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Petroleum is one of the main energy sources worldwide. Its transport is performed by big 
tankers following established marine routes. In the last 50 years, a total amount of 37 oil 
tankers have given rise to great spills in different parts of the world, Prestige being the 
last one. After the accident, a large human mobilisation took place in order to clean 
beaches, rocks, and fauna, trying to reduce the environmental consequences of this 
serious catastrophe. These people were exposed to the complex mixture of compounds 
contained in the oil. This study aimed to determine the level of environmental exposure 
to volatile organic compounds (VOC), and the possible damage induced on the 
population involved in the different cleaning tasks by applying the genotoxicity tests: 
sister chromatid exchanges (SCE), micronucleus (MN) test, and comet assay. Four 
groups of individuals were included: volunteers (V), hired manual workers (MW), hired 
high-pressure cleaner workers (HPW), and controls. The higher VOC levels were 
associated with the V environment, followed by MW, and lastly by HPW, probably due to 
the use of high-pressure cleaners. Oil exposure during the cleaning tasks caused an 
increase in the genotoxic damage in individuals, the comet assay being the most 
sensitive biomarker to detect it. Sex, age, and tobacco consumption were shown to 
influence the level of genetic damage, while the effect of using protective devices was 
less noticeable than expected, perhaps because the kind used was not the most 
adequate. 

KEYWORDS: accidental pollutants, genotoxicity, micronucleus (MN) test, sister chromatid 
exchanges (SCE), comet assay 
 

INTRODUCTION 

Humanity has made a lot of progress in the last decades, but parallel to these great advances, serious 
environmental problems have resulted. Among them, emissions are becoming more and more important, 
coming from industry in different ways: fumes to the atmosphere, dumps of a great variety of compounds, 
and several kinds of spills to the rivers and the sea. In this last section, it is important to point out oil spills 
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because of their magnitude and environmental effects. Petroleum is one of the main energy sources 
worldwide, which entails the need for carrying it from the platforms to ports around the world. Transport 
is performed by big tankers and follows established marine routes. This fact, added to the bad state of 
some oil tankers, causes a high number of spills to take place all over the world. In the last 50 years, a 
total amount of 37 oil tankers have given rise to great spills in different parts of the world, Prestige being 
the last one. 

This tanker contained over 77,000 tons of crude oil and wrecked in November 2002 at 130 nautical 
miles from the coast of Galicia, in the Northwest of Spain. Prestige contained heavy oil, resulting from 
the refining of crude oil that was classified as oil number 6 by the U.S. Environmental Protection Agency 
(USEPA). It was composed mainly of saturated hydrocarbons (22%), aromatic hydrocarbons (50%), and 
resins and asphaltens (28%)[1]. Attending to the existing considerations on these kinds of substances, two 
groups of compounds must be highlighted as especially dangerous agents: volatile organic compounds 
(VOC) and polycyclic aromatic hydrocarbons (PAH). The first group has been classified as toxic and 
some of its components are even considered as mutagenic and/or carcinogenic (benzene, styrene, etc.), 
being their toxicity is aggravated by their high volatility, which facilitates their penetration inside 
organisms. As for PAH, their main characteristics are also mutagenic and carcinogenic, directing their 
affinity to the nucleophilic centres of big macromolecules as DNA, RNA, or proteins. 

After the Prestige accident, a large human mobilisation took place in order to clean beaches, rocks, 
and fauna, trying to reduce the environmental consequences of this serious catastrophe. For this reason, 
besides the ecological repercussion, an important human population composed of zone inhabitants, 
volunteers who came from different points of Spain and even Europe, and hired workers, was exposed to 
these toxic agents during different periods of time and in different ways. Knowing that genetic material 
could be one of the main targets of this exposure, it seemed necessary to perform a genotoxicity study to 
identify and define the repercussion of the exposure on human health. Among the different genotoxicity 
tests, three were selected in order to better characterize the kind of damage caused: sister chromatid 
exchanges (SCE), micronucleus (MN) test, and comet assay. 

SCE are cytogenetic manifestations of DNA breaks and their cross join in the homologous place in 
the sister chromatid of a chromosome[2]. It has been suggested that they constitute the display of repair 
processes of DNA double strand breaks by the homologous recombination path[3]. SCE represent an 
effect biomarker extensively used from the beginning of Genetic Toxicology due to the fact that they may 
be induced by numerous genotoxic agents.  

Micronuclei are defined as small chromatinic bodies that appear in the cytoplasm by condensation of 
acentric chromosome fragments or whole chromosomes, lagging behind the cell division[4]. One of the 
main advantages of the MN technique lies in its ability to detect not only clastogenic damage, but also 
aneugenic processes. This cytogenetic biomarker has been suggested to provide a reasonable 
epidemiological evaluation of cancer predictivity[5].  

Lastly, comet assay is nowadays one of the more frequently employed genotoxicity tests. This technique 
is characterized for being a rapid, simple, and sensitive method to detect DNA strand breaks in individual 
cells. Its alkaline version allows the detection of both single and double strand breaks generated from 
genotoxic agents and incomplete excision repair processes. Thus, the comet assay represents an adequate 
complement to SCE and MN cytogenetic tests, since it reflects a more recent type of damage that could be 
repaired.  

In summary, knowing the magnitude of the Prestige oil spill, the toxic properties of this complex 
mixture of compounds, and the great amount of people exposed to it, we have performed a study aimed at 
determining the level of environmental exposure by means of passive dosimeters, and the possible 
genotoxic damage induced on the population involved in the different cleaning tasks. 
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MATERIAL AND METHODS 

Study Subjects 

The study population consisted of 110 individuals classified according to their exposure characteristics in 
controls (n = 42), volunteers that collaborated on cleaning beaches for five consecutive days for 4 h/day 
(V, n = 25), hired manual workers who also cleaned beaches during 4 months for 6.5 h/day (MW, n = 20), 
and hired high-pressure cleaner workers that cleaned oil-contaminated rocks during 3 months for 6.5 
h/day (HPW, n = 23). The control population was not exposed to any toxic agent for 4 months prior to the 
study. Data on lifestyle and consumption habits were registered in a detailed questionnaire.   

Environmental VOC Determination 

Environmental VOC determination was performed by means of passive diffusion, employing Perkin 
Elmer tubes filled with 200 mg of Tenax TA and Radiello® tubes. Dosimeters were distributed among 
the exposed individuals (28 to V, 19 to MW, and 19 to HPW) who bore them during the whole working 
shift. Tubes were thermally desorbed and analyses were carried out by gas chromatography coupled to ion 
trap mass spectrometry (ITMS)[6].  

The VOC determined were benzene (B), tetrachloroethene (TCE), toluene (T), n-heptane (H), n-
octane (O), ethylbenzene (EB), m+p-xylene (m+p-X), o-xylene (o-X), styrene (S), isopropylbenzene 
(IPB), a-pinene (a-P), n-propylbenzene (PB), b-pinene (b-P), 1,3,5-trimethylbenzene (1,3,5-TB), n-decane 
(D), pyrene (P), 1,2,4-trimethylbenzene (1,2,4-TB), and 1,2,3-trimethylbenzene (1,2,3-TB). The sum of 
the quantities of benzene, toluene, ethylbenzene, m+p-xylene, and o-xylene was considered as the index 
BTEX, and the sum of the total quantity of all evaluated compounds was considered as the index total 
VOC (TVOC). 

Blood Sample Collection 

Peripheral blood samples were collected in heparinised tubes before the beginning of the working shift, 
between March and May 2003. Samples were immediately transported to the laboratory in a refrigerated 
container and stored at 4ºC until their utilisation. Every sample was codified in order to ensure a blind study. 

SCE 

Duplicate lymphocyte cultures were set up by adding 0.5 ml of whole blood to 4.5 ml of culture medium 
(the same used for the MN test). Cultures were incubated at 37ºC for 68 h, and after 24 h of culture 
initiation, 5-bromo-2’-deoxyuridine was added at a final concentration of 7 μg/ml. Colchicine (2 μg/ml) 
was added 2 h prior to harvesting to arrest the cells at metaphase. Cells were collected by centrifugation, 
resuspended in a warm hypotonic solution (0.075 M KCl at 37ºC) for 10 min, and fixed in Carnoy 
(methanol-acetic acid 3:1 v/v). Air-dried slides were prepared and stained with fluorescence plus Giemsa 
technique, following Perry and Wolff[7]. A total of 50 well-spread, second division metaphases were 
examined for each experimental concentration and donor, half from each duplicate culture, on a Nikon 
HFX-DX light microscope by the same scorer, to determine the number of SCE/cell.  

Cytokinesis-Block MN Test 

Heparinised whole blood (0.5 ml) was cultured in duplicate at 37ºC in 4.5 ml RPMI 1640 medium 
supplemented with 15% foetal calf serum, 1% phytohaemagglutinin, 1% L-glutamine (200 mM), and 1% 
penicillin (5000 U/ml)/streptomycin (5000 μg/ml) (all from Invitrogen, Barcelona, Spain). Cultures were 
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maintained for 44 h and then 10 µl of cytochalasin-B were added at a final concentration of 6 μg/ml. Cells 
were harvested by centrifugation after 72-h culture and submitted to a mild hypotonic treatment with 0.075 
mM KCl at 4ºC. Then cells were fixed in Carnoy (methanol-acetic acid 3:1 v/v), placed on dry slides, and 
stained with 4,6-diamidino-2-phenylindole (DAPI). Binucleated cytokinesis-blocked cells and MN were 
identified on a Leica DM-RXA microscope equipped with a 100 W mercury lamp, according to the criteria 
of Fenech et al.[8]. Two genotoxic parameters were evaluated by scoring 1000 binucleated cells (500 from 
each culture): frequency of MN and frequency of binucleated micronucleated cells (BNMN). 

Comet Assay 

Mononuclear leukocytes were isolated using BD Vacutainer™ CPT™ Cell Preparation Tubes with 
sodium heparin (Becton Dickinson), following manufacturer’s instructions and stored at –80ºC in 
freezing medium (50% foetal calf serum, 40% RPMI 1640, 10% DMSO) in a Nalgene® Cryo 1oC 
Freezing Container (Nalgene Nunc International) until the time of analysis. Just before performing comet 
assay, cells were thawed at 37ºC, and viability was evaluated by trypan blue exclusion technique, being 
higher than 85% in all cases. 

The alkaline comet assay was performed basically as described by Singh et al.[9], with minor 
modifications[10]. Briefly, cells were embedded in 80 μl of 0.5% low-melting-point agarose (LMA) 
(Gibco BRL, Paisley, Scotland), dropped on agarose precoated microscope slides (two for each donor), 
and spread using a coverslip. Slides were placed on ice for 10 min, a third layer of 80 μl LMA was 
applied, and then they were immersed in cold lysing solution (2.5 M NaCl, 100 mM Na2EDTA, 250 mM 
NaOH, 10 mM Tris-HCl, pH 10, with 1% Triton X-100 added just before use) for 1 h at 4ºC. After the 
lysis slides were left for 20 min in the dark on a horizontal electrophoresis tank placed into an ice bath 
and filled with fresh electrophoresis solution (1 mM Na2EDTA, 300 mM NaOH, pH > 13) to cover the 
slides. Electrophoresis was conducted at 0.83 V/cm for 20 min. Slides were neutralized (0.4 M Tris-HCl, 
pH 7.5) and stained with 60 μl of 5 μg/ml DAPI in antifade solution.  

One hundred cells (50 per replicate slide) were examined from each sample using the QWIN Comet 
software (Leica Imaging Systems, Cambridge, U.K.). Tail length (TL) was evaluated as estimator 
parameter of DNA damage. 

Statistical Analyses 

To check for the existence of significant differences among exposure groups, and to examine the 
contribution of lifestyle factors to the genotoxicity variables evaluated, analysis of variance (ANOVA) 
and Tuckey’s tests were performed. All statistical analyses were conducted using the SPSS for Windows 
statistical package, version 14.0 (Chicago, IL). 

RESULTS 

The characteristics of the population participating in this study are shown in Table 1. Exposed individuals 
were classified according to the cleaning labours performed and to their exposure time. Distribution of 
both genders was equitable in the exposed population and males represented 38% of the control subjects. 
Age was low in both populations, although the MW group slightly exceeded the mean of 40 years old. 
Smokers represented 24% of the control group and 42% of the exposed population (range 28–61%). 
Almost all hired workers wore protective devices (new or reused), but 60% of the volunteers did not use 
protective clothes and 20% did not use a cellulose mask. 
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TABLE 1 
Characteristics of the Study Population 

Exposed 
 Controls 

Total V MW HPW 

Total number of individuals 42 68 25 20 23 
Sex      

Female 26 34 15 8 11 
Male 16 34 10 12 12 

Age (years)a 22.67 ± 4.50 31.99 ± 12.13 23.52 ± 7.30 41.25 ± 12.16 33.18 ± 9.62 
Smoking habits      

Nonsmokers 32 39 18 12 9 
Smokers 10 29 7 8 14 

Use of protective clothes       
New  19 8 8 3 
Reused  33 2 11 20 
None  16 15 1  

Use of mask      
New  24 17 3 4 
Reused  35 3 14 18 
None  9 5 3 1 

a Mean ± SD. 

A total number of 66 passive dosimeters were distributed among the different exposure groups to 
determine the VOC-related characteristics of each zone. Fig. 1 gathers the profiles obtained. They show a 
major presence of light hydrocarbons as benzene, n-heptane, toluene, and n-octane in all cases, followed 
by styrene and n-decane, and in the HPW group isopropylbenzene and n-propylbenzene. With respect to 
the comparison of the exposure levels among groups, the highest concentrations took place in the V 
environment, while the lowest VOC levels were associated with the HPW group. To test if these apparent 
differences were really significant, an ANOVA test was done comparing TVOC, BTEX, and benzene 
concentrations as the three representative indices and results are shown in Table 2. These three indices 
were significantly lower in the hired workers (MW and HPW) than in voluntary individuals, but the first 
ones did not differ from each other although all values were higher in the MW group. 

Regarding to the genetic damage related to the exposure, Fig. 2 and Table 3 show the results of the 
genotoxicity tests applied. When comparing the total exposed population with controls, just TL 
distribution showed a displacement to higher values in the exposed. Table 3 reflects this fact as a 
statistically significant increase of this parameter. Looking at the subgroups of exposure, the MN test only 
detected a nonsignificant increase in BNMN rate in MW. SCE frequency underwent an increase (p < 
0.01) associated with the HPW group in relation to controls, and the parameter from the comet assay 
showed higher levels of DNA strand breaks in V and HPW. 

As for the influence of physiologic and consumption parameters (see Tables 4–6), cytogenetic 
genotoxicity tests have shown higher values for all parameters related to the female gender, but just SCE 
reached the statistical signification (p < 0.05). The comet assay, on the contrary, detected higher DNA 
damage associated with males in all exposure groups with the exception of MW, where there was no 
difference between genders. Age has also been shown to influence the damage levels observed. Higher 
rates of both MN and BNMN were observed in the oldest individuals for all exposed groups and no  
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FIGURE 1. VOC profile obtained from the analyses of dosimeters for each exposed group: (A) V, (B) MW, and (C) HPW. Bars 
indicate standard deviation. Acronyms used for VOC are shown in Materials and Methods. 

differences were obtained in controls. Regarding the SCE results, differences were only detected in the 
total exposed population and in V, where the frequency of this parameter was increased with age. TL data 
showed a significant decrease of DNA strand break levels in the oldest group for controls, the total 
exposed population, and V, while in HPW, increasing age was associated with significantly higher values 
of TL. Smoking habits seemed not to affect either MN or BNMN rates, but the other cytogenetic 
biomarker, SCE, showed increases in its frequencies in all exposure groups associated with smokers. 
Comet assay results are not so uniform, since TL values were significantly increased in smokers 
belonging to the control and V groups, and no differences were obtained in the total exposed population, 
MW, and HPW. 

Finally, taking into account the possible influence of the protective measures employed by the 
individuals during the cleaning tasks on the genetic damage (Figs. 3 and 4), it was possible to observe an 
effect of the use of protective clothes as an increase in SCE frequencies both in V and MW individuals 
who did not wear these clothes or wore the reused type, and as an increase in TL levels in the same 
individuals belonging to the MW group. No significant difference was obtained in MN or BNMN 
frequencies. In the case of the use of a protective cellulose mask, we have only detected a significant 
increase in SCE frequency in V individuals who did not use it. 

0

50

100

150

200

B
TC

E T H O EB
m

+p
-X o-
X S

IP
B

a-
P PB b-
P

1,
3,

5-
TB D

1,
2,

4-
TB

1,
2,

3-
TB

C
on

ce
nt

ra
tio

n 
(µ

g/
m

3 )



Pérez-Cadahía et al.: Genetic damage by pollutants TheScientificWorldJOURNAL (2006) 6, 1221–1237
 

 1228

 

TABLE 2 
Results Obtained for the Environmental VOC Determination (µg/m3; mean ± SE) 

in Each Exposure Group  

 Total VOC BTEX Benzene 

V 482.97 ± 62.02 (26) 196.79 ± 28.77 (25) 133.57 ± 24.98 (27) 
MW 200.85 ± 48.68** (17) 94.23 ± 28.37* (16) 50.32 ± 14.51* (17) 
HPW 37.81 ± 13.56** (15) 20.35 ± 7.66** (15) 3.02 ± 1.18** (15) 

*p ≤ 0.05, **p ≤0 .01, significant difference regarding to the V group. Number is 
indicated in ( ). 
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FIGURE 2. Distribution of SCE frequencies (A), MN frequencies (B), BNMN frequencies (C), and TL (D) in the 
control and exposed populations. 

 
 

DISCUSSION 

The Prestige oil spill was one of the greater environmental disasters of the last decades. A thousand miles 
of coast were polluted and a large amount of coastal and marine fauna died because of the consequent 
black tides. Inhabitants of the zone felt helpless as they witnessed not only the damage of their 
appreciated lands, but also of one of their main sources of financial sustenance. A great number of people 
came from everywhere to collaborate in the cleaning tasks, together with the workers hired by the 
autonomic government. From the human health risk point of view, this resulted in a quite large group of 
people that had undergone different types of exposure, depending on the time spent, the type of task 
performed, the zone in which they worked, etc. All these characteristics gave rise to the configuration of 
three exposure groups: volunteers who collaborated in cleaning beaches for 5 days (V), hired individuals 
who also worked manually on the beaches from the beginning of the spill (MW), and hired subjects that 
used high-pressure machines to clean the rocks (HPW). 

In view of this, the first aim of our work was to characterize in detail the nature and intensity of the 
exposure that took place in each one of the three different working environments. To this end, we 
employed 66 passive dosimeters shared among the individuals of the exposed groups. Their analyses 
brought to light the VOC-concerned characteristics of the air environment. From the qualitative point of 
view, VOC profiles have shown to be similar among the three groups, the light hydrocarbons being 
present in a higher proportion in all cases. Besides this, there were quantitatively significant differences 
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according to statistical analyses of the data obtained. In this regard, the higher VOC levels were 
associated with V environment, followed by MW, and lastly by HPW. In general, concentrations obtained 
for the two first groups were equivalent to those that could be found in cities with very intense traffic, and 
higher than those expected in an open environment, such as a beach. VOC values obtained for HPW were 
lower than for the other two groups, probably due to the use of high-pressure cleaners that may contribute 
to the dispersion of the compounds or to the fact that the oil deposited on the rocks was more aged. The 
fact is that actually there is not any normative on the maximum concentrations allowed in this kind of 
circumstances; nevertheless, taken together, the levels obtained in this study were below the limits 

 
 
 
 
 

TABLE 3 
Effect of Exposure on the Genotoxicity Parameters Evaluated (mean ± SE) 

 Controls Exposed (Total) V MW HPW 

SCE 3.80 ± 0.05 (42) 3.66 ± 0.03 (68) 3.41 ± 0.05 (25) 3.55 ± 0.06 (20) 4.02 ± 0.06** (23) 
MN 8.42 ± 0.53 (42) 6.23 ± 0.34 (62) 3.67 ± 0.40 (24) 8.11 ± 0.71 (18) 7.60 ± 0.68 (20) 
CBMN 7.29 ± 0.41 (42) 5.79 ± 0.30 (62) 3.59 ± 0.38 (24) 7.61 ± 0.65 (18) 6.85 ± 0.58 (20) 
TL 48.79 ± 0.10 (42) 51.47 ± 0.10** (65) 53.43 ± 0.19** (23) 48.17 ± 0.15 (20) 52.41 ± 0.15** (22) 

**p < 0.01, significant difference with regard to controls. Number is indicated in ( ). 

 

TABLE 4 
Influence of Sex, Age, and Smoking Habits on SCE Frequency (mean ± SE) 

 Controls Exposed 
(Total) 

V MW HPW 

Sex      
Males 3.76 ± 0.07 (16) 3.44 ± 0.04 (34) 3.13 ± 0.08 (10) 3.46 ± 0.07 (13) 3.69 ± 0.08 (11) 
Females 3.83 ± 0.06 (26) 3.87 ± 0.05a (34) 3.59 ± 0.07a (15) 3.71 ± 0.12b (7) 4.33±0.08a (12) 

Age      
<30 years 3.80 ± 0.05 (40) 3.58 ± 0.04 (37) 3.36 ± 0.05 (23) 3.62 ± 0.13 (5) 4.05 ± 0.09 (9) 
≥30 years 3.82 ± 0.20 (2) 3.77 ± 0.05a (29) 3.93 ± 0.18a (2) 3.53 ± 0.07 (13) 3.99±0.08 (14) 

Smoking habits      
Nonsmoker 3.68 ± 0.05 (32) 3.47 ± 0.04 (37) 3.36 ± 0.06 (18) 3.31 ± 0.08 (11) 3.90 ± 0.09 (8) 
Smoker 4.12 ± 0.09a (10) 3.91 ± 0.05a (29) 3.54 ± 0.10 (7) 3.90 ± 0.10a (8) 4.09 ± 0.07 (14) 

ap < 0.01, bp = 0.057, significant difference with regard to reference group (males, <30 years or nonsmokers). N is 
indicated in ( ). 
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TABLE 5 
Influence of Sex, Age, and Smoking Habits on MN and BNMN Frequency (mean ± SE)  

 Controls Exposed 
(Total) 

V MW HPW 

MN Frequency 
Sex      

Males 8.53 ± 0.85 (17) 5.72 ± 0.46 (32) 2.80 ± 0.55 (10) 7.45 ± 0.88 (11) 6.64 ± 0.86 (11) 
Females 8.40 ± 0.68 (25) 6.77 ± 0.51 (30) 4.29 ± 0.57d (14) 9.14 ± 1.21 (7) 8.78±1.08 (9) 

Age      
<30 years 8.60 ± 0.55 (40) 3.97 ± 0.34 (35) 3.39 ± 0.40 (23) 4.75 ± 1.09 (4) 5.25 ± 0.81 (8) 
≥30 years 5.50 ± 1.65 (2) 9.04 ± 0.64a (26) 10.00 ± 3.15a (1) 9.07 ± 0.86b (14) 8.91±1.02a (11) 

Smoking habits      
Nonsmoker 9.30 ± 0.66 (30) 6.12 ± 0.46 (33) 3.88 ± 0.51 (16) 8.10 ± 0.95 (10) 8.43 ± 1.23 (7) 
Smoker 6.33 ± 0.84 (12) 6.34 ± 0.50 (29) 3.25 ± 0.66 (8) 8.13 ± 1.08 (8) 7.15 ± 0.81 (13) 

BNMN Frequency 
Sex      

Males 7.18 ± 0.65 (17) 5.25 ± 0.40 (32) 2.70 ± 0.52 (10) 6.91 ± 0.79 (11) 5.91 ± 0.73 (11) 
Females 7.36 ± 0.54 (25) 6.37 ± 0.46c (30) 4.14 ± 0.54e (14) 8.71 ± 1.11 (7) 8.00±0.94f (9) 

Age      
<30 years 7.38 ± 0.43 (40) 3.89 ± 0.33 (35) 3.26 ± 0.38 (23) 4.75 ± 1.09 (4) 5.25 ± 0.81 (8) 
≥30 years 5.50 ± 1.65 (2) 8.23 ± 0.56a (26) 10.00 ± 3.15a (1) 8.43 ± 0.77b (14) 7.82±0.84b (11) 

Smoking habits      
Nonsmoker 8.00 ± 0.51 (30) 5.70 ± 0.41 (33) 3.75 ± 0.48(16) 7.60 ± 0.87 (10) 7.43 ± 1.03 (7) 
Smoker 5.50 ± 0.68 (12) 5.90 ± 0.45 (29) 3.13 ± 0.62(8) 7.63 ± 0.97 (8) 6.54 ± 0.71 (13) 

ap <0 .01, bp < 0.05, cp = 0.067, dp = 0.069, ep = 0.064, fp = 0.075, significant difference with regard to reference group 
(males, <30 years or nonsmokers). Number is indicated in ( ). 

TABLE 6 
Influence of Sex, Age, and Smoking Habits on DNA Damage (TL [µm], mean ± SE) 

 Controls Exposed 
(Total) 

V MW HPW 

Sex      
Males 49.76 ± 0.20 (16) 52.63 ± 0.18 (33) 56.71 ± 0.08 (9) 48.96 ± 0.23 (12) 53.23 ± 0.26 (12) 
Females 49.13 ± 0.15a (26) 52.01 ± 0.17b (32) 52.94 ± 0.07a (14) 49.16 ± 0.12 (8) 53.00±0.08a (10) 

Age      
<30 years 49.48 ± 0.12 (40) 53.09 ± 0.16 (38) 54.58 ± 0.23 (22) 48.91 ± 0.27 (6) 52.33 ± 0.28 (10) 
≥30 years 47.29 ± 0.66a (2) 51.24 ± 0.18a (27) 50.66 ± 0.69a (1) 49.10 ± 0.24 (14) 53.78 ± 0.26a (12) 

Smoking habits      
Nonsmoker 48.82 ± 0.14 (31) 52.49 ± 0.16 (39) 53.82 ± 0.24 (18) 50.00 ± 0.27 (12) 53.11 ± 0.32 (9) 
Smoker 50.92 ± 0.22a (11) 52.08 ± 0.19 (26) 56.51 ± 0.57a (5) 47.61 ± 0.23 (8) 53.13 ± 0.23 (13) 

ap < 0.01, bp <0 .05, significant difference with regard to reference group (males, <30 years or nonsmokers). Number 
is indicated in ( ). 
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FIGURE 3. Boxplots showing SCE frequencies (a), MN frequencies (b), BNMN frequencies (c), and TL (d) in the exposed groups according to 
the use of protective clothes. *p < 0.05, **p < 0.01, significant difference with regard to the use of new devices. 
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FIGURE 4. Boxplots showing SCE frequencies (a), MN frequencies (b), BNMN frequencies (c), and TL (d) in the exposed groups according to 
the use of protective mask. **p < 0.01, significant difference with regard to the use of new devices. 

established by the Spanish Instituto Nacional de Seguridad e Higiene en el Trabajo[11] and by the 
American Conference of Governmental Industrial Hygienists[12] in reference to closed environments.  

With regard to the genotoxicity biomarkers, it seems that the comet assay was the most sensitive test 
to detect the effect of the exposure to the Prestige oil, showing increases in DNA strand break levels in 
the groups of V, HPW, and in the total exposed population. The cytogenetic tests, on the other hand, did 
not detect increases in the frequency parameters related to the exposure, with thr exception of the SCE 
rate in the HPW group that underwent an increase compared to controls. MN and BNMN did not 
experience variations with the exposure, only a slight increase of the second variable was observed in 
MW, but it did not reach statistical significance. These results agree with our previous finds in a 
population of Prestige oil-exposed volunteers engaged in the autopsies and cleaning of oil-contaminated 

A B 

C D 
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birds[13], and might indicate that the damage induced in the individuals was a short-term damage that 
could be easily repairable and therefore it was not finally fixed. To the best of our knowledge, this is the 
first study on the genotoxic damage caused in humans by oil exposure after an accidental spill. However, 
there are several reports dealing with different PAH exposures that also observed increases in comet assay 
parameters[14,15]. 

When evaluating an exposure event and its repercussions on DNA integrity, there are several factors 
that must be taken into account since they may affect the results obtained in any way. Among them sex, 
age, and tobacco consumption are the most studied, the last one being especially related to oil exposure 
because of the parallelism existing in their composition. 

Almost all genotoxicity epidemiological studies include sex/gender among their influencing factors, 
the conclusions being diverse. More converging results revolve around cytogenetic tests, accepting a 
general increase of damage in females. Lazutka et al.[2] established this difference in a rate of 7.5% for 
SCE assay. Our results from the cytogenetic tests agreed with this tendency, especially in SCE test where 
statistical signification was reached in almost all groups. Just the opposite happened with comet assay 
data, since the differences were shown as increases in TL related to males belonging to the total exposed 
population, V, and HPW. Contradictory results are reported[16,17,18] and the interaction of all the 
influencing factors that may act as confounding elements should be noticed when analyzing the data 
giving rise to the different results obtained. 

It is well known that DNA experiences an error and damage accumulation process with time, mainly 
due to loses in the efficiency of the repair mechanisms. Our results reflected this effect showing increases 
in SCE, MN, and BNMN frequencies associated with the oldest exposed individuals and agreeing with 
several previous reports[19,20,21]. This phenomenon did not happen in controls, probably indicating a 
potential susceptibility component, older individuals being more prone to be genetically damaged by the 
Prestige oil. Nevertheless, results from the comet assay are only concordant with this in the case of HPW, 
following data from controls, V, and the total exposed population the opposite tendency. Perhaps, the 
most plausible explanation for this controversy resides in the fact that part of the strand breaks detected 
by this technique comes from incomplete excision repair phenomena, and they are probably more active 
in younger individuals. On the other hand, Kim et al.[22] and Sul et al.[23] reported no influence of this 
factor on comet assay results. 

Tobacco consumption is assumed as a risk factor in mutagenesis and carcinogenesis processes due to 
the fact that there are more than 40 carcinogenic substances in its composition[24]. Looking at the results, 
the MN test did not reflect any influence of this factor in any of its two parameters, agreeing with data 
reported by Barale et al.[19] and Duffaud et al.[25]. On the contrary, a smoking effect has been detected 
in SCE and comet assay as increases in SCE frequency and TL in smoker individuals with regard to 
nonsmokers in almost all groups of individuals. These results are concordant with those reported by some 
other studies dealing also with these biomarkers[26,27,28]. 

Finally, attending to the cleaning conditions, we have taken into consideration the protective 
measures employed while developing the tasks. The use of waterproof overalls seemed to exert a certain 
protective effect, detected in SCE and comet assay, but the use of cellulose masks scarcely modified the 
results of the genotoxicity tests applied. This leads us to think that maybe the kind of protective devices 
employed by the individuals were not the most adequate, or that there were other factors with more 
weight on the genetic response. 

In conclusion, in this work we have evaluated the extent of the exposure that took place in the 
different environments of the polluted zones and estimated the magnitude of the toxic effect induced by 
the exposure at the genetic level. We have observed a considerable presence of VOC in the environmental 
air, especially for the V group. Oil exposure during the cleaning tasks caused an increase in the genotoxic 
damage in individuals, the comet assay being the most sensitive biomarker to detect it. Sex, age, and 
tobacco consumption were shown to influence the level of genetic damage, while the effect of using 
protective devices was smoother than expected. Taking all this into account, it can be stated that these 
kinds of studies are necessary not only for evaluating the health risks associated with the exposure, but 
also for defining all the variables that must be considered when designing a similar study. 
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