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Ambient ozone (O3) is an important phytotoxic pollutant, and detailed knowledge of its spatial distribution is becoming
increasingly important. The aim of the paper is to compare different spatial interpolation techniques and to recommend the best
approach for producing a reliable map for O; with respect to its phytotoxic potential. For evaluation we used real-time ambient
05 concentrations measured by UV absorbance from 24 Czech rural sites in the 2007 and 2008 vegetation seasons. We considered
eleven approaches for spatial interpolation used for the development of maps for mean vegetation season O3 concentrations and
the AOT40F exposure index for forests. The uncertainty of maps was assessed by cross-validation analysis. The root mean square
error (RMSE) of the map was used as a criterion. Our results indicate that the optimal interpolation approach is linear regression
of O3 data and altitude with subsequent interpolation of its residuals by ordinary kriging. The relative uncertainty of the map of O3
mean for the vegetation season is less than 10%, using the optimal method as for both explored years, and this is a very acceptable
value. In the case of AOT40F, however, the relative uncertainty of the map is notably worse, reaching nearly 20% in both examined

years.

1. Introduction

Ambient ozone (O3) is a widely studied air pollutant [1]. Due
to its unsaturated chemical structure, it is highly reactive and
contributes to the oxidative power of atmosphere, essential
for scavenging many pollutants from the atmosphere [2]. It
has important negative impacts on both human health and
the environment as acknowledged in numerous studies [3].
Moreover, due to its absorption-radiation abilities, O3 is an
important greenhouse gas [4, 5], and there are significant
interactions between O3 and climate change [6].

Current ambient Os levels have increased by approxi-
mately two times as compared to those measured over a cen-
tury ago [7]. Although the magnitude and origin of the
hemispheric O3 trends are still not completely understood
(8], there are indications that background Os levels over the
midlatitudes of the Northern Hemisphere have continued to
rise over the past three decades within the range of approxi-
mately 0.5-2% per year [9]. A significant contribution to O3

levels both in Europe and North America originates in East
Asia as a result of its dynamic development regarding popu-
lation growth and increased fossil fuel consumption [10].

For the above reasons, the detailed knowledge of spatial
distribution of ambient Os levels is becoming increasingly
important. To develop a reliable, accurate, and continuous
air pollutant surface predicting the values at locations with-
out measurements is an essential task which we frequently
encounter in environmental and health-related studies. This
benefit of O3 mapping stands out when viewed alongside the
increasingly limited financial resources available for costly
ambient air quality monitoring networks.

There are a wide range of techniques available for spatial
interpolation, the advantages and limitations of which are
widely discussed in the scientific literature [11]. In principle
these techniques are classified as deterministic (the nearest
neighbor and polynomial regression) or stochastic (geosta-
tistical approaches as kriging and cokriging). The difference
between these two is that the geostatistical methods use the



spatial correlation structure and allow a prediction variability
estimate to assess, under certain conditions, prediction accu-
racy. In between the deterministic and stochastic methods,
there are a wide range of radial basis functions or splines.

The quality of maps of air pollution depends mainly on
the quality of the input data measured at the stations, on
the number of measuring sites, and also on their spatial dis-
tribution [12, 13]. Air pollution measurements, particularly
those from online permanent monitoring used in routine
monitoring networks, are very costly and so the number of
sites is generally very limited. The number of required sites
depends obviously on the type of air pollutant and on the
representativeness of the measuring site. The representative-
ness is closely related to proximity of emission sources and
topography; more stations are needed in complex terrain in
contrast to flat [14]. When developing a surface for pol-
lutants with high spatial variability (due to the impor-
tance of their local emission sources), for example, PM,
benzo(a)pyrene, or toxic metals, more sites are needed. In
contrast, pollutants like O3, with a more regional character,
depending mostly on regional phenomena such as meteorol-
ogy and long-range or regional air pollution transport need
a less-dense monitoring network.

Maps of ambient Oj, in context of its impacts on envi-
ronment in rural areas, produced by different approaches
were published for different regions: United Kingdom [15],
Sierra Nevada in California [16-18], and the Carpathians
in Europe [19]. Across the EU, mapping of background O3
at a fine spatial scale (1 x 1km) was carried out [20], as
well as mapping of exposure index AOT40 at 2 X 2km grid
resolution [21, 22]. Across the Czech Republic, the method
of [15] was applied for ozone deposition mapping [23].

In the Czech Republic (CR), ambient Os levels are
elevated [24, 25], limit values over vast regions are frequently
exceeded, and phytotoxic potential is high [26-28]. The aim
of this paper is to compare the different spatial interpolation
techniques and to recommend the optimal approach for
producing a reliable map of O3 with respect to its phytotoxic
potential.

2. Methods

2.1. Ambient Ozone Data. We used real-time O3 levels mea-
sured at sites in the nationwide air quality monitoring
network by UV absorbance, a reference method as declared
by the EC [29]. The ozone analyzers used were the Thermo
Environmental Instruments (TEI), M49. The samplers were
placed ca 2m above ground. Standard procedures for
quality control and quality assurance [29] were applied. We
considered O3 seasonal means (April-September) and the
exposure index AOT40 for forests—AOT40F [30], calculated
according to [31]. The input data were 1 h mean concen-
trations. Data capture required for calculations of seasonal
means was 75%. The AOT40 index as a cumulative variable
is very sensitive to the quality of measured data [32,
33] and obviously also to missing values. More stringent
requirements are, thus, needed for calculation of AOT40 as
compared to the seasonal mean. In cases when we had less
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than 90% of hourly O3 concentrations for the period of
April-September for calculating the AOT40F, we corrected
it according to [34] so as to prevent underestimation of the
O3 exposure.

With respect to the aim of this study to assess Oz expo-
sure for forests, urban sites were not considered. From a total
of 55 sites monitoring real-time O3 concentrations across the
CR, we accounted only for rural sites as specified by Eol
[35]. The rural sites according to Eol are the sites with no im-
portant emission sources nearby and which are assumed to
be affected only by long-range or regional air pollution trans-
port. Thus, the representativeness of such sites is consider-
able, mostly in tens to hundreds of kms. The selection of
sites resulted in 24 rural sites distributed unevenly across the
CR (Figure 1), with more sites at border mountain areas as
compared to the interior of the country. Considering that
the area of the CR is 79000 km?, the sampling density was
approximately one monitor per 3 292 km?.

2.2. Spatial Interpolation. Maps for mean vegetation season
O3 concentrations and for exposure index AOT40F for
forests were prepared. For spatial interpolation, we used 24
rural sites run by the CHMI. In addition to the Czech sites,
we also used data from selected measuring sites in Germany
and Poland to improve the interpolation near border areas
(Figure 1). Measuring sites in Slovakia are too distant so they
cannot be used. Data from Austrian sites situated near the
border were not available. The maps were prepared using
ArcGIS Geostatistical Analyst [36] on a grid of 1 X 1km
resolution. A 25 m resolution DEM was used.

For spatial interpolation, eleven methods were used
(Table 1). These methods are adequately referenced in scien-
tific literature, so we comment on them only very briefly. In
principle, we use three different interpolation methods using
measured data only and two basic methods which combine
measured and supplementary data, with four subvariants.

2.2.1. Interpolation Methods Using Measured Data Only

(A) Inverse Distance Weighted Method. The inverse distance
weighted method (IDW) is likely to be the most frequently
used deterministic method [37]. For interpolation we used

Z?:1Z(5i)/d§i
Sy

where Z(so) is the interpolated value of concentration in the
point so, Z(si) is the measured value of concentration in the
ith point, i = 1,...,n, dy; is the distance between the inter-
polated point and the ith point with measurement, and # is
the number of sites used for interpolation.

Z(so) = (1)

(B) Radial Basis Functions Method. Radial basis functions
(RBF) interpolate the measured value while minimizing the
total curvature of the surface. The interpolation is described

by

Z(s9) = > wi - ©(doi) + W1, (2)

i=1
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FIGURE 1: Sites with online monitoring of ambient O3 concentrations ranked according to altitude.

TaBLE 1: Methods used for interpolation.

Method Acronym
Interpolation of measured data by inverse distance weighting IDW
Interpolation of measured data by radial basis functions RBF
Interpolation of measured data by ordinary kriging OK
Linear regression of measured data and altitude LR
Linear regression of measured data and altitude with subsequent

interpolation of its residuals by IDW LR+ res IDW
Linear regression of measured data and altitude with subsequent

interpolation of its residuals by RBF LR+ res RBE
Linear regression of measured data and altitude with subsequent

interpolation of its residuals by OK LR+ res-OK
Interpolation of mean afternoon O3 concentration minus regression of mean ALR

QO3 afternoon increment with altitude [15]

Interpolation of mean afternoon O3 concentration minus regression of mean
O3 afternoon increment with altitude [15] with subsequent interpolation of
its residuals by IDW

Interpolation of mean afternoon O3 concentration minus regression of mean
Os afternoon increment with altitude [15] with subsequent interpolation of
its residuals by RBF

Interpolation of mean afternoon O3 concentration minus regression of mean
O; afternoon increment with altitude [15] altitude with subsequent
interpolation of its residuals by OK

ALR + res_ IDW

ALR + res_RBF

ALR + res_ OK

where @(x) is a specific RBF function, dp; is the distance and fast. The parameters wy,
between the interpolated point and the ith point with mea-  system of equations given by
surement, wj, ..., wyq are the weighting parameters, and
n is the number of surrounding sites used for interpolation.
Although calculation of the RBF and estimation of its
parameters is rather complicated, the computation is simple

n
Zqu)(dij) + Wair = Z(si),
j=1 n

ZW]‘ = —Wpy+1.
j=1

..., Wpy1 are obtained from the

i=1,...,n,

(3)



A more detailed description is given by [36]. Coyle et al.,
2002, [15] applied this interpolation technique within his
approach for ambient O3 mapping for Great Britain.

(C) Ordinary Kriging. Ordinary kriging is a geostatistical
interpolation method. It considers the statistical model:

Z(s) =u+e(s), seD, (4)

where p represents the constant mean structure of the con-
centration field, £(s) is a smooth variation plus measurement
error (both zero-mean), and D is the examined area.

The interpolation is performed according to the equation

n n

Z(s0) = D NZ(s), dDhi=1, (5)

i=1 i=1

where Z(so) is the interpolated value of concentration in the
point so, Z(s;) is the measured value of concentration in
the ith point, i = 1,...,n, n is the number of surrounding
sites used for interpolation, and A4, ..., A, are the weights
assumed based on a semivariogram.

The weights A; are derived from a semivariogram y(-)
in order to minimize the mean square error. The explicit
calculation is achieved by the system of equations given by

_ley(si_sj) +y(so—si)—m=0, i=1,..,n,
j=1

. (6)
Shi=1
i=1

Kriging is a commonly used standard method. For construc-
tion of an Os surface, it was used, for example, by [38—40].

2.2.2. Interpolation Methods Using Both Measured and Auxil-
iary Data. The methods described in Section 2.2.1 were used
only for the interpolation of the measured O3 concentra-
tions. Apart from these methods, there are others using well-
correlated physical relationships between concentrations
and other characteristics, for which more complex spatial
information is known. The simplest approaches are the
linear regression models without spatial interpolation; more
complicated are different combinations of linear regression
and spatial interpolation.

(A) Linear Regression Model without Spatial Interpolation.
The basic linear regression model equation considered is

Z(s)=¢c + a *Xi(s)+ ay * Xo(s)+ -+, (7)

where X;(s) are different supplementary parameters at the
point s, fori = 1, 2,...,¢, and a;, a,,..., are the para-
meters of the linear regression model.

In our case, altitude is used as the auxiliary parameter.

(B) Linear Regression Model Followed by the Spatial Interpo-
lation of Residuals. The interpolation is estimated according
to

Z(s0) = c+ay - Xy (s0) +az - Xo(s0) + - = - +7(s0),  (8)
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where Z(so) is the estimated value of the O3 concentration at
the point sp, X 1(s9), X 2(s0), - - .» Xnn(s0) are the n number of
individual auxiliary variables at the point so, ¢, a1, a2, ..., a,
are the n selected parameters of the linear regression model
calculated at the points of measurement, and #(s) is the
spatial interpolation of the residuals of the linear regression
model at the points of measurement.

The output of a dispersion model, altitude, meteo-
rological variables (temperature, relative humidity, global
radiation) may be among the auxiliary characteristics. For
preparing an O3 surface, this method was used, for example,
by Loibl et al., 1994 [41], who used relative altitude as the
auxiliary characteristics, Horalek et al., 2008 [42], who used
model EMEDP, altitude, and global radiation as the auxiliary
characteristics, and Abraham and Comrie, 2004 [43].

In this study we used the altitude as the sole auxil-
iary characteristic. The major reason was that preliminary
analysis of our data showed the best association between
O3 concentrations and altitude. Inclusion of meteorological
variables did not bring any further benefit to our model. The
assumption of linear distribution of Oz with altitude was
tested prior to the regression analysis.

Different interpolation methods, as described in Sec-
tion 2.2.1, can be used for interpolation of residuals.

(C) Interpolation of Mean Afternoon Concentration Minus
Regression of Mean Afternoon Increment with Altitude. Ozone
concentrations show diurnal variation. Next to this, mean
afternoon increment (i.e., the difference between the mean
afternoon concentration and the mean whole-day con-
centration) is strongly related to altitude; see [15]. Coyle
introduced the mapping method in which this regression
relation is combined with the spatial interpolation of the
afternoon concentration; that is,

Z(s0) = p(s0) — Ra(so), (9)

where p(so) is the spatial interpolation of the mean afternoon
concentrations at the point sp and Ra (so) is the regression
relation of the increment A based on altitude at the point so.

While Coyle uses minimum curvature function (i.e., one
of the RBF function) for the interpolation of afternoon
values, we use ordinary kriging, as it shows generally better
results; see bellow.

(D) Interpolation of Mean Afternoon Concentration Minus Re-
gression of Mean Afternoon Increment with Altitude Followed
by the Spatial Interpolation of Residuals. The variant of the
method C is the addition of the interpolation of its residuals
to the results of this method. As for the method B, different
interpolation methods as introduced under Section 2.2.1 are
used.

2.3. Uncertainty of Maps. We used cross-validation analysis
for the assessment of uncertainty of the map. Cross-
validation compares a value measured at a monitoring site
with an estimated value based on interpolation of values
measured at other sites. The root mean square error (RMSE)
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TaBLE 2: RMSE values (ppb) from cross-validation: comparison for different interpolation techniques for O3 means, 2007-2008 vegetation

seasons.

Seasonal O3 mean (ppb)

2007 2008 Average

40.15 38.87 39.51
Interpolation technique RMSE (ppb)

2007 2008 Average Ranking
IDW 5.23 4.97 5.10 11
RBF 4.92 4.69 4.80 10
OK 4.73 4.67 4.70 9
LR 3.45 3.30 3.38 5
LR + res IDW 3.49 3.48 3.48 8
LR + res_RBF 3.40 3.37 3.38 6
LR + res_.OK 3.31 3.15 3.23 1
ALR 3.43 3.38 3.40 7
ALR + res_IDW 3.44 3.22 3.33 4
ALR + res_RBF 3.41 3.15 3.28 3
ALR + res_.OK 3.39 3.07 3.23 1

TasLE 3: RMSE values (ppb.h) from crossvalidation: comparison for different interpolation techniques for AOT40F, 2007-2008 vegetation

seasons.
AOTA40F (ppb.h)

2007 2008 Average

17570 15202 16386
Interpolation technique RMSE (ppb-h)

2007 2008 Average Ranking
IDW 3695 3105 3400 11
RBF 3556 3023 3289 10
OK 3364 2961 3163 9
LR 3438 2841 3140 8
LR + res_ IDW 3335 2897 3116 7
LR + res_RBF 3271 2844 3058 6
LR + res_.OK 3169 2827 2998 1
ALR 3222 2842 3032 3
ALR + res_ IDW 3274 2809 3041 4
ALR + res_RBF 3254 2852 3053 5
ALR + res_OK 3207 2850 3029 2
of the map, calculated according to (10), was used as the 3. Results

uncertainty criterion. RMSE should be as small as possible:

RMSE = LS Z 260)
= |y (26 -2s)

i=1

(10)

where RMSE is the root mean square error of the whole map,
Z(s;) is the measured concentration at the ith site, i = 1, ...,
N, Z(s;) is the concentration at the ith site estimated from
concentrations measured at other sites,i=1,..., N, and N is
the number of measuring sites.

The RMSE values comparing the different interpolation
techniques both for Oz seasonal means and AOT40F are
presented in Tables 2 and 3. Considering the average from the
vegetation seasons of 2007 and 2008, our results indicate that
the optimal interpolation approaches are LR+res_OK and
ALR+res_OK. In the case of O3 seasonal means, the rankings
for both methods were exactly the same, while for AOT40F
LR+res_OK slightly outperformed ALR+res_ OK. All three
interpolation techniques alone—IDW, RBE, and OK—gave
much worse results in comparison to linear regression of
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FIGURE 2: Spatial interpolation of mean O; concentrations in the
2008 vegetation season (ppb), interpolation technique LR + res_OK,
grid resolution 1 X 1 km.
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FiGure 3: Spatial interpolation of mean O; concentrations in the
2008 vegetation season (ppb), interpolation technique ALR +
res_OK, grid resolution 1 X 1 km.

measured data and altitude with subsequent interpolation of
its residuals. This held both for Oz seasonal means and
AOT40F but was more pronounced for the Oz seasonal
means.

The relative uncertainty of the map of mean O3 for the
vegetation season was 8% for LR+res_OK and ALR+res_OK
methods for both explored years. This is a thoroughly
acceptable value. Even though the IDW method ranking
indicated that it was the worst interpolation approach, the
relative uncertainty of the map of mean O3 for the vegetation
season was 13%. In the case of AOT40F, however, the relative
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FIGUre 4: Spatial interpolation of exposure index AOT40F for
the 2008 vegetation season (ppb.h), interpolation technique LR +
res_OK, grid resolution 1 x 1 km, forested areas.
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FIGURE 5: Spatial interpolation of exposure index AOT40F for the
2008 vegetation season (ppb.h), interpolation technique ALR +
res_OK, grid resolution 1 x 1km, forested areas.

uncertainty of the map was notably worse. For LR+res_OK,
ranking as the best approach, its relative uncertainty values
were 18% in 2007 and 19% in 2008, while for IDW, assessed
as the worst approach, its values were 21% for 2007 and 20%
for 2008.

Figures 2 and 3 show the spatial interpolation of mean
O3 concentrations in the 2008 vegetation season prepared by
interpolation techniques LR+resc.OK and ALR+res_ OK
which ranked best in the comparison (Table 2). The two ap-
proaches resulted in maps which are very similar and exhibit-
ed only minor differences. The same applies for Figures 4 and
5 which show the spatial variability of AOT40F values in
the 2008 vegetation season prepared by interpolation tech-
niques LR+res_OK and ALR+res_OK which ranked best in
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FIGURE 6: Scatter plots showing the relationship of cross-validation interpolated and measured values for the interpolation techniques LR +
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the comparison (Table 3). The relationships between the re-
sults of these two interpolation approaches are presented by
scatter plots (Figure 6). Notably better results were obtained

for O3 seasonal means.

4. Discussion

To produce a reliable air pollutant map to predict values in
regions without measurements is an essential yet challenging



task. Generally, dense monitoring networks are expensive
but give a precise picture of spatial variability of a given
phenomenon. Sparse sampling and monitoring networks,
however, although less expensive, may miss significant spatial
features of the studied phenomenon [12]. To make a real
monitoring network denser, it is possible, for example, to
add virtual measuring sites to improve the quality of inter-
polation [44]. Currently, however, no rigorous methodology
for the determination of the number of monitoring sites
sufficient/adequate to develop a reliable air pollutant surface
is available [45]. Familiarity with the terrain and various
phenomena that could affect the air pollutant concentrations
and distributions are among the most important issues [12].

For mapping purposes, a number of techniques are avail-
able. There are substantial qualitative differences between
the maps derived using different interpolation techniques
as shown, for instance, by [46] for the maps of NO,.
The assessment of performance of the different techniques
is extremely important. The maps derived by different
interpolation techniques may be compared and evaluated by
using the objective criteria, such as cross-validation [42]—
when we omit one site in interpolation process and predict
its values based on the rest of the sites and then compare the
predicted and measured values.

Presented maps are applicable merely for rural areas.
The obvious limitation of the maps is the low number of
measuring sites which are unevenly distributed across the
country. The spatial distribution of sites has strong historic
connotations. Originally the measuring sites were located
preferentially to more polluted regions, and they still remain
in their original setting to observe the long-time trends.

Our results show that using the auxiliary data, in our
case the dependence of O3 concentrations on altitude in
particular, significantly improves the overall quality of the
resulting map (see Tables 2 and 3). Meteorology was not fac-
tored into the linear regression models as the preliminary
analysis of our data showed that including meteorological
variables did not bring any further benefit to our model. The
likely reason is fairly low number of O3 measuring sites. In
near future we intend to use the Eulerian photochemical dis-
persion model CAMx [47] as auxiliary characteristics. The
preliminary results seem to be promising. Next to this, it
can be stated that the methods using ordinary kriging in its
spatial interpolation part show the best results.

If we compare the two methods which ranked as the best,
the LR+res_OK (i.e., linear regression of measured values
with altitude followed by the interpolation of its residuals
using ordinary kriging) approach slightly outperforms
ALR+res_OK (i.e., the Coyle’s approach [15] followed by the
interpolation of its residuals using ordinary kriging) or gives
comparable results. ALR+res_ OK, however, is much more
complicated and demanding for computation and, thus, less
practical for application.

We can reasonably assume that notably worse results of
mapping of AOT40F as compared to mean O3 concentration
for a vegetation season (see Figure 6) are due to more ran-
dom/incidental factors affecting AOT40. Moreover, exposure
index AOT40 is less robust characteristic as compared to
mean O3 concentrations [33].
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Presented maps show the high-resolution O3 spatial pat-
terns which can be used for assessment of O3 effects on vege-
tation. Exposure maps in particular are useful for indication
of areas with high O3 phytotoxic potential for forests and
were already used across the Czech forests earlier [26]. Spatial
patterns of O3 seasonal means are useful for estimation of
O3 deposition as published for the Czech coniferous and
deciduous forests by [23] and for estimation of stomatal flux.

5. Conclusions

We developed reasonable continuous surfaces for ambient
O3 vegetation season mean concentrations and AOT40F
using eleven interpolation approaches. The comparison bas-
ed on RMSE indicates that linear regression between mea-
sured O3 data and altitude with subsequent interpolation of
its residuals outperforms the interpolation techniques IDW,
radial basis functions, and ordinary kriging significantly.
This holds for both O3 seasonal means and AOT40E, and,
in the case of O3 seasonal means, this feature is more pro-
nounced as compared to AOT40F. Considering all different
aspects, including the results of cross-validation analysis
and the demandingness of computation, linear regression of
O3 data and altitude with subsequent interpolation of its resi-
duals by ordinary kriging can be recommended as the opti-
mal approach out of the eleven spatial interpolation tech-
niques examined. Notably better results in mapping were
obtained for mean seasonal O concentrations in compari-
son to exposure index AOT40F.
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