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The electric excitation and the parameter excitation from mesh stiffness fluctuation are analyzed. The forced response equations
of the drive system to the coupled excitations are presented. For the exciting frequencies far from and near natural frequencies, the
forced responses of the drive system to the coupled excitations are investigated. Results show that the nonlinear forced responses of
the drive system to the coupled excitations change periodically and unsteadily; the time period of the nonlinear forced responses
depends on the frequencies of the electric excitation, the mesh parameter excitation, and the nonlinear natural frequencies of the
drive system; in order to improve the dynamics performance of the drive system, the frequencies of the electric excitations should
not be taken as integral multiple of the mesh parameter exciting frequency.

1. Introduction

Toroidal drive can transmit large torque in a very small
size and is suitable for technical fields such as aviation and
space flight [1–3]. As electrical and control techniques are
utilized in mechanical engineering field widely, generalized
composite drives become advancing edge of the mechanical
science. So far, types of the generalized composite drives with
integrated structure are still very limited.

The electromagnetic harmonic drive [4] and piezoelec-
tric harmonic drive [5] are active drives in which the meshing
forces between flexible gear and rigid one are controlled by
electromagnetic force or piezoelectric one, and drive and
power are integrated. Based on researching toroidal drive [6],
the authors presented a kind of active generalized composite
drive: electromechanical integrated toroidal drive. In the
drive, the toroidal drive, power, and control are integrated
[7].

The drive consists of four basic elements (Figure 1) (a)
the central worm, (b) radially positioned planets, (c) a
toroidal shaped stator, and (d) a rotor, which forms the
central output shaft upon which the planets are mounted.
The central worm is fixed and coils are mounted in helical
grooves of its surface. The planets have permanent magnets

instead of teeth. The N and S polar permanent magnets
are mounted alternately on a planet. And the stator has
helical permanent magnets instead of helical teeth. In the
same manner as planet, the N and S polar helical permanent
magnets are mounted alternately on the stator.

If a specific parameter relation is realized, N pole of one
element will correspond to S pole of the other one all along.
The attractive forces between N and S pole of the different
elements are driving forces and the meshes without contact
are realized. When the alternating voltage source is connected
to the coils of the worm, a toroidal circular field is formed. It
drives several planets to rotate about their own axial. And
by means of magnetic forces between teeth of the planet and
stator, the rotor is driven to rotate about its own axial. Thus,
a power of low speed and large torque is output.

Compared with toroidal drive, the new drive is easy to
produce, without wear, and does not need lubrication. It can
be substituted for a servo system to simplify the structure
of the existing electromechanical systems. Beside the above-
mentioned fields that require compactness, the drive can be
used in fields such as robots, which require accurate control.

The electromechanical integrated toroidal drive consists
of a mechanical system, an electrical system and a coupled
part. The mechanical vibration may occur in the mechanical
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Figure 1: The electromechanical integrated toroidal drive.

system, and the electrical current oscillation may occur in
the electrical system. With the coupled part, the mechanical
vibration and the electrical current oscillation will influence
on each other. Hence, the drive system is an electromechani-
cal coupled dynamics system. The electromechanical coupled
dynamics was first proposed for the motor [8]. Then, the
electromechanical coupled dynamics of the electromechan-
ical system consisting of the motor and mechanical system
driven by the motor was developed. An electromechanical
coupled dynamics model of the electromechanical system
consisting of the several motors and mechanical system
driven by these motors was proposed. Using the model,
the natural frequency of the electromechanical system is
analyzed [9]. The authors investigated nonlinear forced
response of electromechanical integrated toroidal drive to
voltage excitations [10]. However, not only the electric exci-
tation occurs, but also the parameter excitations from mesh
stiffness fluctuations occur. The nonlinear forced responses
of the drive system to the coupled excitations consisting of
the electric excitation and the parameter excitations have
not been investigated yet. These nonlinear forced responses
have important influence on the operating performance of
the drive system. To design, evaluate, and control dynamics
behavior of the drive system effectively, the nonlinear forced
responses of the drive system to the coupled excitations
should be developed.

In this paper, the electric excitation and the parameter
excitation from mesh stiffness fluctuation are analyzed. The
forced response equations of the drive system to the coupled
excitations are presented. For the exciting frequencies far
from and near natural frequencies, the forced responses of
the drive system to the coupled excitations are investigated.
The work can be used to predict the noise and dynamic load
and are useful in maximizing the power density of the drive
and reducing noise radiation.

2. Electric Excitation of the Drive System

The magnetic energy storage of the electric system for the
drive system is

W = 1
2

n∑

i=1

λisIis, (1)

where λis is magnetic linkage of the worm coils, λis =∑n
j=1 Li jIis, Li j is inductances of the ith phase worm coils, Iis

is current of the ith phase worm coils, and n is phase number
of the worm coils.

From (1), the electromagnetic torque on the planet is
given as

Tp = −∂W

∂θ
= −1

2

n∑

j=1

n∑

i=1

dLi j
dθ

IisI js, (2)

where θ is the relative rotating angle between planet and
worm.

The torque Tp consists of the static torque Tp0 and the
dynamic torque δTp. The current Iis consists of the static
component Ii and the dynamic one δii. The angle θ consists
of the static angle θ0 and the dynamic angle δθ. The torque
Tp is written in series form as

Tp = Tp0 + δTp

= 1
2

n∑

j=1

n∑

i=1

[(
δLi j
δθ

)

θ=θ0

IiI j +

(
δ2Li j
δθ2

)

θ=θ0

IiI jδθ

+

(
δ3Li j
δθ3

)

θ=θ0

IiI j(δθ)2 +

(
δLi j
δθ

)

θ=θ0

Iiδi j

+

(
δLi j
δθ

)

θ=θ0

I jδii +

(
δLi j
δθ

)

θ=θ0

Ii
(
δi j
)2

+

(
δLi j
δθ

)

θ=θ0

I j(δii)
2 + · · ·

]
.

(3)

If δi j = δii = 0, from (3), one can give

Tp0 = 1
2

n∑

j=1

n∑

i=1

(
δLi j
δθ

)

θ=θ0

IiI j , (4)

δTp = 1
2

n∑

j=1

n∑

i=1

[(
δ2Li j
δθ2

)

θ=θ0

IiI jδθ

+

(
δ3Li j
δθ3

)

θ=θ0

IiI j(δθ)2 + · · ·
]
.

(5)

Let ΔFwpi denote the dynamic magnetic meshing force
between a planet tooth and worm, ΔFwpi = δTp/R. From (5),
neglecting the high-order terms, one knows.

ΔFwpi=−Rδθ2R2

n∑

i=1

n∑

j=1

[(
δ2Li j
δθ2

)

θ=θ0

IiI j+

(
δ3Li j
δθ3

)

θ=θ0

IiI jδθ

]
.

(6)
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Here, ζwpi = Rδθ; it is the dynamic relative displacement
between planet and worm. Thus, (6) can be changed into the
following form:

ΔFwpi =
(
kwpi + Δkwpi

)
ζwpi. (7)

Here, kwpi = (1/2R2)
∑n

i=1

∑n
i=1(δ2Li j /δθ2)

θ=θ0
IisI js, it

is considered as linear electromagnetic mesh stiffness
between a tooth of the planet and worm; Δkwpi =
−(1/2R2)

∑n
i=1

∑n
j=1(δ3Li j /δθ3)θ=θ0

IiI jδθ, it is nonlinear
component of the electromagnetic mesh stiffness.

Equation (3) shows that current fluctuation can produce
electromagnetic torque fluctuation. The torque fluctuation
from current fluctuation can be considered as equivalent
exciting torque ΔTe. Let the current periodically change as
below:

δii = δi j = ΔI cos(ωet), (8)

where ΔI is the magnitude of the fluctuation current, ωe is
the frequency of the fluctuation current, and t is time.

Substituting (8) into (3), neglecting high-order terms,
yields

ΔTe =
n∑

j=1

n∑

i=1

(
δLi j
δθ

)

θ=θ0

IiΔI cosωet. (9)

Let ΔFe denote the equivalent exciting force between a
planet tooth and worm; thus

ΔFe = 1
R

n∑

j=1

n∑

i=1

(
δLi j
δθ

)

θ=θ0

IiΔI cosωet. (10)

3. Parametric Excitation from
Stiffness Fluctuation

In operation of the drive system, the number of meshing
tooth pairs between the worm and the planets is variable.
It can cause fluctuation of the mesh stiffness between them.
It is dependent on the number z1 of planet teeth and the
conditional face angles of the worm φv. At φv = 100◦ and
z1 = 8, the changes of mesh stiffness along with the mesh
tooth pair number are shown in Figure 2. In Figure 2, a
typical stiffness variation through a mesh cycle of the drive
system is given. The mesh stiffness at more contact regions is
higher than that at less contact regions. If the drive rotates at
appreciable speed, this time-varying stiffness will be a major
excitation source of the drive system.

The mesh stiffness between a planet and worm is
considered to consist of its mean value k and time-varying
one Δk(t). The average mesh stiffness between them through
one periodic time can be given by

kwpi = 4
π

{∫ π/36

0
k3dθ +

∫ 2π/9

π/36
k2dθ +

∫ π/4

2π/9
k3dθ

}
, (11)

where k2 = 2(kwpi +Δkwpi) and k3 = 3(kwpi +Δkwpi); they are
two and three teeth mesh stiffness, respectively.

k

k3

k2

θ0 5◦ 50◦40◦ 45◦

Figure 2: Changes of the mesh stiffness.

The periodical time-varying portion of the mesh stiffness
can be defined in the Fourier series form as

Δk(t) =
∞∑

n=1

Δkn cosnωpt, (12)

where Δkn = (2/l)
∫ l

0 k(t)ωp cosnωptdt, l is the period of the
stiffness fluctuation. In Figure 2, l = π/4.

For worm and planet, the periodical time-varying por-
tion of the mesh stiffness is

Δknwpi = 2
l

{∫ π/36

0

(
k3 − kwpi

)
ωp cosnωptdt

+
∫ 2π/9

π/36

(
k2 − kwpi

)
ωp cosnωptdt

+
∫ π/4

2π/9

(
k3 − kwpi

)
ωp cosnωptdt

}

= 8
π

[(
k3 − kwpi

)(
sin

π

36
+ sin

π

4
− sin

2π
9

)

+
(
k2 − kwpi

)(
sin

2π
9
− sin

π

36

)]
.

(13)

Substituting (13) into (12) yields

Δkwpi(t) =
∞∑

n=1

Δknwpi cosnωt. (14)

4. Forced Response Equation to
Coupled Excitation

The dynamic model for the electromechanical integrated
toroidal drive (see Figure 3) allows rotor and each planet to
rotate about their own rotating axes and allows each planet
to translate in xi and zi directions. The rotations are replaced
by the corresponding translational mesh displacements as
uj = r jθj , j = 1, . . . ,m, r (here, m is planet number, θj the
rotation of planet or rotor, r j is the rolling circle radius for
planet and the radius of the circle passing through planet
centers for the rotor). A displacement vector q j and a mass

matrix m j are defined for each planet j as q j = [uj xj z j]
T

and m j = Diag[J j /r2
j mj mj]. Here, J j and mj are polar
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mass moment of inertia and mass for planet j, respectively.
Mr(Mr = Jr /r2

r ) is equivalent mass of rotor corresponding to
its displacement ur . Thus, the motion equations of the drive
system are

Ji
r2
i

üi +
(
kwpi + Δkwpi

)
pwpi sin γwpi

+ ΔFe sin γwpi − kspi pspi cos γspi = 0,

miẍi + kcpxixi = 0,

miz̈i −
(
kwpi + Δkwpi

)
pwpi cos γwpi

− ΔFe cos γwpi − kspi pspi sin γspi + kcpzi pcpzi = 0,

Mrür −
m∑

i=1

kcpzi pcpzi = −Tr

rr
(i = 1 to m),

(15)

where pwpi, pspi and pcpzi are relative displacements between
planet-i and worm, stator, or rotor, respectively, pwpi =
ui sin γwpi − zi cos γwpi, pspi = −ui cos γspi − zi sin γspi and

pcpzi = zi − ur . γwpi and γspi are lead angles at contact points
between planet-i and worm or stator, respectively, tan γwpi =
1/[iwp(a/R − 1)], and tan γspi = 1/[isp(a/R + 1)]. Here, a
is center distance between worm and planet R is reference
circle radius of planet iwp and isp are speed ratios between
planet and worm or stator, respectively. kwpi and kspi are mesh
stiffness between planet-i and worm or stator, respectively,
kczi and kcxi are planet support stiffness in zi and xi directions,
respectively, and Tr is torque transmitted by rotor.

Equation (15) can be written in matrix form as

MẌ + KX = F + εΔF + εΔFe, (16)

where X and F are displacement and static load vectors;
respectively,

X = {q1 · · · · · · qm ur}T ,

F = {0 · · · · · · 0 − Tr/rr}T ;

M and K are mass and stiffness matrix, respectively,

M = diag[m1 · · · · · · mm Mr],

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kwp1 + ksp1 + kcp1 · · · 0 · · · 0 kc1

·
·
·

·
·
·

· · ·
· · ·
· · ·

·
·
·

·
·
·

kwpi + kspi + kcpi · · · · kci

·
·
·

·
·
·

·
·
·

kwpm + kspm + kcpm kcm

symmetric
m∑

i=1
kczi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

kwpi = kwpi

⎡
⎢⎣

sin2γwpi 0 − cos γwpi sin γwpi

0 0 0
− cos γwpi sin γwpi 0 co s2γwpi

⎤
⎥⎦,

kspi = kspi

⎡
⎢⎣

co s2γspi 0 sin γspi cos γspi
0 0 0

sin γspi cos γspi 0 sin2γspi

⎤
⎥⎦,

kcpi =
⎡
⎢⎣

0 0 0
0 kcxi 0
0 0 kczi

⎤
⎥⎦, kci =

{
0 0 −kczi

}T
.

(17)

ΔF is nonlinear component of the force vector, ΔFe is
equivalent force vector caused by current fluctuation:

Consider

ΔF =
(
Bu2

i + Cu3
i

)[
− sin γwpi 0 cos γwpi − sin γwpi 0 cos γwpi · · · 0

]T
, ui = Rδθ, ε = r

R
, (18)
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it is a disturbing parameter, B = z1
∑m

i=1

∑m
j=1 A tan(z1θ −

φv/np)IiI j /2Rr, C = −z2
1

∑m
i=1

∑m
j=1 AIiI j /2Rr.

ΔFe = D cos(ωet)
[

sin γwpi 0 cos γwpi sin γwpi 0 cos γwpi sin γwpi 0 cos γwpi · · · 0
]T

,

D = 1
2R

n∑

i=1

n∑

j=1

(
∂Li j
∂θ

)

θ=θ0

IiΔI.

(19)

The total displacement of the each component consists
of the static displacement and the dynamic one. Hence, the
displacement vector is

X = X + ΔX, (20)

where X and ΔX are static and dynamic displacement
vectors; respectively,

ΔX =
{
Δq1 · · · · · · Δqm Δur

}T
,

Δq j =
[
Δuj Δxj Δzj

]T
.

(21)

Considering the fluctuation of the mesh stiffness caused
by the changes of the mesh tooth pair number, the stiffness
matrix can be expressed as

K = K + ΔK(t), (22)

where K is the mean stiffness matrix, and ΔK(t) is time-
varying stiffness matrix.

Substituting (20)–(22) into (16) yields

K X = F, (23)

MΔẌ + KΔX = εΔF + εΔFe + εΔFp, (24)

where ΔFp = −EΔK(t)X; it is considered as the equivalent
exciting force vector caused by mesh stiffness excitation; E =
R/r.

Equation (24) is just the forced response equation of the
drive system to coupled excitation.

5. Solution of the Nonlinear Forced
Response Equation

5.1. Far from Natural Frequencies. First, we consider to
resolve the nonlinear forced response equation of the drive
system to electric excitation (let ΔFp = 0).

For simplicity purposes, (24) should be transmitted into
equations independent on each other. Then, (24) is changed
into the following form:

ΔẌN + KNΔXN = εΔFN + εΔFeN , (25)

where KN is the diagonal mean stiffness matrix, respectively.
ΔXN is transmitted dynamic displacement vector. ΔFeN and

ΔFN are transmitted exciting force vectors of the forces ΔFe

and ΔF, respectively.
Matrix KN and vector ΔXN are given by KN = AT

NKAN

and ΔXN = AT
NΔX. The transmitted nonlinear force vector

ΔFN and transmitted equivalent exciting force vector ΔFeN

can be given as below:

ΔFN = AT
NΔF =

(
Bu2

i + Cu3
i

)
ΔPN ,

ΔFeN = εD cos(ωet)ΔPeN ,
(26)

where AN is the mode matrix of (24):

AN =

⎡
⎢⎢⎢⎢⎣

A(1)
1 A(1)

2 · · · A(1)
m

A(2)
1 A(2)

2 · · · A(2)
m

· · · · · · · · · · · ·
A(m)

1 A(m)
2 · · · A(m)

m

⎤
⎥⎥⎥⎥⎦
. (27)

At m = 3, ΔPN = [PN1 PN2 · · · PNi · · · ]T , PNi =
−3Ai

N1 sin γwpi + 3Ai
N3 cos γwpi (i = 1, 4, . . . , 3m − 2), PNi =

0 (i = 2, 3, . . . , 3m + 1, i /= 1, 4, . . . , 3m − 2); ΔPeN =
[PeN1 0 0 PeN2 0 0 PeN3 0 0 0]T , PNe= 3Ai

N1 sin γwpi +
3Ai

N3 cos γwpi (i=1, 4, . . . , 3m−2), PNei = 0 (i = 2, 3, . . . , 3m+
1, i /= 1, 4, . . . , 3m− 2).

Let

ΔXN = X0 + εX1 + ε2X2 + · · · , (28)

ω2
i = ω2

0i

(
1 + εσi1 + ε2σi2 + · · ·

)
(i = 1, 2, 3), (29)

where ωi is natural frequency of ith order mode for the
nonlinear drive system, and ω0i is natural frequency of ith
order rotational mode for the linear drive system.

Substituting (28) and (29) into (25), let sum of the
coefficients with the same-order power of the parameter ε
equal zero, following equations can be given

ẍN0 + ω2
i xN0 = 0,

ẍN1 + ω2
i xN1 = −σ1ẍN0 + PNBu

2
0i + PNCu

3
0i + D cos(ωet)PNe

ẍN2 + ω2
i xN2 = −σ1ẍN1 − σ2ẍN0 + PNB

(
2u0iu1i + σ1u

2
0i

)

+ PNC
(

3u2
0iu1i + σ1u

3
0i

)
+ Dσ1 cos(ωet)PNe

. . . .
(30)
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Figure 3: Dynamic model for a four-planet electromechanical
integrated toroidal drive.

Here, initial conditions are xiN0(0) = Ai
N0, ẋiN0(0) = 0.

The solution of zero-order equation under the above
initial conditions is

xi0 = Ai
0 cosωit (i = 1, 2, 3). (31)

Substituting (31) into the second equation of (30) yields

ẍ1
N1 +ω2

1x
1
N1=−σ1

1 ẍ
1
N0 +PN1Bu

2
0i+PN1Cu

3
0i+D cos(ωet)PNe,

ẍ2
N1 +ω2

2x
2
N1=−σ2

1 ẍ
2
N0 + PN2Bu

2
0i+PN2Cu

3
0i+D cos(ωet)PNe,

ẍ3
N1 +ω2

3x
3
N1=−σ3

1 ẍ
3
N0 +PN3Bu

2
0i+PN3Cu

3
0i+D cos(ωet)PNe.

(32)

The rotational displacement ui is

ui = A1
N1x

1
Ni + A2

N1x
2
Ni + A3

N1x
3
Ni. (33)

Substituting (33) into (30) yields

ẍ1
N1 + ω2

1x
1
N1

= −σ1
1 ẍ

1
N0 + PN1B

(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)2

+ PN1C
(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)3

+ D cos(ωet)PNe1

ẍ2
N1 + ω2

2x
2
N1

= −σ2
1 ẍ

2
N0 + PN2B

(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)2

+ PN2C
(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)3

+ D cos(ωet)PNe2,

ẍ3
N1 + ω2

3x
3
N1

= −σ3
1 ẍ

3
N0 + PN3B

(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)2

+ PN3C
(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)3

+ D cos(ωet)PNe3.

(34)

In order to remove secular item, let

σ1
1 = −

PN1C

ω2
1

×
[

3
4

(
A1
N1A

1
N0

)3
+

3
2

(
A2
N1A

2
N0

)2
A1
N1A

1
N0

+
3
2

(
A3
N1A

3
N0

)2
A1
N1A

1
N0

]
,

σ2
1 = −

PN2C

ω2
2

×
[

3
4

(
A2
N1A

2
N0

)3
+

3
2

(
A1
N1A

1
N0

)2
A2
N1A

2
N0

+
3
2

(
A3
N1A

3
N0

)2
A2
N1A

2
N0

]
,

σ3
1 = −

PN3C

ω2
3

×
[

3
4

(
A3
N1A

3
N0

)3
+

3
2

(
A2
N1A

2
N0

)2
A3
N1A

3
N0

+
3
2

(
A1
N1A

1
N0

)2
A3
N1A

3
N0

]
.

(35)

Substituting (35) into (34), the solutions of the first-
order equations can be obtained. As the equations of the
solutions are relatively complicated, it is not given here.

In a same manner, the solution of nth order equation can
be obtained as well. Substituting these solutions into (28) and
(29), the solutions of the regular nonlinear forced response
equations and natural frequencies of the drive system can
be given. Then, the real solutions of the nonlinear forced
responses can be calculated as below:

ΔX = ANΔXN . (36)

5.2. Near Natural Frequencies. When the exciting frequency
is near natural frequency, the nonlinear forced response
equation can be resolved as below. Considering damping of
the drive system, (25) can be changed into

ΔẌN + CNΔẊN + KNΔXN = εΔFN + εΔFeN , (37)
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where CN is regular damping matrix, CN = AT
NCAN =

diag[CN1 CN2 CN3 CN4] (C is damping matrix). CNi =
2ζωi, ζ is relative damping coefficient.

When exciting frequency is near natural frequency, the
exciting frequency can be written as

ω2
ei = ω2

0i

(
1 + εσi1

)
(i = 1, 2, 3). (38)

Substituting (38) and (28) into (37), let sum of the
coefficients with the same-order power of the parameter ε
equal zero, the following equations can be given:

Ẍ0 + KNX0 = 0,

Ẍ1 + KNX1 = −σi1Ẍ0 − 2ζ1Ẋ0

+ ΔPN

(
Biu

2
i + Ciu

3
i

)
+ ΔPeNDi cos(ωeit + θ)

· · · ,
(39)

where CNi = 2ζωi,

ζ = εζ1,

ω2
ei = ω2

i (1 + εσ1),

ΔxNi = xN0i + εxN1i,

B = Biω
2
i ,

C = Ciω
2
i ,

D = Diω
2
i .

(40)

The solution of zero-order equation under the above
initial conditions is

xiN0 = Ai
N0 cosωeit (i = 1, 2, 3). (41)

Substituting (41) into the second equation of (43) yields

ẍ1
N1 + ω2

e1x
1
N1 = − σ1ẍ

1
N0 − 2ζ1ẋ

1
N0 + PN1B1u

2
01 + PN1C1u

3
01

+ D1PNe1 cos(ωe1t + θ),

ẍ2
N1 + ω2

e2x
2
N1 = − σ1ẍ

2
N0 − 2ζ1ẋ

2
N0 + PN2B2u

2
01 + PN2C2u

3
01

+ D2PNe2 cos(ωe2t + θ),

ẍ3
N1 + ω2

e3x
3
N1 = − σ1ẍ

3
N0 − 2ζ1ẋ

3
N0 + PN3B3u

2
01 + PN3C3u

3
01

+ D3PNe3 cos(ωe3t + θ).
(42)

Substituting rotational displacement ui = A1
N1x

1
Ni +

A2
N1x

2
Ni + A3

N1x
3
Ni into (42) yields

ẍ1
N1 + ω2

e1x
1
N1

=−σ1ẍ
1
N0−2ζ1ẋ

1
N0 +PN1B1

(
A1
N1x

1
N0 +A2

N1x
2
N0 +A3

N1x
3
N0

)2

+ PN1C1

(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)3

+ D1PNe1(cosωe1t cos θ + sinωe1t sin θ),

ẍ2
N1 + ω2

e2x
2
N1

=−σ1ẍ
2
N0−2ζ1ẋ

2
N0 +PN2B2

(
A1
N1x

1
N0 +A2

N1x
2
N0 +A3

N1x
3
N0

)2

+ PN2C2

(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)3

+ D2PNe2(cosωe2t cos θ + sinωe2t sin θ),

ẍ3
N1 + ω2

e3x
3
N1

=−σ1ẍ
3
N0−2ζ1ẋ

3
N0 +PN3B3

(
A1
N1x

1
N0 +A2

N1x
2
N0 +A3

N1x
3
N0

)2

+ PN3C3

(
A1
N1x

1
N0 + A2

N1x
2
N0 + A3

N1x
3
N0

)3

+ D3PNe3(cosωe3t cos θ + sinωe3t sin θ).
(43)

In order to remove secular item, let

σ1
1A

1
N0 + PN1C1A

1
N0P

′
1 + D1PNe1 cos θ = 0,

2ζ1A
1
N0 + D1PNe1 sin θ = 0,

(44)

whereP′1=(1/A1
N0)[(3/4)(A1

N1A
1
N0)

3
+(3/2)(A2

N1A
2
N0)

2
A1
N1A

1
N0+

(3/2)(A3
N1A

3
N0)

2
A1
N1A

1
N0].

From (44), it is known that

(
σ1

1 + PN1C1P
′
1

)2
+ (2ζ1)2 =

(
D1PNe1

A1
N0

)2

. (45)

Thus

s2
i = 1− εPNiCiP

′
i − 2ζ2

±
√√√√
(

D′i
Ai
N0

)2

− 4ζ2
(
1− εPNiCiP

′
i − ζ2

)
,

(46)

where si = ωei/ωi and D′i = εDiPNei.
From (46), the changes of the nonlinear vibrating

magnitudes along with exciting frequencies can be given.

6. Results and Discussions

When exciting frequency is far from natural frequency, from
the above equations, the nonlinear forced vibrations for the
drive system are analyzed. The parameters of the numerical
example are shown in Table 1. Figure 4 shows changes of
the forced vibrations of the transmitted variables along with
nonlinear parameter ε. From Figure 4, the following are
known.



8 The Scientific World Journal

Table 1: Parameters of the example system.

ε ωe (rad/s) a/R iwpi NIs (A) r (mm) I (A) C D R (mm) z1 L (H)

0.25 1000 2 8 100 25 180 8707.2 −0.00066 100 8 1× 10−3
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Figure 4: Nonlinear forced vibration to coupled excitations far from natural frequencies.

(1) Under the coupled excitations, the nonlinear forced
responses of the drive system change periodically and
unsteadily. The time period of the nonlinear forced
responses depends on the frequencies of the electric
excitation the mesh parameter excitation, and the
nonlinear natural frequencies of the drive system.

(2) The vibrating amplitudes of the nonlinear forced
responses of the drive system to the coupled excita-
tions are larger than those of the nonlinear forced
responses to the single excitation. The vibrating
amplitudes of the nonlinear forced responses of the
planet are larger than that of the rotor. It is because

the exciting frequencies are near to the vibrating
frequency of the planet modes.

(3) The vibrating amplitudes of the tangent vibration for
the planet are larger than that of the axial vibration
for the planet, and the frequency of the tangent
vibration for the planet is smaller than that of the
axial vibration for the planet.

(4) The unstable periodic vibrations are harmful for the
drive operation. In order to increase the dynamics
performance of the drive system, the electric exci-
tations should be avoided or the frequencies of the
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Figure 5: Nonlinear forced vibration to coupled excitations near natural frequencies.

electric excitations should not be taken as integral
multiple of the mesh parameter exciting frequency.

When exciting frequency is near natural frequency,
changes of the nonlinear vibrating magnitudes along with
exciting frequencies and the drive parameters are given in
Figure 5. From Figure 5, the following are known.

(1) As exciting frequency increase, the vibrating magni-
tudes of all the modes increases, and at point si =
ωei/ωi ≈ 1, the vibrating magnitudes get to the max-
imum, and then they decrease with increasing excit-
ing frequency. For different modes, the previously

mentioned curves bend toward the direction of the
exciting frequency increase. The results are typical
nonlinear character of the drive system.

(2) For the first and third modes, as nonlinear parameter
ε increases, their vibrating magnitudes increase. For
the second mode, as nonlinear parameter ε increases,
its vibrating magnitude decreases. The vibrating
magnitudes are large for the first and third modes and
small for the second mode. The vibrating magnitude
for the first mode is larger than that for the third
mode.
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(3) For a given exciting frequency, the vibrating ampli-
tudes of the nonlinear forced responses of the
drive system to the coupled excitations for modes
1 and 3 are larger than those of the nonlinear
forced responses to the single excitation; for mode
2, the vibrating amplitude of the nonlinear forced
responses of the drive system to the coupled exci-
tations is smaller than that of the nonlinear forced
responses to the single excitation.

(4) Under the coupled excitations, the nonlinearity has
obvious effects on the relationship between the fre-
quency and the amplitudes; it should be considered.

7. Conclusions

In this paper, the electric excitation and the parameter
excitation from mesh stiffness fluctuation are analyzed. The
forced response equations of the drive system to the coupled
excitations are presented. For the exciting frequencies far
from and near to natural frequencies, the forced responses of
the drive system to the coupled excitations are investigated.
Results show the following.

(1) Under the coupled excitations, the nonlinear forced
responses of the drive system change periodically and
unsteadily.

(2) The time period of the nonlinear forced responses
depends on the frequencies of the electric excitation
the mesh parameter excitation, and the nonlinear
natural frequencies of the drive system.

(3) In order to improve the dynamics performance of
the drive system, the frequencies of the electric
excitations should not be taken as integral multiple
of the mesh parameter exciting frequency.
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