA Use-Case and Application of Subject-
Specifc Monitoring Using Minimum Detectable Change
Statistics. To demonstrate the potential utility and chal-
lenges of incorporating PCs into athletic monitoring prac-
tices, Figures 1 and 2 highlight two case studies. Specifcally,
the frst example (Figure 1) demonstrates an apparent
connection between on-court asymmetry and impact
loading related to pain. Te athlete in the second example
(Figure 2) was found to exhibit signifcant fuctuations in
jump asymmetry, as well as pain across the season, but

highlights the difculty in establishing normative bio-
mechanical patterns if the baseline period is confounded
with elevated pain.

4. Discussion

Tis investigation was designed to determine the utility and
application of longitudinal biopsychosocial athletic monitoring
using a PCA model in collegiate female basketball players. We
presented biomechanical and psychological state data longi-
tudinally across two competitive seasons, highlighting seasonal
changes in these constructs in our cohort. We found that
biomechanical PCs were associated with pain throughout
multiple competitive seasons but found that a cohort level
approach limited the ability to detect more temporally complex
(e.g., week-to-week) relationships and statistically or clinically
relevant fuctuations from normative patterns. As such, using
case studies, we highlighted the necessity to undertake an
individualized and subject-specifc approach to capture and
delineate associations between biomechanics and introspective
psychological states throughout a competitive season more
adequately. Ours is the frst study to integrate these
performance-relevant domains using a biopsychosocial ap-
proach. Additionally, our investigation highlights the potential
utility of prospectively and longitudinally monitoring student-
athletes using a subject-specifc approach and for integrating
such models in future research and clinical work for sports
performance, preventive, and prognostic purposes.

4.1. Seasonal Changes in Biomechanics and Introspective,
Psychological State. Tere is a paucity of longitudinal in-
vestigations conducted in the realm of sports medicine [53],
especially studies that have concurrently monitored and in-
tegrated biomechanics and psychology in a real-world setting
using force plates and wearable technology. Reporting of
seasonal data is seldom completed, and our study highlights
within- and between-season variability that might be expected
across multiple seasons in real-world and vertical jump
biomechanics and self-reported psychological state. Gener-
ally, biomechanical and psychological state data were similar
across seasons, aside from total impact load, total step count,
and average intensity measured using IMUs during on-court
basketball practices, which were found to be greater in the
second season of our investigation. Meanwhile, the within-
season variability in biomechanics exhibited in our study was
consistent with previous work [20, 24, 75, 76]. It is important
to note that this discrepancy between seasonsmight have been
due to the one-month COVID-19-related shutdown during
the frst season, whereby our cohort of athletes had a signif-
icant reduction in training load both on- and of-court based
on wearable and resistance-training (i.e., volume, intensity,
and rate of perceived exertion) data, which never truly
rebounded to preshutdown levels of training volume and
intensity. Secondly, while most athletes (i.e., n� 14) returned
to the team between seasons, the slight diferences in our
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cohorts between seasons may have also contributed to the
seasonal variability exhibited (Table 1). However, the within-
and between-season variability exhibited in our study can
begin to highlight the need for tailored and subject-specifc
approaches in athletic monitoring due to the inherent dif-
culty in measuring and interpreting these metrics with any
level of consistency at the cohort level.

4.2. Association between Biomechanics and Introspective,
Psychological State. We aimed to determine whether there
were any overarching associations between biomechanics
and psychology throughout a competitive collegiate bas-
ketball season. Our recent scoping review [53] found that
pain and rating of perceived exertion were related to lower
limb biomechanics and asymmetry. Unfortunately, these
relationships that have been previously observed are highly
variable in strength and rarely examined longitudinally [53].
While the fndings of the current study support this asso-
ciation of biomechanics and pain, specifcally with respect to
jump movement strategy and on-court impact load (PC3

and PC4, respectively), the magnitude of these associations
was weak (r� |0.18-0.19|, p< 0.05) [77], and there were no
other clear or overarching associations identifed at the
cohort level when controlling for between-subject
variability.

Our results suggest that the overlap between domains is,
at best, limited at the group level, highlighting the necessity
to undertake an individualized and subject-specifc ap-
proach. Moreover, trying to establish contributory factors to
sports performance and risk of reinjury at the group level is
something that may not be possible or even sensible to do in
many cases. Similar subject-specifc machine learning model
suggestions to identify biomechanical patterns and detect
alterations have been made in runners [78, 79] and patients
diagnosed with knee osteoarthritis [80]. A similar approach
in sports medicine and athletic monitoring may enable
practitioners to reduce the injury burden, which can be quite
substantial [4, 5]. We theorized that developing subject-
specifc models and associated MDC thresholds in athletic
populations can be of use for decision support systems where
an athlete may be red-fagged for further analysis to
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Figure 1: Use-case example of weekly changes in biomechanical principal component scores and self-reported pain in a collegiate female
basketball athlete across the 2022-2023 competitive season. Specifcally, on-court impact load and self-reported pain levels peaked before the
detection of statistically signifcant alterations in on-court asymmetry. To highlight the on-court asymmetry-specifc minimum detectable
change (MDC), upper and lower bounds are depicted for red-fagging biomechanical fuctuations above and beyond the measurement error
of the system. Te MDC statistics are derived based on fve-weeks of preseason training and normative biomechanical patterns exhibited at
the cohort level, with this MDC value applied (±) to the average value that this subject displayed across the same timeframe to calculate
individualized bounds by which their on-court asymmetry fuctuated from their normative patterns. It is important to note that this fgure
underrepresents the amount of data that was collected per participant over the two-year study period, as (i) only data from the 2022-2023
season are presented, as the frst season (2021-2022) was only used to train the PCA model, and (ii) only weeks in which all three forms of
data (i.e., on-court biomechanics, CMJ biomechanics, and psychological state) were concurrently collected are visually represented for
simplicity sake and interpretability.
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ultimately improve preventive medical practices. In other
words, these individualized biomechanical patterns can
signify (i) a “green-light” with no sign of concern when
individuals display normative or unchanging biomechanical
patterns, (ii) changes outside or nearing outside of this MDC
threshold might signify a “yellow (caution)-light” where
some concern is present and follow-up may be required, and
(iii) signifcant biomechanical alterations from normal
patterns signifying a “red-light” which might be indicative of
larger concern and an immediate and further investigation
of the athlete’s current condition.

4.3. Longitudinal PCAUse-Case andApplication ofMinimum
Detectable Change Statistics for Red-Flagging Athletes.
Two case examples highlighted the longitudinal monitoring
using PCs and associated MDCs to identify alterations from
normative biomechanical patterns on a subject-specifc
basis. Te frst example identifed fuctuations in on-court
asymmetry patterns and concurrent or prior changes in

perceived pain and on-court impact load (Figure 1). In
contrast, the second example focuses on identifying alter-
ations in jump asymmetry patterns while highlighting the
potential difculty in establishing normative biomechanical
patterns without contextualizing them with other facets of
health, such as self-reported pain levels (Figure 2).

In the frst example (Figure 1), it is apparent that this
female athlete showed fuctuations beyond their typical on-
court asymmetry patterns near the end of the 2022-2023
competitive basketball season. Seven months prior, during
the preseason, this individual displayed consistent PC2
scores near values of 3, which can be contextualized here as
being left limb dominant (−18.1% between-limb diference
in favour of the left limb) during high-intensity aspects of
practices. However, in early 2023, the samemetric (PC2) was
near the boundary of the MDC (e.g., value of 2.1), relating to
a −10.5% between-limb diference, favouring the left limb in
high-intensity aspects of practice. Most importantly, this
PC2 deviation was also met with a gradual increase in pain
towards an eventual peak in the third week of January.
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Figure 2: Use-case example of weekly changes in biomechanical principal component scores and self-reported pain in a collegiate female
basketball athlete across the 2022-2023 competitive season. Specifcally, jump asymmetry-specifc minimum detectable change (MDC)
upper and lower bounds are depicted for red-fagging biomechanical fuctuations above and beyond the measurement error of the system,
which were paralleled, to some extent, by seasonal changes in self-reported levels of pain.TeMDC statistics are derived based on fve weeks
of preseason training and normative biomechanical patterns exhibited at the cohort level, with this MDC value applied (±) to the average
value that this subject displayed across the same timeframe to calculate individualized bounds by which their jump asymmetry fuctuated
from their normative patterns. However, this “unperturbed” baseline period was confounded by high levels of self-reported pain in this
athlete, suggesting that our normative biomechanical patterns might not necessarily indicate what we would expect in this athlete. It is
important to note that this fgure underrepresents the amount of data that was collected per participant over the two-year study period, as (i)
only data from the 2022-2023 season are presented, as the frst season (2021-2022) was only used to train the PCAmodel and (ii) only weeks
in which all three forms of data (i.e., on-court biomechanics, CMJ biomechanics, and psychological state) were concurrently collected are
visually represented for simplicity sake and interpretability.
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Consequently, while the athlete was nearing a red-fag
scenario before this elevated pain, they exceeded their
normal pattern of on-court asymmetry in the week following
peak pain onset.Temanifestation of this was a PC2 score of
0.7 and a −0.5% between-limb diference (i.e., no between
limb diference during high-intensity aspects of these ses-
sions). In other words, this athlete was someone that gen-
erally displayed a left dominant pattern in high-intensity
aspects of practice but had now begun to alter their pattern
to reduce the loading on that left limb. Te medical staf
chart notes supported that the timing of this deviation
coincided with lower limb MSK soreness and tightness
which required ongoing management throughout the re-
mainder of the season, even though no specifc injury or time
loss occurred. It is important to note that while this moved
them into a more symmetrical pattern relative to their
previous baseline biomechanical pattern, this was a clinically
meaningful deviation [16–23], to an extent (10–15%) that has
at times been related to heightened injury risk [18, 24–27].
Interestingly, this fuctuation from normative asymmetry
patterns appeared most pronounced during high-intensity
eforts. Tis observation is concerning as most serious lower
limb MSK injuries (e.g., anterior cruciate ligament rupture)
are sustained during high-intensity landings from bouts of
jumping, during a change-of-direction, or cutting maneu-
vers in basketball [1, 9–11]. Moreover, in the weeks following
this red-fag situation, the athlete had various additional
biomechanical changes. Most notably, the successive re-
duction of on-court loading (PC4) highlights a possible
attempt to manage their pain and potential underlying in-
jury. Generally, exceeding MSK structure load tolerance
during training and competition can lead to injury [1, 9–11],
and this may be exacerbated if there are large between-limb
diferences that exist and one limb is unduly stressed
[18, 24–27] or, in this case, stressed the contralateral (right)
limb more than was previously typical. As such, athletes will
often attempt to restore and maintain homeostasis and
mitigate the underlying cause of pain by reducing the load
and frequency of the activities leading to an injury [81],
which appears to be the case for this athlete, evident in not
only on-court loading (PC4) but also jump movement
strategy (PC3). Nevertheless, it is important to note that this
is a single-case study and interpretation of these changes
occurring.

Te second case example (Figure 2) highlighted seasonal
fuctuations (i) during the end of the preseason in October
2022 and (ii) after the regular season just before collegiate-
level playofs in February 2023 that exceeded the MDC
threshold in normative jump asymmetry patterns that we
were able to red-fag for further examination. When ob-
serving the force-time waveforms and associated jump
asymmetry metrics that were heavily weighted in PC5, it was
found that peak braking force asymmetry, peak propulsive
force asymmetry, and average braking rate of force devel-
opment asymmetry had all fuctuated from normative
patterns during the fnal week in October (i.e., Δ from
mean= 8–12%), with both peak braking and propulsive force
asymmetry also demonstrating changes in right-to-left limb
dominance. While the fuctuations this athlete exhibited in

jump asymmetry exceeded the MDC thresholds for statis-
tical relevance, none exceeded the 10–15% threshold for
clinical relevance [18, 82]; thus, there was not a serious or
urgent (i.e., red-fag) concern but rather an indication to
proceed with caution in regards to this athlete. Interestingly,
the on-court asymmetry and self-reported pain from this
athlete, as seen in orange and black, respectively, in Figure 2,
displayed similar and somewhat paralleled fuctuations to
jump asymmetry. However, it is noteworthy that this athlete
was experiencing moderate levels of pain during the pre-
season and minor overuse injuries during competitive
season, as noted by the sport medicine team. Tis pain
information was used to defne normative biomechanical
patterns for this individual and for building out the asso-
ciated MDC values. While these minor injuries did not force
the athlete to miss any practice or competitions, they did
necessitate continuous management to address tightness
and soreness related to the MSK issues. As such, these
fuctuations identifed as red-fags might not necessarily
indicate meaningful fuctuations from this individual’s
normative biomechanical patterns since the predefned
baseline period was not pain-free and thus not normal for
this individual. Additionally, this demonstrates the high
levels of variability in biomechanics and prevalence of pain
that may exist in athletic populations across a season without
an injury that constitutes time loss. Tis is in line with other
work that has discussed the variability in pain tolerance and
athletes’ coping mechanisms to mitigate such pain in athletic
populations [83, 84]. Cumulatively, this example highlights
a potential limitation of this PCA model since the MDC
values should ideally be established during a stable, pain-free
period; however, such stability cannot be guaranteed to exist
for all athletes in this cohort nor can the potential parallels
between jump asymmetry and perceived pain. However, this
case provides a practical example of how PCA and this
biopsychosocial model can be applied in longitudinal
contexts for potential preventive and prognostic purposes
while highlighting considerations that need to bemade when
employing such models.

4.4. Limitations and Future Directions. Tere are several
limitations to the present investigation, many of which have
been previously outlined in a similar longitudinal vertical
jump PCA application of ours [63] and a corresponding
master’s thesis document [85]. First, this sample consisted of
a homogenous group of female collegiate basketball athletes
and, thus, may limit the generalizability to males or other
competitive athletic populations given that previous PCA
work has demonstrated that the makeup of these models can
difer between sports [86–88] and based on biological sex
[87, 89]. Similarly, despite the limited size of our sample, the
numerous repeated observations and the comprehensive vi-
sualizations of the data instill confdence in the relationships
(or lack thereof) presented here. However, it is important to
acknowledge that while we believe our study efectively
characterizes the relationships within our current sample,
these fndings may not necessarily apply to other athlete
cohorts or populations. Similarly, while the PCs and
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associated MDCs from the current work are specifc to this
cohort and dataset, the reliability of this method and the
practical use-case examples should provide confdence in
using such methods in future research and clinical applica-
tions. Additionally, it is possible that the efects of the
menstrual cycle may have afected jump and on-court bio-
mechanics due to potential alterations in neuromuscular
function [90]; however, recent systematic reviews have sug-
gested that the efects of the menstrual cycle on exercise
performance are inconclusive and trivial [91, 92]. Second, the
associations identifed between biomechanical and psycho-
logical states were established across all data rather than
assessing the association between weekly changes in these
constructs. Future research should examine the temporal
association between biomechanics and psychological state
using cross-correlation to discern whether changes in one
entity precede the other. Tird, while this PCA model in-
cludes both on-court and traditional CMJ biomechanics, we
did not include our psychological state metrics in this model
due to the low compliance rates exhibited in the frst year of
our investigation (compliance rates in season one: academic
workload= 67± 16%; feeling = 80± 11%; sleep = 55± 29%;
pain = 49± 29%). Te potential implications of excluding
psychological state metrics from our PCA model remain
relatively unknown, as many of our included psychological
state metrics have not been evaluated in conjunction with
lower limb biomechanics, and the relationship between these
constructs has, to our knowledge, not been elucidated in
a longitudinal setting. Terefore, it is suggested that future
research examines the utility in integrating psychological state
into their PCA models to defne multivariate and multilevel
PCs that capture a greater degree of the athlete’s status.
Fourth, the PCA model in the present investigation was built
on variation in data between athletes rather than developing
numerous potentially more sensitive subject-specifc models.
Unfortunately, training a multivariate, subject-specifc PCA
model would require many jumps and on-court sessions (e.g.,
50 or more per athlete) and result in similar but unique PC
profles across athletes that would require separate in-
terpretations. Since the overarching purpose and proposed
utility of the PCA model and the associated MDCs in the
present investigation was for red-fagging athletes, this might
not be necessary, and doing so may cause more difculty and
time constraints in this process. However, future work could
investigate whether subject-specifc models are more ap-
propriate for detecting more subtle individual changes from
normative patterns than the present between-subject model.

5. Conclusion and Perspective

Our study is the frst to use advanced analytical modeling to
characterize components of student-athlete performance
and well-being and the only study to integrate these domains
in a longitudinal and biopsychosocial fashion over multiple
competitive seasons. Our data showed associations and
overlap between biomechanical and psychological patterns
in athletic populations and emphasized the highly
subject-specifc nature of these associations. We propose
that there is a need for more tailored and subject-specifc

athletic monitoring practices, particularly those that include
integrated, as opposed to traditionally isolated, bio-
mechanical, physiological, and psychological athletic mon-
itoring. Specifcally, we showed the ability to incorporate this
methodological approach for prospectively red-fagging
athletes who demonstrate statistically and clinically rele-
vant fuctuations in normative biomechanical and psycho-
logical patterns that might indicate a heightened risk of
injury or decrements in sports performance. Future research
should employ similar biopsychosocial PCA models to
prospectively monitor athletic populations to determine the
potential preventive and prognostic capabilities of athletic
monitoring practices.
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Supplementary Table 1: correlations between on-court inertial
measurement unit-derived and force plate-derived counter-
movement jump biomechanicalmetrics in a cohort of collegiate
female basketball athletes from data across two competitive
seasons. Te magnitude and direction of the relationships
found are indicated using a colour-coded scale, such that the
relationships become increasingly more negative with darker
shades of yellow, while the relationships become increasingly
more positive with deeper shades of blue. Supplementary
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Table 2: the reliability of biomechanical principal component
scores and psychological state metrics collected across fve
weeks of the 2022-2023 competitive, collegiate female basketball
preseason, along with the corresponding standard error of the
measurement and minimum detectable change statistics.
Supplementary Table 3: correlation between original bio-
mechanical variables and newly derived principal component
scores. Te magnitude and direction of the relationships found
are indicated using a colour-coded scale, such that the re-
lationships become increasingly more negative with darker
shades of yellow, while the relationships become increasingly
more positive with deeper shades of blue. Supplementary
Figure 1: scree plot of log-eigenvalues of each principal com-
ponent in the biomechanical PCA model vs. the number of
principal components in the model. Supplementary Figure 2:
repeated measures correlation-based associations identifed
between biomechanical principal component scores and self-
reported academic workload across the 2022-2023 season, with
subject-specifc data distinguished using diferent colours, and
the commonality in within-individual associations after con-
trolling for between-individual variance identifed in the bot-
tom right corner of each subplot. Supplementary Figure 3:
repeated measures correlation-based associations identifed
between biomechanical principal component scores and self-
reported feeling across the 2022-2023 season, with subject-
specifc data distinguished using diferent colours, and the
commonality in within-individual associations after controlling
for between-individual variance identifed in the bottom right
corner of each subplot. Supplementary Figure 4: repeated
measures correlation-based associations identifed between
biomechanical principal component scores and self-reported
sleep quantity across the 2022-2023 season, with subject-
specifc data distinguished using diferent colours, and the
commonality in within-individual associations after controlling
for between-individual variance identifed in the bottom right
corner of each subplot. Supplementary Figure 5: repeated
measures correlation-based associations identifed between
biomechanical principal component scores and self-reported
sleep quality across the 2022-2023 season, with subject-specifc
data distinguished using diferent colours, and the commonality
in within-individual associations after controlling for between-
individual variance identifed in the bottom right corner of each
subplot. Supplementary Figure 6: repeated measures
correlation-based associations identifed between bio-
mechanical principal component scores and self-reported levels
of pain across the 2022-2023 season, with subject-specifc data
distinguished using diferent colours, and the commonality in
within-individual associations after controlling for between-
individual variance identifed in the bottom right corner of each
subplot. Supplementary Figure 7: weekly changes in bio-
mechanical principal component scores and self-reported ac-
ademic workload in a cohort of collegiate female basketball
athletes across the 2022-2023 competitive season. Supple-
mentary Figure 8: weekly changes in biomechanical principal
component scores and self-reported feeling in a cohort of
collegiate female basketball athletes across the 2022-2023
competitive season. Supplementary Figure 9: weekly changes in
biomechanical principal component scores and self-reported
sleep quantity in a cohort of collegiate female basketball athletes

across the 2022-2023 competitive season. Supplementary Fig-
ure 10: weekly changes in biomechanical principal component
scores and self-reported sleep quality in a cohort of collegiate
female basketball athletes across the 2022-2023 competitive
season. Supplementary Figure 11: weekly changes in bio-
mechanical principal component scores and self-reported pain
in a cohort of collegiate female basketball athletes across the
2022-2023 competitive season. (Supplementary Materials)
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