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Naturally occurring antibodies against amyloid-β peptides have been found in human 
cerebrospinal fluid and in the plasma of healthy individuals, but were significantly lower 
in Alzheimer’s disease (AD) patients, suggesting that AD may be an immunodeficient 
disorder. The performance of anti–amyloid-β antibodies in transgenic mice models of AD 
showed that they are delivered to the central nervous system, preventing and dissolving 

amyloid-ββββ plaques. Moreover, these antibodies protected the mice from learning and age-
related memory deficits. Active and/or passive immunization against the amyloid-β 
peptide has been proposed as a method for preventing and/or treating AD. 
Immunotherapy represents fascinating ways to test the amyloid hypothesis and offers 
genuine opportunities for AD treatment, but requires careful antigen and antibody 
selection to maximize efficacy and minimize adverse events.  
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INTRODUCTION 

The pathology of Alzheimer’s disease (AD) is characterized primarily by extracellular plaques and 

intracellular neurofibrillary tangles[1]. Plaques are composed mainly of amyloid-β (Aβ) peptides, whereas 

tangles are composed of the cytoskeletal protein tau. The relationship between these lesions and the 

disease process has long been debated. The current dominant theory of AD etiology and pathogenesis 

related to the amyloid cascade hypothesis[2] states that overproduction of Aβ peptides (AβPs), or failure 

to clear these peptides, leads to AD, primarily through amyloid deposition, which is presumed to be 

involved in neurofibrillary tangle formation; these lesions are then associated with cell death, which is 

reflected in memory impairment, the hallmark of this dementia. Over the last 10 years, the amyloid 

cascade hypothesis has gained strength through the observation that AD-causing mutations were 

identified in the Aβ precursor protein (AβPP) and in the presenilin genes[3,4].  

AβP is a normal soluble metabolite of ~4 kDa that is produced by processing a large transmembrane 

glycoprotein, called amyloid precursor protein (APP), by β- and γ-secretase[5]. The pathological 

conditions and mechanisms that transform soluble AβP into the fibrillary, toxic, β-sheet form, either low-

molecular-weight oligomers or insoluble fibrils found in plaques and vessels of AD patients, are not yet 
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completely understood. However, it is clear that the same amino acid sequence of AβP can have distinct 

conformations that lead to either the toxic soluble or fibrillar state of the peptide. 

In vitro experimental data have shown that antibodies could disassemble amyloid fibrils and protect 

neurons from Aβ toxicity, suggesting possible benefits in AD treatment. Various active and passive 

immunizations that target amyloid-β proved capable of providing significant therapeutic benefits in 

behavior and cognition when assessed in transgenic (Tg) mouse models of AD. Although the first clinical 

trial to employ an active immunization protocol was halted for safety reasons, it indicated clinical efficacy 

of the approach in humans.  

IMMUNOLOGICAL CONCEPT OF AD IMMUNOTHERAPY  

The Immune System Participation in AD Pathogenesis 

The immune system appears to participate in AD pathogenesis. Tolerance to a self-antigen and immune 

down-regulation associated with aging may blunt the immune response to Aβ[6,7,8,9,10,11,12]. There is 

evidence for partial tolerance against Aβ in APP Tg mice[6]. Chronic exposure of the immune system to
 

Aβ in humans and mouse models might lead to hyporesponsiveness
 
in terms of cellular and humoral 

immune responses to Aβ itself,
 
which could contribute to the disease process[6]. 

Indeed, the titer of anti-AβP42 antibodies in serum from individuals with and without late-onset AD, 

measured using an enzyme-linked immunosorbent assay (ELISA)[13], showed that IgG titer of anti-

AβP42 peptide antibodies was significantly higher in serum from elderly controls than from AD patients. 

However, the low titer of anti-AβP42 antibodies in AD patients does not reflect the well-established, age-

associated defect in the antibody response to most protein antigens, as there was no positive correlation 

between the serum titer of anti-AβP42 antibodies and anti-influenza hemagglutinin antibodies induced by 

influenza vaccine in elderly humans. The lower titer of serum anti-AβP42 peptide antibodies in AD 

patients may reflect specific impairment of helper T-cell activity for B cells that produce anti-AβP42 

peptide antibodies or tolerance to self-antigen. 

Human B lymphocytes have the capacity to produce anti-AβP antibodies[14]. A recent study showed 

that plasma anti-AβP antibodies that bind to aggregated AβP were significantly lower in people with AD 

than in healthy controls, while there was no difference in anti-AβP antibodies binding to AβP 

monomers[15]. Therefore, natural antibodies to aggregated AβP may have great importance against AD 

pathology.  

Modulation of Amyloid-β Conformation 

Many investigators have studied the propensity of AβP or its fragments to assemble into soluble/insoluble 

aggregates[16,17,18,19]. AβP can exist in different conformations, depending on the secondary structure 

adopted by the N-terminal domain under various environmental conditions[17,18]. The N-terminal 

domain contains sequences that permit the existence of a dynamic equilibrium between the α-helix and 

the β-strand conformations. The perturbations of the equilibrium of the conformational states of AβP can 

be caused by local pH changes, alterations of environmental hydrophobicity, or binding of other 

proteins[19]. The dependence of AβP polymerization on peptide-peptide interactions to form a β-pleated 

sheet fibril and the stimulatory influence of other proteins on the reaction suggest that amyloid formation 

may be subject to modulation. 

The availability of monoclonal antibodies (mAbs) has facilitated the understanding of how highly 

specific antigen-antibody interactions affect antigen stability and conformation. The complementary 

interaction between regions of the antibody and its antigen confer high specificity and stability to the 

immunocomplex formed. Antibodies known as reporting probes for the detection of antigens are able to 

play an active role in inducing changes in the conformation of the antigen molecule. Antibody-antigen 
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interactions involve conformational changes that can range from insignificant to considerable. Binding of 

high-affinity mAbs to regions of high flexibility and antigenicity may alter the molecular dynamics of the 

whole antigen and may induce structural rearrangements in the molecular edifice[20,21,22,23,24].
 
Like 

the ubiquitous chaperones, mAbs raised against specific native antigens may assist in its 

refolding[25,26,27] by recognizing incompletely folded epitopes and inducing their native conformation. 

Appropriate mAbs interact at strategic sites where protein aggregation is initiated, stabilizing the protein, 

preventing further aggregation, and resolubilizing already-formed protein aggregates[25].
 

We investigated a large panel of mAbs against various regions of AβP and found that mAbs that 

target the N-terminal regions of AβP exhibit antiaggregating properties[28,29,30]. Binding of such 

antibodies to aggregated AβP interfered with noncovalent interactions between the amyloid fibrils and led 

to deterioration of amyloid fibrillar assembly. Disaggregation, as well as prevention of amyloid 

formation, was found to be dependent on the location of the epitopes on Aβ and on the binding 

characteristics of the respective antibodies.  

Using the phage-peptide library composed of filamentous phage-displaying random combinatorial 

peptides, we defined the GLU-PHE-ARG-HIS (EFRH residues located at positions 3 to 6 of the N-

terminal AβP) as the epitope of the antiaggregating antibodies studied[31,32]. Locking of the EFRH 

epitope by the respective antibodies was found to modulate the dynamics of aggregation, as well as to 

resolubilize already-formed aggregates, confirming its key role in modulation of conformational changes 

of the whole AβP molecule.  

Identification of the “aggregating epitopes” as strategic positions related to sites where protein 

aggregation is initiated, and preparing antibodies against these regions, became the basis of the 

immunological concept for treatment of so-called conformational diseases, such as AD. 

IMMUNOLOGICAL STRATEGIES FOR PREVENTION AND/OR REDUCTION OF 
AMYLOID PLAQUES IN TRANSGENIC MICE MODEL OF AD 

With the development of AD animal models (for review see [33]), the immunological concept in the 

treatment of conformational diseases became a therapeutic approach to stimulate clearance of brain Aβ 

plaques, either as active or passive immunization[34,35]. Active immunization approaches employ AβP 

epitopes and/or immunogenic AβP conjugates, as well as various routes of administration and types of 

adjuvants  

Passive immunization approaches include antibodies or antibody fragments directed against specific 

AβP epitopes. This procedure provides antibodies directly to the body, rather than requiring a self-

immunological response. 

Active Immunization Approaches 

Immunization with human synthetic Aβ42 of AD transgenic mice that harbor a mutant version of human 

APP770 (V717F) was shown to produce high serum antibody titers against Aβ42 (1:10,000), and 

inhibited the formation of amyloid plaques and associated histopathologic lesions[36].  

Weiner and colleagues showed that mucosal administration of human Aβ40 may affect 

neuropathological lesions, accompanied by a 52% decrease in brain Aβ42 levels[37]. Mucosal 

immunization with Aβ1-42 induces antibodies
 
to Aβ and T cells that may have regulatory properties.

 
As 

almost all the studied human Aβ-reactive T-cell lines
 
also showed a Th2 phenotype, it is possible that

 

mucosal immunization that preferentially induces Th2 or Th3
 
responses could boost this lineage and 

enhance clearance of
 
Aβ by stimulating Aβ antibody production, and by modulating microglial activation 

at sites of Aβ
 
plaques, with a minimal risk of harmful T-cell response in the

 
central nervous system 

(CNS)[38].  
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Since administration of human Aβ42 in AD patients may induce adverse effects, the Wisniewski 

group believed that Aβ42 immunization in humans may be unsafe because this peptide may cross the 

blood brain barrier (BBB) and form toxic fibrils, and proposed sequences of Aβ devoid of fibrillogenic 

properties as antigens[39]. 

Immunization of 10-month-old Tg2576 mice with soluble AβP1-30 produced significant antibody 

titers specific to the first 16 residues of AβP. After 7 months of immunization, the 18-month-old mice 

showed 89 and 81% reduction in cortical and hippocampal brain amyloid burden, respectively.  

Another derivative of the AβP1-16 peptide sequence was synthesized by covalently attaching two 

palmitoyl residues at each end of the peptide and subsequently reconstituting it in liposomes[40]. 

Vaccination of the animals with the bipalmitoyl derivative of AβP1-16 elicited strong antibody titers 

within 10 weeks after the first inoculation. The immunized mice sera were able to dissolve in vitro up to 

80% of preformed Aβ42 aggregates.  

We developed an immunization procedure for the production of effective antiaggregating AβP 

antibodies based on filamentous phages displaying, on their surface, the EFRH peptide located between 

amino acids 3 to 6 of AβP as antigen. Results obtained from experiments in transgenic animals supported 

the in vitro studies[29,30,31]. Sixteen-month-old APP[V717I] Tg mice were immunized with the EFRH 

phage for a 5-month period. Brain amyloid burden was significantly reduced in the immunized mice that 

developed anti-AβP titers of at least 1:100, indicating that a relatively low antibody titer may reduce brain 

amyloid load[41].  

In an additional set of experiments, the cognitive behavior of the animals treated with phage EFRH 

was evaluated by testing the spatial and temporal navigation of each in the Morris Water Maze (MWM). 

A considerable improvement in their cognitive functions was obtained, dependent on the treatment. 

Regardless of the exact mechanism, it is clear that reversal of memory impairment is attributable to the 

effect of EFRH immunization. Mice with relatively high levels of antibodies to EFRH behaved in a 

manner similar to the nontransgenic mice in the MWM test. In spite of the fact that plaque load is the 

most widely used pathological outcome measured in the preclinical assessment of anti-Aβ treatments in 

the present study, only moderate correlation between amyloid burden and improvement in water maze 

performance (path length) was found[42].  

Recently, Lemere and colleagues performed immunization of transgenic mice carrying human 

amyloid precursor protein, familial AD
 
(hAPPFAD) mice with antigens based on AβP1-15, which resulted

 

in high anti-Aβ titers of noninflammatory T-helper 2 isotypes
 
(IgG1 and IgG2b), a lack of splenocyte 

proliferation against 
 
full-length Aβ, significantly reduced Aβ plaque load, and lower

 
cerebral Aβ levels. 

In addition, immunized hAPPFAD
 
mice showed improved acquisition of memory compared with

 
vehicle 

controls in a reference-memory MWM behavior test that approximately correlated with anti-Aβ titers[43].  

Passive Immunization Approaches 

Peripheral administration of antibodies directed against AβP was reported to clear amyloid burden in the 

brain of PDAPP Tg mice. Some of these antibodies enter the brain, bind to plaques, and trigger 

microglial-dependent, clearance amyloid plaques. Of the antibodies tested, only mAbs 10D5, 3D6, and 

polyclonal anti-AβP1-42, directed to the N-terminal regions of AβP, demonstrated antiaggregating 

properties in vivo[44]. Peripheral administration of antibodies against AβP was sufficient to reduce brain 

amyloid burden in the PDAPP Tg mice. In contrast, mAbs 16C11, 21F12, and the control antibody TM2a, 

directed to other regions of AβP, were inactive. This result is consistent with the inability of these two 

antibodies to decorate plaques after in vivo administration and explains their inability to trigger plaque 

clearance. These in vivo data confirm previous in vitro data[28,29,30] that only antibodies directed to the 

“strategic” epitopes involved in the aggregation process, such as EFRH, exhibit so-called “chaperone-

like” properties in dissolving amyloid plaques.  
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However, Pfeifer et al.[45], using APP23-Tg mice, suggested that a high concentration of antibodies 

against the N-terminus of AβP, which recognize amyloid present in the cerebral vasculature, might 

predispose patients with cerebral amyloid angiopathy to microhemorrhages and hemorrhagic stroke.  

Passive immunization with mAb 266, which binds to the central part of AβP, reduces brain Aβ 

burden in transgenic mice[46]. Within hours after intravenous injection of mAb 266 to the mice, there 

was a 1,000-fold increase in the concentration of AβP in plasma,
 
suggesting that the antibody decreases 

AβP deposition, at least in part, by decreasing the transfer of AβP from plasma to the CNS and increasing 

its transfer from the CNS to the plasma. 

Although peripheral administration of mAb 266 markedly reduced amyloid burden, it failed to bind 

amyloid deposits in the brain. Passive vaccination strategies improved memory performance in AD APP 

Tg mice. Repeated injections (six weekly), and even a single injection of mAb 266, produced marked 

normalization of behavioral performances in PDAPP mice without any apparent effects on amyloid 

burden.  

The effect of the administration of BC05 antibody, developed against the carboxyl (C)-termini of 

AβP42(43), on the clearance of brain Aβ, caused a selective 44-fold increase in plasma Aβ42(43) and a 

significant increase in brain soluble Aβ42(43). Brain insoluble Aβ40 and Aβ42(43) levels were decreased 

by 27.3 and 31.5%, respectively. A reduction in the number of labeled plaques was observed[47]. 

The effect of anti-C-terminal antibodies on amyloid levels and cognitive functions was reproduced in 

a subsequent study in aged APP Tg mice, but adverse effects (including cerebral microhemorrhages) were 

observed in this study, probably because of redistribution of disaggregated Aβ from brain parenchyma to 

cerebral vasculature, resulting in increased cerebral amyloid angiopathy[48,49]. 

Recently, several anti-AβP antibodies that target conformation epitopes have been shown to bind to 

pathogenic aggregated Aβ forms (protofibrils, oligomers, and amyloid plaques), but have no effect on 

monomeric AβP and APP in AD patients over control brains[50]. Such soluble oligomers display a 

conformation-dependent structure common to all oligomers independent of their sequence, which 

suggests a shared mechanism of toxicity. Functionally, it has been found that naturally secreted oligomers 

inhibit hippocampal long-term potentiation in vivo[12]. Taken together, these results suggest that 

strategies aimed at treating amyloid disorders should target oligomers of Aβ. In doing so, the equilibrium 

between monomers and higher-order aggregates can be disrupted, resulting in neutralization of soluble, 

toxic species. 

Passive immunotherapy of AD would require repeated administration of anti-AβP antibodies. For that 

reason, human anti-AβP antibodies should be used to prevent an immune response to the currently 

available murine monoclonal immunoglobulins. Several methods are known to obtain human anti-AβP 

antibodies[51,52]. One method is humanization of murine anti-AβP antibodies by replacing framework 

portions of the murine anti-AβP antibodies with human framework sequences using recombinant DNA 

technology. Alternative methods are the generation of human monoclonal anti-AβP antibodies in vitro by 

human immunoglobulin phage library display techniques, or in vivo by immunization of mice whose 

immunoglobulin loci have been replaced by human genes. 

INTRAVENOUS IMMUNOGLOBULIN 

The idea of passive immunization with intravenous immunoglobulin (IVIg) arose after the discovery that 

AD patients had lower levels of Aβ antibodies than did normal people of the same age[15,53,54].  

Affinity-purified anti-AβP antibodies from IVIg were shown to increase AβP levels in blood and 

decrease Aβ levels in cerebrospinal fluid (CSF) from APP Tg[55]. Furthermore, IVIg depleted of anti-Aβ 

antibodies had considerably less effect on AβP levels in the blood or CSF from these animals. Anti-AβP 

antibody separation from IVIg was described in two different studies[55,56]. Polyclonal human natural 

anti-AβP antibodies were isolated from a commercial preparation of IVIg. These anti-AβP antibodies 

were purified by loading Octagam IVIg preparation (Octapharma) on an affinity column coated with 

AβP1-40 and were detected by ELISA using AβP1-40–coated plate. The purified antibodies could block 
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AβP fibril formation, disaggregate fibrillar AβP1-40, and prevent AβP1-40–induced neurotoxicity[55]. In 

addition, it was demonstrated that anti-AβP antibodies could disaggregate truncated AβP25-35 and also 

block AβP25-35–induced neurotoxicity, suggesting that IVIg contains antibodies against not just the N-

terminal of AβP, but also the middle site of the amyloid peptide. It is also possible that other activities of 

IVIg, unrelated to its content of anti-Aβ antibodies, such as the modulation of inflammatory and immune 

reactions, may complement the effects of anti-AβP antibodies on cognitive function[56].  

The molecular basis for the direct and indirect effects of IVIg on Aβ clearance was investigated using 

the BV-2 cellular microglia line. The data show that IVIg dissolves preformed Aβ fibrils in vitro. IVIg 

increases cellular tolerance to Aβ and enhances microglial migration toward Aβ deposits, mediating 

phagocytosis of Aβ fibrils[57]. 

PUTATIVE MECHANISMS OF AMYLOID PLAQUE REMOVAL VIA 
IMMUNOTHERAPY 

In theory, antibodies can provide a therapeutic benefit by either acting within the CNS or by acting in the 

periphery[58,59]. IgGs have limited access to the brain. Only 0.1% of an intravenous dose was shown to 

pass via extracellular pathways through the BBB into the brain[60]. Antibody uptake to and clearance 

from the brain did not differ in mice overexpressing Aβ compared with wild-type mice. Indeed, on 

entering the brain and binding to Aβ or amyloid plaques, the local half-lives of antibodies were not 

observed to be prolonged in the CNS[60], suggesting that antibody fragments may have rates and 

mechanisms of transport via the BBB entirely different from those of full-length antibodies. 

Amyloid plaque clearance via specific anti-AβP antibodies may depend on multiple mechanisms, and 

understanding of these mechanisms may lead to an optimized, therapeutic approach for treatment of AD 

patients.  

The “Microglia-Mediated Hypothesis” 

The “microglia-mediated hypothesis” suggested that anti-Aβ antibodies bind to amyloid plaques and 

antigen-antibody complexes are cleared via Fc receptor (FcR)–mediated phagocytosis by activated 

microglia[44,61,62,63]. Ex vivo experiments demonstrated that exogenous microglia can be induced to 

clear amyloid plaques from brain tissue when coincubated with certain anti-Aβ antibodies, but not F(ab′)2 

fragments of these antibodies. These findings suggest that the Fc region of the antibodies is instrumental 

in microglial FcR-mediated Aβ clearance[62,63]. Controlling microglial activation will be prominent 

among those factors that determine whether immune therapy will be successful as a treatment for AD 

patients. 

Immunomodulation of AβP Conformation 

Antibodies were able to enter the CNS, decorate plaques, and induce clearance of pre-existing amyloid. 

Small amounts of such antibodies that cross the BBB (0.1% of serum levels) might be sufficient to 

attenuate the further aggregation of these species into fibrillar Aβ dense-cored plaques[61]. We 

previously described that antibodies directed to the N-terminal region of AβP interfere with noncovalent 

interactions between Aβ fibrils and disaggregate them into an amorphous, nontoxic configuration[30], 

suggesting the in vivo mechanism of dissolving and removing amyloid plaques. 

The same evidence was demonstrated, showing that antibodies directed against residues 4-10 of Aβ1-

42 inhibit both fibrillogenesis and cytotoxicity, without eliciting a harmful cytotoxic T-cell response in 

TgCRND8 mice[64]. Consistent with these results are studies by Bard et al.[44,61], which demonstrate 

that plaque clearance is only seen with antibodies directed against the N-terminal region of Aβ. 
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Furthermore, a single administration of anti-Aβ3-6 IgG1 was effective at plaque clearance and resolution 

of neuritic lesions within 4 days, and lasted up to 32 days in the PDAPP mouse[65]. These results support 

the use of passive immunization strategies because, once plaques are cleared, neuronal morphology is 

restored and therefore may have a direct impact on cognitive function. 

Indeed, local application of an anti-AβP N-terminal antibody 10D5 to an amyloid plaque led to its 

clearance[66]. Aβ deposits were visualized using thioflavine-S in living mice before and after therapeutic 

intervention. The data demonstrated that dense-core Aβ deposits are dissolved by application of mAb 

10D5. Using this novel technique, the authors showed, for the first time, dissolution of existing Aβ 

deposits by antibody 10D5 in the brain of a transgenic mice model of AD.  
Studies with F(ab')2 fragments of anti-AβP antibodies devoid of the Fc region using in vivo topical 

application
 
demonstrated

 
that the mechanism does not require FcR-mediated cellular activation in

 
plaque 

clearance by immunotherapy[67].  

Shorter antibodies, like scFv, exhibit similar antigen-binding properties to their antigen as IgG 

antibodies, but have the advantage of lacking an Fc part. Thus, their use does not carry the risk of 

unwanted activation of the complement system or microglia, virtually eliminating the risk of induction of 

inflammatory adverse reactions. The use of scFv antibodies for the treatment of AD was pioneered by 

Frenkel et al.[68] who showed that scFvs were capable of disaggregating Aβ fibrils and preventing their 

toxic effects in cell culture. The ability of a single-chain antibody to dissolve already-formed Aβ fibrils 

confirms that only the antigen-binding site of the antibodies (Fab) was involved in modulation of 

amyloid-β conformation and not the Fc region, which was first demonstrated using 508F (scFv). 

Subsequently, the same researchers showed that scFv antibodies could cross the BBB and enter the 

CNS[69]. 

Additional recent studies have shown beneficial effects of scFvs on hallmarks of AD in animal 

models. ScFvs directed against Aβ17-28 decreased amyloid aggregation and eliminated the toxic effects 

of aggregated Aβ on the human neuroblastoma cell line, SH-SY5Y[70]. Moreover, anti-Aβ scFvs were 

expressed by the adenoassociated virus in brains of newborn[71] or aged[72] transgenic AD mice, 

ensuring widespread in situ expression of the scFvs. One year after the injection of the virus particles, a 

significant reduction in amyloid plaque burden was detected in both mouse strains, without any signs of 

neurotoxicity. Thus, it can be anticipated that low-molecular-weight antibody fragments have the 

potential for the same pharmacological efficacy in AD as full-length IgGs, but may be characterized by 

significantly improved product safety.  

To ascertain the role of microglial FcR in Aβ immunotherapies definitively,
 
APP Tg2576 mice bred

 

into FcR
–/–

 mice were used[73]. Data show that the microglia isolated from
 
FcR-γ

–/– 
mice exhibit almost 

no uptake of anti-Aβ immune complexes via FcR. Aggregated Aβ was readily scavenged by both FcR-γ
+/+ 

and FcR-γ
–/–

 microglia in the absence of anti-Aβ. Thus, there
 
did not appear to be any defects in the non-

FcR-mediated Aβ uptake
 
by microglia in the FcR-γ

–/–
 mice. 

Given that microglial cells
 
from FcR-γ

–/–
 mice are deficient in phagocytosis of anti-Aβ immune

 

complexes and that there is no evidence for compensatory mechanisms
 
enabling phagocytosis of immune 

complexes in FcR-γ
–/–

 mice, these
 
studies indicate that FcR-mediated mechanisms play little or

 
no role in 

the effectiveness of Aβ immunotherapy in APP Tg2576
 
mice. Thus, it appears that the Fc portion of the 

anti-Aβ antibody
 
required for interaction with FcR may not be necessary for Aβ

 
immunotherapy to 

work[73].  

Peripheral Sink Hypothesis  

A completely different, peripheral mechanism of Aβ clearance is apparently mediated by antibodies 

binding to linear, central epitopes within Aβ. Such antibodies act by binding to Aβ in the periphery and 

induce an efflux from the CNS (peripheral sink mechanism). Antibodies acting by the peripheral sink 

mechanism efficiently clear plaques from the brains of transgenic mice, associated with a fast, dramatic 

increase in plasma Aβ levels[74]. Although the current model predicts that this Aβ increase in the 
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periphery is due to the ability of the antibody to alter the Aβ equilibrium between the CNS and periphery 

directly, it is also possible that an antibody with a high affinity for Aβ titrates the latter out of its relatively 

weak plasma protein binding and thus only indirectly influences Aβ efflux from the CNS. Lemere et 

al.[75] obtained similar results with active immunization in APP Tg mice. They found that anti-Aβ 

antibodies decreased the Aβ plaque burden by 75% in the brain, and increased serum Aβ level 

approximately 30 times.  

CONCLUSIONS 

To summarize the presented data, AβP vaccination approaches in AD transgenic mice raised 

unprecedented hopes for an effective treatment of AD. On the efficacy side, there is evidence that AβP 

immunization in mice induces a clearance of Aβ plaques and improves associated cognitive disturbances. 

Amyloid plaque clearance via specific anti-Aβ antibodies may depend on multiple mechanisms, and 

understanding of these mechanisms may lead to an optimized, therapeutic approach for treatment of 

Alzheimer’s patients. New insight into immunotherapy efficacy was attained using a triple transgenic 

model (3xTg-AD) that developed both lesions in AD-relevant brain regions[76]. The consequence of Aβ 

clearance on the development of tau pathology was evaluated. Aβ immunotherapy reduces not only 

extracellular Aβ plaques, but also intracellular Aβ accumulation and most notably leads to the clearance 

of early tau pathology. Therefore, the development of animal models has been essential to recent progress 

in the field, since numerous therapeutic ideas can now be conveniently tested in these models prior to 

human testing. It is likely that the ongoing, clinical trials will provide more information on modulation of 

immune responses towards therapeutic challenges and treatment for AD.  
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