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Wheat breeding during the 20th century has put large efforts into reducing straw length and increasing harvest index. In the
1920s an allele of Rht8 with dwarfing effects, found in the Japanese cultivar “Akakomugi,” was bred into European cultivars and
subsequently spread over the world. Rht8 has not been cloned, but the microsatellite marker WMS261 has been shown to be
closely linked to it and is commonly used for genotyping Rht8. The “Akakomugi” allele is strongly associated with WMS261-192bp.
Numerous screens of wheat cultivars with different geographical origin have been performed to study the spread and influence
of the WMS261-192bp during 20th century plant breeding. However, the allelic diversity of WMS261 in wheat cultivars before
modern plant breeding and introduction of the Japanese dwarfing genes is largely unknown. Here, we report a study of WMS261
allelic diversity in a historical wheat collection from 1865 representing worldwide major wheats at the time. The majority carried
the previously reported 164 bp or 174 bp allele, but with little geographical correlation. In a few lines, a rare 182 bp fragment
was found. Although straw length was recognized as an important character already in the 19th century, Rht8 probably played
a minor role for height variation. The use of WMS261 and other functional markers for analyses of historical specimens and
characterization of historic crop traits is discussed.

1. Introduction

During the green revolution in 1960’s and 1970’s the yield of
cereal grain increased dramatically and annual production
doubled [1]. This was partly due to changed cultivation
practices but primarily a result of the development of new
varieties of wheat, corn, and rice. One important aspect
of the new varieties was the shorter, sturdier straw that
could take large amounts of fertilizers without suffering from
lodging.

The reduction in straw length was a result of cultivars
being insensitive to gibberellin [2]. For example, Peng
et al. [3] reported that the mutant alleles of the genes
reduced height-1, (Rht-B1 and Rht-D1) leading to dwarfism
in wheat, as well as the maize gene dwarf-8 (d8), are

orthologues of the Arabidopsis Gibberellin Insensitive (GAI)
gene. Unfortunately the two Rht genes, Rht-B1 and Rht-
D1, also reduce seedling establishment and coleoptile length
under some environmental conditions.

Such negative effects on seedling vigour have not been
found in another semidwarfism gene, Rht8 [13], located on
chromosome 2D [14]. Although the molecular identity of
Rht8 is still unknown, Korzun et al. [15] showed a close
association with the microsatellite marker WMS261. Several
alleles of this marker exist and the 164 bp allele increased
height with 3 cm compared to the 174 bp allele, while the
192 bp allele, diagnostic for the semidwarf phenotype, was
associated with a reduction in 7-8 cm compared to the 174 bp
allele.
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Table 1: Studies of WMS261 allelic diversity.

Reference Plant material
Number of
accessions

Worland et al. [4] World-wide cultivars 118

Chebotar et al. [5]

Ukrainian cultivars and
breeding lines

27

US and European
cultivars and breeding
lines

20

Worland et al. [6] World-wide cultivars 870

Ahmad and Sorrells [7]
Mainly US and NZ
cultivars

71

Manifesto and Suárez [8] Argentinian cultivars 165

Schmidt et al. [9] Australian cultivars 24

Liu et al. [10]

Chinese cultivars and
breeding lines

408

CIMMYT, US and
European cultivars and
breeding lines

98

Ganeva et al. [11] Bulgarian cultivars 89

Zhang et al. [12]
Chinese landraces,
cultivars, and breeding
lines

220

A few exceptions to the linkage between WMS261 and
Rht8 have been reported [16]. Nevertheless, WMS261 has
been useful in a large number of screens for Rht8 polymor-
phisms in various materials (Table 1). The dwarfing allele of
Rht8 and associated WMS261-192 bp was introduced from
the Japanese variety “Akakomugi” through Italian breeding
programs in the 1920’s [4]. After that, it was used in several
crossings and spread to the rest of the world [17]. In southern
and central Europe, this allele is now very abundant [4, 6]
and it is found almost exclusively in certain areas like Ukraine
[5] and Bulgaria [11]. Additionally, in China the WMS261-
192 bp is very common [10]. Interestingly, WMS261-192 bp
is also found in several Chinese landraces suggesting an
alternative source of Rht8 in Chinese cultivars to the
“Akakomugi”-Italian breeding origin [12]. The semidwarf
CIMMYT varieties usually carry the WMS261-164 bp allele
[4]. These lines have reduced height through Rht-B1b and
Rht-D1b. Worland et al. [4] speculate that addition of Rht8
would lead to a too strong dwarfing phenotype. In varieties
from USA, UK, Germany, and France WMS261-174 bp is the
most common allele. This was suggested to be due to its
linkage with the photoperiod sensitive Ppd-D1b allele that
might be beneficial for northern varieties [4, 6].

In spite of these extensive screenings, the world-wide
distribution of WMS261 alleles in the era before modern
plant breeding as well as introduction of the “Akakomugi”
allele is unknown. The objective of this study is to explore the
presence of the different WMS261 alleles in a historic 19th
century material. Although no formal plant breeding (i.e.,
planned crossings and pedigree-based selections) took place
in the 19th century, numerous well-characterized wheat
cultivars existed [18, 19]. These, more or less, pure lines

derived from landraces were multiplied and sold by seed
companies and were thus spread and cultivated over large
areas.

Several of the most recognized wheat cultivars in the
1860s were displayed at the International Exhibition in
London 1862. Seed samples from the exhibition were taken
to Stockholm, Sweden where they, together with some
German cultivars, were multiplied at the Experimental Field
of The Royal Academy of Agriculture during subsequent
years [20]. Samples of the harvest of 1865 were saved in
glass containers and stored at the academy museum for 100
years before being moved to the Swedish Museum of Cultural
History where the samples have been kept since. Here, we
report on the WMS261 genotyping of these 147-year-old
seeds and the possible influence of Rht8 in 19th century
wheats.

2. Material and Methods

2.1. Historical Plant Material. Fifty-nine historical wheat
varieties, harvested in 1865, were obtained from the seed
collection of The Royal Swedish Academy of Forestry and
Agriculture (Table 2). The seeds in this seed collection are no
longer viable but genetic analysis of the aged DNA is possible
[22]. Information regarding sample origin, cultivar origin,
and subspecies (Table 2) was gathered from the archives of
The Royal Swedish Academy of Forestry and Agriculture and
complemented with data from 19th century literature on
cereal cultivation [18–21]. Data on straw length (Table 2) and
lodging resistance in test cultivations 1865 was taken from
Juhlin-Dannfelt [21].

2.2. Molecular Analysis. DNA extractions of historical mate-
rial were made at Linköping University in a laboratory where
cereal DNA work is not regularly performed. DNA was
extracted from single seeds using the FastDNA SPIN Kit
and FastPrep Instrument (MP Biomedicals), with extraction
blanks performed in parallel as negative controls.

Rht8 was genotyped through a seminested PCR for the
marker WMS261. The primer pair Rht8f (TGTAAAACC-
ACGGCCAGTCTCCCTGTACGC) and Rht8r (CTCGCG-
CTACTAGCCATTG) was used for a first round of PCR,
followed by a second round using a fluorescently-labelled
forward primer, M13f, together with Rht8r. Each PCR reac-
tion of 20 µL consisted of 0.5 U Taq DNA Polymerase (New
England BioLabs), 1X New England BioLabs ThermoPol
Reaction Buffer, 0.25 µM of each dNTP, 0.1 µM each of the
primers, and 1 µL and 3 µL of DNA-template for the first
and the second PCR, respectively, where PCR product from
the first PCR was used as template for the second. PCR
amplifications were run at 3 min initial denaturation at 94◦C,
30 cycles of 94◦C for 20 s, 55◦C for 1 min 20 s, and 72◦C for
30 s and a final extension step of 72◦C for 10 min. In samples
failing to amplify the PCR reaction was repeated twice,
the second time with an annealing temperature of 51◦C
to allow for annealing to mutated primer sites. Fragment
lengths of PCR products were analyzed using MegaBACE
1000 (Amersham Biosciences) and MegaBACE Fragment
Profiler version 1.2
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Table 2: Historical cultivars screened for WMS261 allelic diversity. Acc.nr refers to the seed collection inventory number in the Swedish
Museum of Cultural History. Data on height and lodging are from Juhlin Dannfelt [21].

Acc.nr Species1 Cultivar name Country of origin WMS261 allele/s Height (cm) Notes on lodging

NM1080 T. ae. ae. Hartswood England 164 122 Lodging

NM1081 T. ae. ae. West Canada Canada 174 91 Little lodging

NM1082 T. ae. ae. Fife Canada 164 102

NM1083 T. ae. ae. Cloves Highland Holland 174

NM1084 T. ae. ae. Stevens Australia 164 102 Early lodging

NM1085 T. ae. ae. Hunters Winter Germany 174 114 Lodging

NM1086 T. ae. ae. Tappahannock United States 164 119 Somewhat lodging

NM1087 T. ae. ae. Richmond’s Giant England 164 114 Late lodging

NM1088 T. ae. ae. Marigold Germany 164, 174

NM1090 T. ae. ae. Red Lammas England 174 117 Somewhat lodging

NM1091 T. ae. ae. Chiddam England 174 122 Somewhat lodging

NM1092 T. ae. ae. Petticoat Canada 174 122

NM1093 T. ae. ae. Hundredfold England 164 112 Late lodging

NM1094 T. ae. ae. Victoria Venezuela 174 102 Somewhat lodging

NM1095 T. ae. ae. Drewett’s Unknown 174 114

NM1096 T. ae. ae. Tuscany Italy 174 114

NM1097 T. ae. ae. Hopetoun Germany 174 117 Somewhat lodging

NM1098 T. ae. ae. Southern Australia Australia 174

NM1099 T. ae. ae. Long bearded Unknown 164 112 Lodging

NM1100 T. ae. ae. Red from Tschernigow Ukraine 164 94 Lodging

NM1101 T. ae. Summer wheat Unknown 174

NM1102 T. ae. ae. Australia Australia 164

NM1103 T. ae. ae. Mummy England 164, 174 117 Somewhat lodging

NM1104 T. ae. ae. Ringelblumen Germany 182

NM1106 T. ae. ae. Red Essex England 174 127 Somewhat lodging

NM1108 T. ae. ae. Canadian Canada 182

NM1109 T. ae. ae. Dayton Unknown 164, 182 117 Late lodging

NM1110 T. ae. ae. White Belgian Belgium 174 114

NM1111 T. ae. ae. Hungarian Hungary 174

NM1112 T. ae. sp. White Schwanen Unknown 164

NM1113 T. ae. co. Igel Switzerland 174 114 Somewhat lodging

NM1115 T. ae. ae. Galizian Poland 174 102 Lodging

NM1116 T. ae. ae. Eley’s Giant Switzerland 164 99

NM1118 T. ae. ae. Sixrow Unknown 112 Somewhat lodging

NM1120 T. ae. ae. Stålvete Sweden 174

NM1122 T. ae. ae. Nottingham England 174 119 Much lodging

NM1123 T. ae. ae. Hungarian Hungary 174

NM1125 T. ae. ae. Three-row Chevalier Unknown 174

NM1126 T. ae. ae. Hungarian Hungary 174

NM1129 T. ae. ae. Sandomirka from Volhynia Ukraine 174 117 Somewhat lodging

NM1135 T. ae. ae. White Essex England 164 112

NM1136 T. ae. ae. Probsteier Germany 174 122 Somewhat lodging

NM1139 T. ae. ae. Grano tenero Italy 164, 174 114 lodging

NM1140 T. ae. ae. Lammas England 164 114 Lodging

NM1141 T. ae. ae. Fenton Scotland 174 102

NM1178 T. ae. ae. Bluestem Canada 174 109
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Table 2: Continued.

Acc.nr Species1 Cultivar name Country of origin WMS261 allele/s Height (cm) Notes on lodging

NM1179 T. ae. ae. Talavera Spain 174 107

NM1180 T. ae. ae. Red-chaffed-pearl United States 164 127 Lodging

NM1181 T. ae. ae. Southern Australia Australia 164

NM1182 T. ae. ae. Italian Italy 174

NM1186 T. ae. ae. Swedish (Sammets) Sweden 174

NM1187 T. ae. ae. Hopetoun England 174 119 Somewhat lodging

NM1189 T. ae. ae. Hickling’s prolific England 174 122 Lodging

NM1800 T. ae. sp. White winter spelt Germany 174 109 Lodging

NM1802 T. ae. sp. Winter spelt Germany/France 174

NM1803 T. ae. sp. White-club-shaped spelt Germany/Switzerland 174

NM1805 T. ae. sp. Red winter Germany 174 107

NM1807 T. ae. sp. Schlegel’s winter Germany 97

NM1811 T. ae. sp. White winter emma spelt Unknown 174 107
1
T: Triticum, ae: aestivum, co: compactum, sp: spelta.

3. Results

We successfully amplified the marker WMS261 in 57 out of
59 seed samples harvested in 1865 and used it as a proxy
for genotyping the linked Rht8 locus. Among the samples
yielding a PCR product we found 15 accessions carrying
the WMS261-164 bp genotype and 36 accessions with the
WMS261-174 bp allele. Two accessions had an allele of length
182 bp. In addition four accessions were heterozygous, three
for the 164, 174 genotype, and one for the 164, 182 genotype
(Table 2).

For most accessions the country of origin was known.
We were unable to detect any clear pattern with respect
to country of origin and Rht8 genotype. In most countries
from which we had more than one accession both the
WMS261-164 bp and the WMS261-174 bp allele were present.
The exceptions were Hungary (all three WMS261-174 bp),
Sweden (both WMS261-174 bp) and the US (both WMS261-
164 bp). All spelt wheats studied, except one, carried the
WMS261-174 bp allele.

We evaluated data on straw length from the test cul-
tivations performed in 1865, the cultivations from which
the seeds were taken. Data was available for 41 cultivars
and straw lengths ranged from 91 to 127 cm. We found
no correlation between straw length and the two WMS261-
genotypes, -164 bp and -174 bp (two sample t-test, df = 34, P
= 0.78). The degree of lodging was registered in the cultiva-
tion records and we note that several of the tallest accessions
suffer from lodging. Evidently, lodging was considered as a
serious problem and tall strawwas an undesirable trait.

4. Discussion

The genetic diversity at the WMS261 microsatellite has been
an important diagnostic tool for genotyping the Rht8 locus
(Table 1). Previous studies have shown three different alleles,
WMS261-174 bp, WMS261-164 bp, and WMS261-192 bp, to
be internationally widespread. The majority of the accessions

in our sample had either of the first two of these alleles. Some
of our PCR products yielded fragments that were sized a few
base pairs larger than WMS261-164 bp or WMS261-174 bp,
but in accordance with Schmidt et al. [9] we did not consider
them as distinct alleles, but a result of slippage or “stutter”.

Our choice of samples is in many ways comparable with
those of previous studies [9, 10, 15] in that it comprises of
a range of, at the time, widely cultivated and internationally
representative wheat accessions. As expected the WMS261-
164 bp and the WMS261-174 bp alleles were the most com-
mon ones (28 and 68% of the homozygotes, resp.). Our
samples were harvested some 60 years before the first use of
“Akakomugi” in crosses and the 1865 test cultivations did not
include any Japanese or Chinese accessions. It is therefore
not surprising that we do not detect the WMS261-192 bp
allele.

It has been suggested that the WMS261-174 bp allele is
linked to the Ppd-D1b allele and has been selected for in
northern Europe. However, in contrast to screens of extant
material [4, 6] we did not see the clear dominance of the
WMS261-174 bp allele in cultivars from northern Europe and
North America. In our material we found both the WMS261-
174 bp and the WMS261-164 bp alleles in wheats from a wide
range of countries and in many cases we found both alleles
in wheats from the same country. Although all the accessions
from the same country in a few cases shared the same
allele we could not distinguish any clear geographic pattern
in the distribution of the WMS261-174 bp and WMS261-
164 bp alleles. The limited number of accessions restricts
the possibility to recognize geographic patterns, but the
geographic segregation of allele types [4, 6] might actually
have arisen later during modern plant improvement, often
based on a few key cultivars. In the cultivation data for the
winter wheats flowering time (not shown) was slightly earlier
for accessions with the WMS261-174 bp than those with the
WMS261-164 bp allele (298 versus 300 days after sowing) but
not significantly (two sample t-test, df = 27, P = 0.19) and
did thus not show any clear support for linkage to Ppd-D1b.
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In addition to the two major alleles (WMS261-164 bp and
WMS261-174 bp), we found a few accessions with a 182 bp
allele. Other studies have reported alleles differing from the
three main alleles, but an allele in the 182 bp size range has
only been reported previously in a single cultivar, “Madison”
[7]. The wheats with the 182 bp allele was a Canadian wheat
and a German wheat called “Ringelblumen” and it does not
seem that they have a shared or limited origin that might
otherwise have explained why the allele has been undetected
in most previous studies. Unfortunately we lacked cultivation
data for both the accessions homozygous for the 182 bp
allele. Its correlation with a specific effect on plant height
should be worthwhile investigating to further explore the
relationship between different alleles at the WMS261 locus
and differences in plant height.

In this study, we cannot find any correlation between
genotype and plant height. The average effect of the
WMS261-174 bp allele compared to the WMS261-164 bp
allele is a reduction of 3 cm [15] and in the limited number
of accessions this effect might be too small to detect. The
test cultivations, carried out at the experimental fields of the
Royal Swedish Agricultural Academy, were also performed
in small and nonreplicated test plots, which further limit
the possibility to reveal any effects of the Rht8. However, it
is clear from the cultivation data that straw length and the
amount of lodging were traits of concern to the 19th century
plant breeders. Although Rht8 probably contributed little, if
at all, to variation in straw length, the set of cultivars of 1865
displayed a large height range.

The cultivars studied here are from the time period
when the seed industry first emerged in the Western world.
Line selections from landraces with desirable traits were
developed and multiplied to give rise to more uniform seed
materials with more predictable traits, that is, cultivars.
The most popular of these was named and described in
the contemporary literature and received both national and
international attention [23]. The major wheat cultivars of the
19th century have in some cases survived to the present in
genebank collections, and several of the cultivars genotyped
in this study can be obtained as extant material from
genebanks. Most of the cultivars studied here are, however,
long extinct. For these, samples from historical collections
provide the only possibility to study the genetic composition
of early wheat cultivars. Also for accessions still available in
genebanks, there are advantages in using historical material
instead. Concerns regarding the integrity of genebank mate-
rial have been raised [24] and the geographic distribution
of functional alleles have been shown to be much more
distinct with historical than extant material [25, 26]. The
specific nature of the historic specimens used here, that is,
large containers with thousands of seeds [22], also permits
repeated or complementary experiments.

Molecular identification of genes involved in domestica-
tion and plant improvement has recently accelerated [27, 28].
By screening the genetic diversity present and testing for
selection the individual importance of different alleles can
be explored. In the case of Rht8 its role in 20th century
wheat improvement is well known from extensive screens
and documented crossings and pedigrees. Here we can add

insight into the genetic diversity of the Rht8 during the
transition from traditional and modern agriculture, a time
less well documented and more difficult to study. The use of
historical and archaeological plant material [29] in addition
to extant plant material can in this way help to reveal a clearer
picture to the processes that formed crop plants of today.
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samheten vid Kongl.Landtbruks-Akademiens försöksfält och
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