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Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently,
the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on
fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order
to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline,
sulfamethoxazole, and trimethoprim) and essential metals (zinc, copper, manganese, and selenium) that may be found in livestock
wastes were used for the larvae exposure. Lethal (LC50) and sublethal effects were estimated. Available data in both, fish and FETAX
studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of
nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus,
this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about
micropollutants from livestock wastes on amphibians.

1. Introduction

Veterinary medicines are widely used to treat disease and to
protect animal’s health [1]. Dietary growth-enhancing feed
additives (growth promoters) are also incorporated into the
feed of animals to improve their growth rates [2]. One of the
most important problems that could occur when livestock
wastes are considered for recovery, reuse, and recycling is
the presence of biologically active substances in these wastes,
such as veterinary medicines, biocides, and additives for ani-
mal feed, which in small concentrations could have potential
toxic effects on aquatic organisms. In the present work, five
veterinary medicines and four essential metals, used as min-
eral supplements or food additives in livestock, have been
studied in acute static tests using Xenopus laevis as animal
model.

The veterinary medicines selected to carry out the tests
were ivermectin, oxytetracycline, tetracycline, sulfamethox-
azole, and trimethoprim. The last two medicines were used

maintaining the same proportions presented in the commer-
cial chemotherapy Septrin (400 mg sulfamethoxazole and
80 mg trimethoprim). These drugs were selected because
they are the most commonly used in animal husbandry with-
in their respective categories [3–6]. The four studied essential
metals were zinc (Zn), copper (Cu), manganese (Mn), and
selenium (Se). Trace concentrations of essential metals are
required in the diet for many biological processes, particu-
larly enzyme functions, and they have a positive influence on
livestock growth and reproduction [2]. Due to the low con-
tent of essential metals in some feeds compared to the recom-
mendations, supplementation of these metals is necessary for
most livestock species, and they are commonly added to daily
rations as mineral supplements (e.g., Calfostonic, Bovis).

For the study of acute toxicity in amphibians, the Frog
Embryo Teratogenesis Assay-Xenopus (FETAX) [7] is cur-
rently used. The FETAX assay is a 4-day exposure standard-
ized test with Xenopus laevis embryos from stage 8 to stage
46, according to Nieuwkoop and Faber table [8]. Over other
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nonstandardized tests, the FETAX assay has the advantage to
evaluate a large number of parameters in one study [9]. How-
ever, since it is unknown how the exposure to toxic substan-
ces in the embryonic stage may affect the sensitivity, the re-
sults obtained from FETAX test and their use for environ-
mental risk assessment has been questioned by Hoke and
Ankley [10].

Thus, one of the aims of the present study is to develop
an acute assay to compare potential sensitivities to toxicants
between larvae and embryo in X. laevis. Moreover, little is
known concerning the relative sensitivity of amphibians to
toxicants compared with other more traditional aquatic test
species, such as fish. Although there has been a substantial
amount of developmental biology research with X. laevis,
there are few toxicology data for this species compared to fish
[10]. Through the present acute larvae assay, we investigated
the possibility that risk assessment carried out on fish could
not be protective enough for other aquatic species, such as
amphibians. The results obtained could expand the existing
information on ecotoxicological effects of possible micropol-
lutants present in livestock wastes on amphibians.

2. Materials and Methods

2.1. Chemicals. Sulfamethoxazole, trimethoprim, ivermec-
tin, and triethylene glycol (99% pure) were purchased from
Sigma (Steinheim, Germany). Tetracycline (tetracycline hyd-
rate, 99% pure) was obtained from Aldrich (Milwaukee, WI,
USA). Oxytetracycline (oxytetracycline hydrochloride≥99%
pure), zinc sulphate (zinc sulphate 7-hydrate ≥99% pure)
and copper chloride (copper II chloride 2-hydrate) were pro-
vided by Panreac (Barcelona, Spain). Manganese sulfate
(manganese II sulfate monohydrate ≥99% pure) and sod-
ium selenite (sodium selenite 5-hydrate for analysis) were
purchased from Merck (Germany). Ultrapure water was ob-
tained by a Milli-Q Synthesis water purification system.

2.2. Test Organisms. Xenopus laevis tadpoles, stage 47 accord-
ing to Xenopus table of development [8], were obtained from
in-house breeding of adult animals. The adults were housed
in plastic aquaria in group of 10, with 40 L of dechlorinated
tap water. The room temperature was set at 22 ± 1◦C
under a 12 : 12 h light: dark photoperiod. Frogs were fed with
trout feed chopped pellets (REPRODUCTORES, Dibaq,
Spain) twice a week, 2-3 h before each water change. Animal
manipulation was performed in accordance with the proto-
col of American Society for Testing Materials [7]. Spawning
of adult X. laevis was induced by two injections of human
chorionic gonadotropin (hCG-LEPORI 2500, Angelini,
Italy) into the dorsal lymph sac, spaced 8 hours apart. Male
received 400 International Units (IU) of hCG at each injec-
tions. Female received 250 IU on the first injection and
800 IU on the subsequent injection. Tadpoles were changed
into fresh FETAX medium with a stainless steel strainer 5 d
postfertilization and fed daily on commercially available fish
powder dry food (SERA MICRON, Germany) ad libitum.

2.3. Toxicity Tests. All procedures were conducted under pro-
tocols approved by the Ethics Committee for animal research
of the Spanish National Institute for Agricultural and Food
Research and Technology. Preliminary range-finding exper-
iments were performed to determine the appropriate con-
centration ranges for the tested chemicals (data not shown).
Then, short-term tests (4 d) were carried out to establish
the acute lethal toxicity of tested substances and to identify
potential sublethal effects.

2.3.1. Veterinary Medicines. Tests were conducted in 52 glass
jars located in a water bath maintained at 22 ± 1◦C on a
12 : 12 h light: dark photoperiod. Jars were placed in one
4 × 13 blocks, and treatment and replicate positions were
assigned randomly. Groups of 5 larvae were exposed in each
glass jar containing 100 mL of medium solutions. All tests
were conducted with four replicates. Exposures took place in
a reconstituted water medium suitable for Frog Embryo Tera-
togenesis Assay-Xenopus, FETAX medium [11]. Tadpoles
were exposed, in a static assay, during 4 days to serial dilu-
tions of four different drugs: S + T, TC, and OTC with ini-
tial nominal concentrations of 50 and 100 mg/L, and IVE
with initial nominal concentrations of 1.075, 2.15, 4.3, 8.6,
and 17.2 μg/L. Because of limited aqueous solubility of tetra-
cycline and ivermectin, triethylene glycol was used as carrier.
In all experiments, the concentration of the solvent did not
exceed the concentration of 1.6% (v/v), according to ASTM
guidelines [7]. Larvae were checked every day for morpholo-
gical abnormalities, developmental delay, abnormality swim-
ming behaviours, and mortality, and all dead tadpoles were
counted and removed.

2.3.2. Essential Metals. Exposure conditions were the same as
described above. Jars (n = 84) were randomly placed in two
3 × 14 blocks. In this case, no SC was used. Tadpoles were
exposed to five geometrical serial dilutions of four different
compounds: zinc sulphate (ZnSO4∗ 7 H2O), copper chloride
(CuCl2∗ 2 H2O), manganese sulphate (MnSO4∗ H2O), and
sodium selenite (NaSeO3∗ 5 H2O), with the aim to achieve
the corresponding nominal concentrations of metals shown
at Table 1.

2.4. Statistical Analyses. For each sample with visually dis-
tinguishable abnormalities, probit analysis (Statgraphics 5.1,
StatPoint Technologies, INC., USA) was used to calculate
effect concentrations in 50% of the cases (ECs50) with 95%
confidence intervals. The same analysis was employed to
calculate lethal concentrations (LCs50). The significance of
the endpoints with respect to the control data was assessed
by one way analysis of variance (ANOVA), with Fisher’s least-
significant difference procedure (LSD, P < 0.05), in the
software Statgraphics 5.1.

3. Results

The embryo survival rate in the blank control (BC) and sol-
vent control (SC) reached at least 90% throughout the dura-
tion of the tests, and SC did not show any significant effects
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Table 1: Nominal concentrations (mg/L) of the four salts of metal,
used as water-soluble forms, and the corresponding nominal con-
centrations (mg/L) of the four metals considered in the current
study.

Water-soluble
form

Metal

Concentration Concentration

Zinc sulphate
7-hydrate

6

Zinc

1.36

12 2.73

24 5.46

48 10.91

96 21.83

Copper II
chloride
2-hydrate

0.6

Copper

0.22

1.2 0.45

2.4 0.89

4.8 1.79

9.6 3.58

Manganese II
sulfate
monohydrate

3.75

Manganese

1.22

7.5 2.44

15 4.88

30 9.75

60 19.50

Sodium selenite
5-hydrate

1.56

Selenium

0.47

3.12 0.94

6.25 1.88

12.5 3.75

25 7.51

on normal Xenopus development. Thus, statistical analyses
were related to BC. For tadpoles treated with OTC, TC, S + T,
and Mn, no lethal or sublethal effects were found; therefore,
LC50s values were higher than the maximum exposure con-
centrations. For tadpoles exposed to IVE, Zn, Se, and Cu, the
estimated LC50s and EC50s with their corresponding 95%
confidence intervals, the sublethal effects, and the No Ob-
served Effect Concentration (NOEC) based on sublethal effe-
cts are shown in Table 2. All tadpoles treated with IVE show-
ed hyperactivity, rapid and uncontrollable swimming move-
ments when a touch was given to the jar, at all tested concen-
trations except at the lowest one. In larvae exposed to Zn,
edema (Figure 1) was detected at all exposure times and con-
centrations, except at 96 h at the lowest concentration. Fur-
thermore, at 48 h the higher number of tadpoles with edema
was found, while at the subsequent periods edema reabsorp-
tion in some individuals was observed (Table 2). Copper pro-
voked two sublethal effects: developmental delay at 72 and 96
hours and abnormal pigmentation (whitish) in all tadpoles at
all tested concentrations.

4. Discussion

The presence of xenobiotics in aquatic ecosystem does not, by
itself, indicate injurious effects. Connections must be estab-
lished between external levels of exposure, internal levels of

A

O

Figure 1: Edema in optic and abdominal areas of X. laevis tadpole
caused by all nominal Zn exposure concentrations (2.73, 5.46,
10.91, and 21.83 mg/L), except for the lowest one (1.36 mg/L). O:
optic and A: abdominal.

tissue contamination, and early adverse effects [12]. Environ-
mental Risk Assessment (ERA) is defined as the procedure
by which the likely or actual adverse effects of pollutants
and other anthropogenic activities on ecosystems and their
components are estimated with a known degree of certainly
using scientific methodologies [13]. Environmental Risk
Assessment is currently considered the best available tool for
environmental decision making [12]. The ERA of veterinary
drugs for aquatic compartment uses the results of ecotoxico-
logical tests of three basic taxa: algae (e.g., Chlorella vulgaris),
aquatic invertebrates (e.g., Daphnia magna), and fish (e.g.,
Oncorhynchus mykiss). For years, the risk assessment carried
out on fish was considered to be protective enough to cover
other aquatic vertebrates, including amphibians. Since the
mid-1990s, the significant decline suffered by amphibian
populations has received the attention of both scientific com-
munity and popular media [14]. Several reasons have been
put forward to explain such decline, some arising directly or
indirectly from human activities, such as direct destruction
of amphibian habitats by humans or chemical pollution,
and others emerging from global and local climatic changes,
for example, fungal and bacterial infection, which may be
related to ozone depletion and an increase of ultraviolet
exposure [14–16]. Due to the peculiarities of amphibians
(combining aquatic and terrestrial phases in their life cycles,
feeding and respiration rate, permeability of the skin), their
susceptibility to contaminants in the aquatic environment
could be considered greater than other aquatic organisms
widely used in ecotoxicological tests, such as fish [17].

Environmental Risk Assessment protocols for pollutants
or complex mixtures include ecotoxicological assays with fish
to study effects of acute and chronic exposures on larval
stages or adults. In the same way, in the case of amphibians,
it would be particularly important to know the acute and
chronic effects at different stages of development caused by
biologically active substances such as biocides and veterinary
medicines. Moreover, the lack of standardized toxicity tests
with amphibians and the subsequent limitations in high-
quality toxicology data for either prospective or diagnostic
assessment continue to be a problem and often prevent the
inclusion of amphibians in ERAs. The novel aspect of the
current study lies in the use of an ecotoxicological assay with
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Table 2: Endpoints studied at each exposure time for ivermectin (IVE), zinc (Zn), copper (Cu), selenium (Se). Lethal and effect concentra-
tions in the 50% of the cases (EC50 and LC50) were shown at 24, 48, 72 and 96 hours. At each exposure time, the EC50 values were related to
the corresponding sublethal effect. For the water-soluble forms of the metals: zinc sulphate (ZnSO4∗ 7 H2O) and sodium selenite (NaSeO3∗
5 H2O) the 96 h LC50 were reported, and for copper chloride (CuCl2∗ 2 H2O) both 48 h and 96 h LC50s were showed.

Substance Exposure
time (hours)

LC50 (mg/L) 95% confidence
intervals (mg/L)

EC50 (mg/L)
95% confidence
intervals (mg/L)

NOECa (mg/L) Sublethal effect

IVE

24 6.4 ∗ 10−3 >1.1 ∗ 10−3

<2.1 ∗ 10−3 hyperactivity

48 5.6 ∗ 10−3 4.7 ∗ 10−3–6.6 ∗ 10−3 >1.1 ∗ 10−3

<2.1 ∗ 10−3 hyperactivity

72 5.5 ∗ 10−3 4.6 ∗ 10−3–6.6∗10−3 >1.1 ∗ 10−3

<2.1 ∗ 10−3 hyperactivity

96 5.5 ∗ 10−3 4.6 ∗ 10−3–6.6 ∗ 10−3 >1.1 ∗ 10−3

<2.1∗10−3 1.1 ∗ 10−3 hyperactivity

Zn

24 14.0 12.0–16.8 7.4 3.6–12.3 edema

48 13.4 11.3–16.1 4.5 2.6–6.3 edema

72 13.4 11.3–16.1 7.6 5.1–11.2 edema

96 12.8 10.8–15.6 8.5 6.4–12.0 1.4 edema

ZnSO4∗ 7 H2O 96 56.4 47.4–68.7

Cu

24 1.3 0.6–2.0 >3.6
developmental

delayb

48 0.9 0.3–1.3 >3.6
developmental

delay

72 0.9 0.3–1.3 0.4 0.4-0.5
developmental

delay

96 0.9 0.3–1.3 0.4 0.4-0.5 <0.2 developmental
delay

CuCl2∗ 2 H2O 48 2.4 1–3.7

96 2.3 0.8–3.6

Se

24 4.1 no detectable
effect

48 4.1 no detectable
effect

72 2.2 no detectable
effect

96 1.9 no detectable
effect

NaSeO3∗ 5 H2O 96 6.2
a
Based on sublethal effects observed at 96 hours.

bApart from developmental delay at 72 and 96 hours, copper provoked and abnormal pigmentation (whitish) in all tadpoles at all tested concentrations
(EC50 < 0.22 mg/L).

larvae stage of X. laevis, a not commonly used age stage, to
compare the effects of acute exposures caused by biologically
active substances with data obtained from FETAX or fish
assays.

Concerning sensitivity to metals and organic contamin-
ants to facilitate their use as bioindicators of pollution stress,
early-life-stage toxicity tests were used by Birge [18] to classi-
fy 25 amphibian species as very sensitive, sensitive, moder-
ately tolerant, or tolerant in comparison with the rainbow
trout (Oncorhynchus mykiss), a sensitive benchmark species
commonly used in toxicity criterion development. Xenopus
laevis resulted to be one of the most tolerant species. Never-
theless, in the present study, X. laevis was selected as animal
model for amphibians, since it is cultured and handled easily

in laboratory setting, and there is a relatively wide knowledge
in its developmental biology [10]. Combining data for all
taxa studied by Birge [18] (on Table 3 were reported the most
interesting LC50 values), based on 573 point-to-point com-
parisons between amphibian and fish LC50 values, amphib-
ians were more sensitive than fishes in 386 (67%) of 573
cases. Table 3 shows the differences in metal sensitivity
among selected amphibian species, as well as fish. Compar-
isons against Table 3 and the results of the current study
(Table 2) demonstrate that X. laevis was not always the most
tolerant species. For example, X. laevis was more sensitive
than largemouth bass (Micropterus salmoides) to lethal effects
of Se, but was in the same range of sensitivity than goldfish
(Carassius auratus) and rainbow trout. In the same way,
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Table 3: 96 h lethal concentration in the 50% of the cases (LC50,
mg/L) for early-life-stage amphibians and fish exposed to copper
(Cu), zinc (Zn), selenium (Se) and manganese (Mn). (Source: [18]).

Species
LC50

Cu Zn Se Mn
Rana catesbeiana 0.02 0.08 0.07
Gastrophryne carolinensis 0.02 0.01 0.09 1.42
Rana palustris 0.02 0.08 0.07
Rana pipiens 0.05 0.05 0.14 318
Pseudacris crucifer 0.05
Ambystoma barbouri 0.25 0.56
Ambystoma jeffersonianum 0.37 1.00
Ambystoma texanum 0.38 1.08
Ambystoma maculatum 0.48 1.15
Ambystoma tigrinum 0.50 2.00
Ambystoma opacum 1.63 2.31
Bufo fowleri 27.0 87.0 19.80
Oncorhynchus mykiss 0.09 1.06 5.17 2.91
Micropterus salmoides 6.68 5.18 114 25.60
Carassius auratus 5.20 2.52 8.91 10.40
Ictalurus punctatus 6.62 0.24 0.24

X. laevis was more sensitive than fish (except for O. mykiss),
and other amphibians (Ambystoma opacum and Bufo fow-
leri), to lethal effects of Cu. In addition, for Zn exposure,
X. laevis was more sensitive than B. folweri. Moreover, con-
sidering the salt and taking into account the study of Buhl
and Hamilton [19] where the 96 h LC50 on rainbow trout for
NaSeO3 was 118 mg/L, the species used in the current assay
was an order of magnitude more sensitive than fish to lethal
effects of NaSeO3 (Table 2). On the contrary, for the same
substance, there were no significant differences between the
96 h LC50 on gastrula stage of X. laevis (2.3 mg/L) [20] and
the calculated value obtained in the present study for larvae
(Table 2). In the same way, LC50s for OTC (>100 mg/L) and
MnSO4 (60 mg/L) showed negligible toxicities, which were in
the same range of the reported ones on rainbow trout by
Office of Pesticide Programs (>116 mg/L) [21] and Davies
(116 mg/L) [22], respectively. In the current study, the 48 h
LC50 for CuCl2 was 2.45, while, according to data from Office
of Pesticide Programs [23], on rainbow trout it was
0.01 mg/L; thus, O. mykiss is clearly more sensitive than
X. laevis. Nevertheless, in comparison with FETAX assay, the
toxicity of CuCl2 in Xenopus larva (Table 2) was close to the
highest value of 96 h LC50 found by Buchwalter [24], which
ranged between 0.042 and 1.180 mg/L. Published data for
toxicity of ZnSO4 exist for a variety of fish species and amphi-
bians. For example, Alsop and Wood [25] reported a 96 h
LC50 value of 2.615 mg/L on rainbow trout, while in X. laevis
blastula the 96 h LC50 value was 3.6 mg/L [26]. Thus, the 96 h
LC50 of 56.44 mg/L for ZnSO3, obtained in the present study,
showed that X. laevis sensitivity was lower than one order of
magnitude compared with FETAX and fish assays. The iver-
mectin LC50 for X. laevis tadpoles was in the same range of
fish and at least 100-fold less than are Daphnia. In fact, the
96 h LC50 for ivermectin on rainbow trout is 3.3 μg/L and the

48 h LC50 value for D. magna is 25 ng/L [27]. Due to iver-
mectin mechanism of action, Daphnia has been determined
to be the most sensitive laboratory indicator organism [27].

The available data about acute effects in FETAX assay are
generally more protective than the values found out in the
current study for X. laevis 47 stage larvae, but previous data
derived from fish assays could not be always enough pro-
tective. For example, X. laevis larvae exposed to NaSeO3

showed a higher sensitivity than rainbow trout [19]
(Table 2). In addition, the presence of no-lethal effects caused
by IVE, Zn, and Cu suggested that these substances have
been able to cause an organism response. For example, larvae
affected by Cu were underdeveloped and colourless, while
IVE impaired their locomotion and orientation. Similar
effects could be problematic in natural environments by
increasing the susceptibility of larvae to predation, as
reported by Yuan [28] for the whitish caused by triphenyltin
exposure, or reducing foraging success resulting in decreased
grown and development. Changes in cognitive and psycho-
motor function, such as the hyperactivity induced by IVE, are
commonly related to toxic neuropathy [29], while renal dys-
function, or more generally, an alter metabolism, could have
caused the edema in the animals exposed to Zn (Figure 1).

Based on the studies, FETAX assay appears to be useful in
ecotoxicological hazard assessment, but fish assays might be
not always protective enough for amphibian. Moreover, data
from several studies indicate that late-stage amphibian larvae
may be more sensitive to some chemical than traditional aqu-
atic bioindicators [30], as occurred in the present study for
metals, and for those species of amphibians that spend their
entire life cycle in water (e.g., Pipidae, Cryptobranchidae),
larval exposure would be more accurate than FETAX assay
[18]. It is necessary to highlight the need to study and prevent
amphibian species. The presence of sublethal effects caused
by different compounds should be investigated considering
other endpoints that may affect several physiological mech-
anisms in a sublethal pattern, such as immunotoxicity, or a
wider range of animal larvae stages.
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