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Sequence comparison is a primary technique for the analysis of DNA sequences. In order to make quantitative comparisons, one
devises mathematical descriptors that capture the essence of the base composition and distribution of the sequence. Alignment
methods and graphical techniques (where each sequence is represented by a curve in high-dimension Euclidean space) have been
used popularly for a long time. In this contribution we will introduce a new nongraphical and nonalignment approach based on
the frequencies of the dinucleotide XY in DNA sequences. The most important feature of this method is that it not only identifies
adjacent XY pairs but also nonadjacent XY ones where X and Y are separated by some number of nucleotides. This methodology
preserves information in DNA sequence that is ignored by other methods. We test our method on the coding regions of exon-1 of
β–globin for 11 species, and the utility of this new method is demonstrated.

1. Introduction

The number of identifiable DNA sequences responsible for
various physiological structures is rapidly increasing as more
and more collected DNA sequences are added to scientific
databases. It is, however, difficult to obtain information
directly from sequences since the sheer volume of data is
computational demanding. It is one of the challenges for
biologists to analyze mathematically the large volume of
genomic DNA sequence data. Many schemes have been
proposed to numerically characterize DNA sequences.

Sequence alignment has been used as a very powerful
tool for comparison of two closely related genomes at the
base-by-base nucleotide sequence level. This method relies
heavily on the orderings of nucleotides appearing in the
sequence. With the divergence of species over time, though,
genomic rearrangements and in particular genetic shuffling
make sequence alignment unreliable or impossible.

Graphical techniques are another powerful tool for the
analysis and visualization of DNA sequences. Using graphical
approaches can provide intuitive pictures or useful insights
that assist the analysis of complicated relations between

DNA sequences. This methodology starts with a graphical
representation of DNA sequence which could be based on
2D, 3D, 4D, 5D, and 6D spaces and represents DNA as
matrices by associating with the selected geometrical objects,
then vectors composed of the invariants of matrices will be
used to compare DNA sequences, see [1–10]. Such schemes
have an advantage in that they offer an instant, though, visual
and qualitative summary of the lengthy DNA sequences.
This approach also involves many unresolved questions.
For example, how does one obtain suitable matrices to
characterize DNA sequences and how are invariants selected
suitable for sequence comparisons? In many cases, the
calculation of the matrices or the invariants will become
more and more difficult with the length of the sequence.
There are also approaches which could arrive a mathematical
representation of DNA sequences by nongraphical ways, see
[11–13]. And more recently, a new representation based on
symbolic dynamics [14] and a new representation based on
digital signal method [15] are also illustrated.

In this contribution, we introduce a novel nongraphical
and nonalignment approach for DNA sequence comparison.
We use DNA sequence directly by considering the frequencies
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of dinucleotide. We represent each DNA sequence by a dinu-
cleotide frequency matrix or by a dinucleotide frequency vec-
tor, based on which two distance measurements are defined,
respectively. Then comparisons between DNA sequences
could be carried out by calculating the distances between
these mathematical descriptors. The most important feature
of this method is that the mathematical descriptors not only
take into consideration the frequencies of adjacent XY pairs
but also of nonadjacent XY pairs. In this way, information
contained in the relative spacing of nucleotides is preserved.
The method is very simple and fast, and does not require
sequence alignment or sequence graphical representation
which would cause complex calculations. It can be used
to analyze both short and long DNA sequences. As an
application, this method is tested on the exon-1 coding
sequences of β-globin for 11 species and the results are
consistent with what have been reported previously [5, 9, 12,
14, 15], which prove the utility of this new method.

2. Dinucleotide Frequency Matrix and
Dinucleotide Frequency Vector

Typically, DNA sequence data is represented as a string of
letters A, C, G, and T, which signify the four nucleotides:
adenine, cytosine, guanine, and thymine, respectively. There
are 16 possible dinucleotides, that is, Ω = {AT, AA, AC, AG,
TT, TA, TC, TG, GT, GA, GC, GG, CT, CA, CC, CG}. In the
following, we always use XY to represent dinucleotides, and
note that dinucleotide XY is distinguished from.

Let s be a sequence of length n and denote the number
of occurrences of adjacent XY in s by Y (1). Clearly, if s
is a sequence of length, then

∑
XY∈Ω XY (1) = n − 1. The

occurrence frequency for XY is defined as

f (1)
XY =

XY (1)

(n− 1)
. (1)

We get one 16-dimensional vector f̂ (1) associated with
sequence s based on adjacent dinucleotides:

f̂ (1) =
(
f (1)
AT , f (1)

AA , f (1)
AC , . . . , f (1)

CT , f (1)
CA , f (1)

CC , f (1)
CG

)
. (2)

Notice that there would be a loss of information when
one condenses sequence s to a single 16-dimensional vector.
A way to recover some of the lost information associated
with a sequence s to a single 16-vector is to introduce
additional 16 vectors to store the frequency information of
pairs XY when X and Y are not adjacent but are separated at
various distance. For example, if s = ATCGATC, the adjacent
dinucleotides are AT, TC, CG, GA with occurrence frequency
2/6, 2/6, 1/6, and 1/6, respectively. The dinucleotides at
distance 2 (i.e., separated by one nucleotide) in s are AC,
TG, CA, GT, AC with occurrence frequency 2/5, 1/5, 1/5,
and 1/5, respectively. These two 16-dimensional vectors will
contain additional information beyond that found in the
initial dinucleotide vector.

Generally, let s be a sequence of length. Denote XY (d)

as the number of occurrence of XY in s when X and Y are

separated by d−1 nucleotides. Clearly,
∑

XY∈Ω XY (d) = n−d.
Define

f (d)
XY =

XY (d)

(n− d)
, (3)

as the occurrence frequency. For each given integer, we

could get one 16-dimensional vector f̂ (d) associated with se-
quence s:

f̂ (d) =
(
f (d)
AT , f (d)

AA , f (d)
AC , . . . , f (d)

CT , f (d)
CA , f (d)

CC , f (d)
CG

)
. (4)

The distance d between X and Y could be 1, 2 or
even larger integers. When we scan sequence s to count the
occurrence of dinucleotides XY at distance, the nucleotides
of s from position 1 to (n − d) are counted as “X”, while
the nucleotides of s from position (d + 1) to n are counted
as “Y”. When d ≤ �(n − 1)/2�, there is an overlapping
interval [d+1,n−d] between the two intervals [1,n−d] and
[d + 1,n], which means the nucleotides in the overlapping
interval will counted as both X and Y ; but if d > �(n− 1)/2�,
the two intervals [1,n−d] and [d+1,n] will disjoint, and the
information of these nucleotides in the interval [n−d+ 1,d]
will be lost. So in the following, to avoid loss of information,
d must not be larger than �(n−1)/2�, that is, d ≤ �(n−1)/2�.
Furthermore, to make the information in f̂ (d) more accurate,
we hope that the overlapping interval [d + 1,n − d] will
be large enough. Based on this intuition, we would prefer
to these d such that (n − 2d)/n ≥ 50%, which guarantees
that more than half of the nucleotides in sequence s will be
counted as both X and Y . So d is restricted to d ≤ �n/4� for
each DNA sequence s with length.

Let s be a DNA sequence of length, for a given d ≤ �n/4�,
the dinucleotide frequency matrix associated with s is defined
as

F(s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f̂ (1)

f̂ (2)

f̂ (3)

...

f̂ (d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5)

where f̂ (i) is the 16-dimensional occurrence frequency vector
when X and Y are separated by (i − 1) nucleotides. The size
of matrix F(s) is d × 16.

We also present another mathematical descriptor asso-
ciated with s named dinucleotide frequency vector which is
defined as

F̂(s) =
(
f̂ (1), f̂ (2), f̂ (3), . . . , f̂ (d)

)
, (6)

then F̂(s) is a 1× 16d row vector.

3. Two Distance Measurements Based on
Dinucleotide Frequency

From Section 2, we get correspondences between one DNA
sequence s and the dinucleotide frequency matrix F(s) and
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the dinucleotide frequency vector F̂(s). Note that the sizes
of F(s) and F̂(s) all depend on. To make the comparisons
for a set of DNA sequences meaningful, we should use an
identical d for all these DNA sequences. Denote the set of
DNA sequences by, by the discussion in Section 2, we define
the identical d0 as

d0 = min
s∈S

⌊
(|s|)

4

⌋

, (7)

where |s| is the length of s. The choice of d0 will guarantee
that either the frequency matrix or the frequency vector will
involve enough accurate information, and the dinucleotide
frequency matrices and dinucleotide frequency vectors asso-
ciated with sequences in S all have the same size. DNA
sequences comparisons could be completed by studying their
corresponding matrices and vectors. In the following we
will introduce two different distance measurements based on
dinucleotide frequencies matrix and dinucleotide frequency
vector, respectively.

3.1. City Block Distance for Dinucleotide Frequency Matrix.
Given two DNA sequences s and h, then we get the
dinucleotide frequency matrix F(s) and F(h) as in Section 2,
comparison between s and h becomes comparison between
F(s) and F(h). Using this, we define the city block distance
d1(s,h) between s and h as

d1(s,h) =
∑

1≤i≤d0, 1≤ j≤16

∣
∣
∣Fi j(s)− Fi j(h)

∣
∣
∣. (8)

3.2. Cosine Distance for Dinucleotide Frequency Vector. We
also obtain a mapping from a DNA sequence s to a vector
F̂(s) in the 16d0-dimensional linear space. Comparison
between DNA sequences also could become comparison
between these 16d0-dimensional vectors. This is based on
the assumption that two DNA sequences are similar if
the corresponding 16d0-dimensional vectors in the 16d0-
dimensional space have similar directions. Given two DNA
sequences s and h, the dinucleotide frequency vectors are F̂(s)
and F̂(h), we define the cosine distance d2(s,h) between s and
h as

d2(s,h) = 1− cos
(
F̂(s), F̂(h)

)
, (9)

where cos(F̂(s), F̂(h)) is the cosine value of the included angle
between vectors F̂(s) and F̂(h).

4. Applications and Experimental Results

4.1. Experimental Results. A comparison between a pair of
DNA sequences to judge their similarity or dissimilarity
could be carried out by calculating the distance d1(s,h) or
d2(s,h). The smaller is the distance, the much similar are the
two DNA sequences (The code is available on request).

To test the utility of above method, we make a com-
parison for the coding regions of exon-1 of β-globin gene
for 11 different species, which were also studied by Randić
et al. in [12]. Table 1 presents their accession numbers in

Table 1: ID Information for Exon-1 of β -globin gene of 11 species.

Species ID/Accession Database length

Human U01317 NCBI 92

Chimpanzee X02345 NCBI 105

Gorilla X61109 NCBI 93

Lemur M15734 NCBI 92

Rat X06701 NCBI 92

Mouse V00722 NCBI 93

Rabbit V00882 NCBI 92

Goat M15387 NCBI 86

Bovine X00376 NCBI 86

Opossum J03643 NCBI 92

Gallus V00409 NCBI 92

NCBI database, while Table 2 lists these 11 coding sequences
concretely.

At first, we present the similarity/dissimilarity matrix
based on distance measurement d1, see Table 3. When we
examine this table, we notice that smallest entries are always
associated with the pairs (human, chimpanzee) with d1 =
2.5567, (human, gorilla) with d1 = 2.4026, and (gorilla,
chimpanzee) with d1 = 2.7338. That means the more similar
species pairs are human-gorilla, human-chimpanzee, and
gorilla-chimpanzee. We also observe that the largest entry
d1 = 9.0347 is associated with gallus and lemur and the
larger entries appear in the rows belonging to gallus and
opossum, which is consistent with the facts that gallus is
the only nonmammalian species among these 11 species and
opossum is the most remote species from the remaining
mammals. These observed facts are consistent with the
results reported in previous studies [5, 9, 12] determined by
matrix invariants techniques, and also consistent with the
reported results from nongraphical means [14, 15]. More
interesting, in Table 3, the distance between goat and bovine
is d1 = 2.3438, which is actually the smallest entry in Table 3.
That implies goat and bovine are regarded to be much similar
to each other by our method, which is consistent with their
biology taxonomy that bovine and goat are both even-toed
ungulates and belong to the family of “Bovidae”.

Table 4 presents the similarity/dissimilarity matrix based
on the distance measurement d2. The smallest entries are also
associated with the pairs (human, chimpanzee) with d2 =
0.0087, (human, gorilla), with d2 = 0.0074, and (gorilla,
chimpanzee), and with d2 = 0.0112. We find that the largest
entry (d2 = 0.1139 ) is associated with (gallus, lemur), and
the rows corresponding to gallus and opossum have larger
entries, which is also consistent with the facts that gallus
is the only nonmammalian species among these 11 species
and opossum is the most remote species from the remaining
mammals. The observed facts in Table 4 are consistent with
the previously reported results in [5, 9, 12, 14, 15] as well.
And the distance between goat and bovine (d2 = 0.0109 ) is
also much smaller as we expect.

We can see that there is an overall qualitative agreement
between Tables 3 and 4. To see it visually, we denote
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Table 2: The coding sequence of exon-1 of β -globin gene for 11 species.

Species DNA sequence

Human
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGAT-
GAAGTTGGTGGTGAGGCCCTGGGCAG

Chimpanzee
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGAT-
GAAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGG

Gorilla
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGAT-
GAAGTTGGTGGTGAGGCCCTGGGCAGG

Lemur
ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGGGCAAGGTGGATGTAGAG-
AAAGTTGGTGGCGAGGCCTTGGGCAG

Rat
ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGTTAGTGGCCTGTGGGGAAAGGTGAACCCTGAT-
AATGTTGGCGCTGAGGCCCTGGGCAG

Mouse
ATGGTTGCACCTGACTGATGCTGAGAAGTCTGCTGTCTCTTGCCTGTGGGCAAAGGTGAACCCCGA-
TGAAGTTGGTGGTGAGGCCCTGGGCAGG

Rabbit
ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGGGCAAGGTGAATGTGGAA-
GAAGTTGGTGGTGAGGCCCTGGGCAG

Goat
ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCTTCTGGGGCAAGGTGAAAGTGGATGAAGTT-
GGTGCTGAGGCCCTGGGCAG

Bovine
ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGCCTTTTGGGGCAAGGTGAAAGTGGATGAAGTT-
GGTGGTGAGGCCCTGGGCAG

Opossum
ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTGGTCTAAGGTGCAGGTTGAC-
CAGACTGGTGGTGAGGCCCTTGGCAG

Gallus
ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCATCACCGGCCTCTGGGGCAAGGTCAATGTGGCC-
GAATGTGGGGCCGAAGCCCTGGCCAG

Table 3: The upper triangular part of the dissimilarity/similarity matrix based on d1.

Species Human Chimpanzee Gorilla Lemur Rat Mouse Rabbit Goat Bovine Opossum Gallus

Human 0 2.5567 2.4026 6.4922 5.6622 4.9144 4.2904 5.3220 4.8306 6.8358 7.4959

Chimpanzee 0 2.7338 6.5340 5.9455 5.1613 4.9587 5.6525 4.9670 7.4568 7.9791

Gorilla 0 7.0466 6.2344 5.2819 5.0310 5.3353 4.9340 7.8956 8.0582

Lemur 0 6.9735 6.8419 5.6647 6.9332 6.0195 8.2293 9.0347

Rat 0 5.2540 6.8004 6.5847 6.2545 7.5359 8.2347

Mouse 0 6.5730 6.7863 6.4133 7.2900 7.8317

Rabbit 0 5.9265 5.2974 8.0743 8.3210

Goat 0 2.3438 8.0158 7.7129

Bovine 0 7.9847 8.2938

Opossum 0 8.0268

Gallus 0

Table 4: The upper triangular part of the dissimilarity/similarity matrix based on d2.

Species Human Chimpanzee Gorilla Lemur Rat Mouse Rabbit Goat Bovine Opossum Gallus

Human 0 0.0087 0.0074 0.0567 0.0464 0.0372 0.0253 0.0354 0.0287 0.0719 0.0819

Chimpanzee 0 0.0112 0.0564 0.0487 0.0383 0.0303 0.0403 0.0320 0.0793 0.0899

Gorilla 0 0.0619 0.0538 0.0398 0.0312 0.0357 0.0302 0.0887 0.0877

Lemur 0 0.0691 0.0635 0.0454 0.0616 0.0463 0.0939 0.1139

Rat 0 0.0417 0.0631 0.0592 0.0552 0.0832 0.1048

Mouse 0 0.0588 0.0573 0.0528 0.0765 0.0932

Rabbit 0 0.0444 0.0349 0.0998 0.0933

Goat 0 0.0109 0.0948 0.0792

Bovine 0 0.0923 0.0937

Opossum 0 0.0897

Gallus 0
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Figure 1: The degree of dissimilarity/similarity of the other 10
species with human, where the degree of dissimilarity/similarity of
the pair human-gorilla is defined relatively as 1.

the degree of dissimilarity/similarity of the pair human-
gorilla as 1 in each table, then the results of the examination
of the degree of dissimilarity/similarity between human and
other several species under the two distance measurements
are shown in Figure 1. We can see that the curvilinear trend
of these two curves are almost the same, which demon-
strates the overall agreement among dissimilarity/similarities
obtained by these two distance methods.

4.2. Discussion. For the above exon-1 coding data of 11
species, d0 is chosen to be 21 followed by (7). A 336-
dimensional vector is used to characterize each DNA
sequence under the second distance measure. To confirm the
efficacy of the vectors constructed in this high-dimensional
data representation, we perform principal component anal-
ysis (PCA) on these 336 parameters. Figure 2(a) shows
the projection of the 11 vectors on a 2D property space
composed of the top two principal components PC1, PC2.
We can see that in the 2D space, gallus (labeled by “

⊙
”)

and opossum (labeled by “∇”) are furthest from the other 9
species, and human, chimpanzee, and gorilla are very close to
each other. These result are consistent with what we have got
from Table 4. Note that these top two principal components
contribute 48% (see Figure 2(b)) to the total information.
Some information is lost when we do the projection, for
example, bovine seems much closer to rabbit than goat in
the 2D projection, but we know this is not true in Table 4
when all 336 parameters are considered. However, this rough
approximation confirms that our mathematical descriptor
characterizes DNA sequence structure effectively.
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Figure 2: (a) The projection of the 336-dimensional vectors of 11
species on a 2D space composed of the top two principal compo-
nents; (b) The contributions of the first 6 principal components.

5. Conclusion

In this paper, we have presented a new method based on
dinucleotide frequencies for DNA sequence comparison. The
dinucleotide frequency matrix and dinucleotide frequency
vector are used to mathematically characterize a DNA
sequence. The most important feature of this method is
that the mathematical descriptors not only involve the
frequencies of adjacent XY pairs but also nonadjacent XY
pairs (i.e., when X and Y are separated by various number
of nucleotides), such that a lot of important information
is avoided to lose. This new method does not require
sequence alignment or sequence graphical representation,
which avoids the complex calculation found in either
sequence alignment or sequence graphical representation.
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The method is very simple and fast, and it can be used
to analyze both short and long DNA sequences with high
efficiencies.
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similarity/dissimilarity of DNA sequences based on novel 2-
D graphical representation,” Chemical Physics Letters, vol. 371,
no. 1-2, pp. 202–207, 2003.

[6] B. Liao and T. M. Wang, “3-D graphical representation of
DNA sequences and their numerical characterization,” Journal
of Molecular Structure (THEOCHEM), vol. 681, no. 1–3, pp.
209–212, 2004.

[7] Y. Zhang, B. Liao, and K. Ding, “On 3DD-curves of DNA
sequences,” Molecular Simulation, vol. 32, no. 1, pp. 29–34,
2006.

[8] R. Chi and K. Ding, “Novel 4D numerical representation of
DNA sequences,” Chemical Physics Letters, vol. 407, no. 1–3,
pp. 63–67, 2005.

[9] B. Liao, R. Li, W. Zhu, and X. Xiang, “On the similarity of DNA
primary sequences based on 5-D representation,” Journal of
Mathematical Chemistry, vol. 42, no. 1, pp. 47–57, 2007.

[10] B. Liao and T. M. Wang, “Analysis of similarity/dissimilarity
of DNA sequences based on nonoverlapping triplets of
nucleotide bases,” Journal of Chemical Information and Com-
puter Sciences, vol. 44, no. 5, pp. 1666–1670, 2004.
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