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We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on
the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed
to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively.
Numerical simulation indicates that the presented methods work effectively.

1. Introduction

Hyperchaos, characterized as a chaotic attractor with more
than one positive Lyapunov exponent, was first reported by
Rössler [1]. Due to its great potential in theoretical and
engineering applications, hyperchaos has been investigated
extensively over the past three decades. Since the hyper-
chaotic Rössler system was reported, many more hyper-
chaotic systems have been proposed, such as hyperchaotic
Chua’s system, hyperchaotic Chen system, and hyperchaotic
LC oscillator system.

Very recently, the authors [2] constructed a new 4D
hyperchaotic system by adding one state variable into the 3D
Lü chaotic system. The new hyperchaotic system is shown in
the following form:

ẋ1 = a(x2 − x1) + x4,

ẋ2 = cx2 − x1x3,

ẋ3 = −bx3 + x1x2,

ẋ4 = dx1 + kx2x3,

(1)

where x1, x2, x3, and x4 are state variables; a, b, c, d, and k
are system parameters, respectively. System (1) is dissipative
and has only one equilibrium point (0, 0, 0, 0). When a = 35,

b = 3, c = 12, d = 1, and k = 0.5, system (1) exhibits a
hyperchaotic attractor, which is illustrated in Figure 1.

In recent years, chaos/hyperchaos synchronization has
attracted increasingly attentions due to its potential appli-
cations in the fields of secure communication and optical,
chemical, physical, and biological systems, and so forth
[3–5]. Until now, a wide variety of approaches have been
proposed for the synchronization of chaotic/hyperchaotic
systems, such as linear or nonlinear feedback control [6],
delayed feedback control [7], adaptive control [8], back-
stepping design [9], and sliding mode control [10], just to
name a few. Among all kinds of synchronization schemes,
hybrid synchronization, which has been proposed by Li [11],
is a noticeable one. In hybrid synchronization scheme, the
complete synchronization and antisynchronization coexist in
the system. So, to apply hybrid synchronization to commu-
nication systems, the security and secrecy of communication
can be enhanced greatly [12].

Nowadays, the concept of passivity for nonlinear systems
has aroused new interest in nonlinear system control. By
applying the passivity theory, Yu [13] designed a linear
feedback controller to control the Lorenz system. Wei and
Luo [14] proposed an adaptive passivity-based controller to
control chaotic oscillations in the power system. In [15, 16],
Kemih realized chaos control for chaotic Lü system and for
nuclear spin generator system, respectively. In [17], Wang
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and Liu also applied this theory to achieve synchronization
between two identical unified chaotic systems. Passivity-
based nonlinear controllers were obtained in [18, 19] to
synchronize between two identical chaotic systems and
between two different chaotic systems, respectively.

In [20], Huang et al. applied the passivity theory to
investigate the hybrid synchronization of a hyperchaotic Lü
system, but their method was based on exactly knowing the
systems structure and parameters. In practical situations,
some or all of the systems parameters cannot be exactly
known in priori. Therefore, it is necessary to consider hybrid
synchronization of hyperchaotic systems in the presence of
uncertain parameters. In this paper, we apply the passivity
theory to investigate the adaptive hybrid synchronization
problem of a new hyperchaotic system with uncertain
parameters.

2. Brief Introduction of the Passivity Theory

Consider a nonlinear system modeled by the following
ordinary differential equation:

ẋ = f (x) + g(x)u,

y = h(x),
(2)

where x ∈ Rn is the state variable; u ∈ Rm and y ∈ Rm

are input and output values, respectively. f (x) and g(x)
are smooth vector fields and h(x) is a smooth mapping.
Suppose that the vector field f has at least one equilibrium
point. Without loss of generality, one can assume that the
equilibrium point is x = 0. If the equilibrium point is not
at x = 0, the equilibrium point can be shifted to x = 0 by
coordinate transform.

Definition 1 (see [21]). System (2) is a minimum phase
system if Lgh(0) is nonsingular and x = 0 is one of the
asymptotically stabilized equilibrium points of f (x).

Definition 2 (see [13]). System (2) is passive if there exists
a real constant β such that for for all t ≥ 0, the following
inequality holds:

∫ t

0
uT(τ)y(τ)dτ ≥ β, (3)

or there exists a ρ ≥ 0 and a real constant β such that

∫ t

0
uT(τ)y(τ)dτ + β ≥

∫ t

0
ρyT(τ)y(τ)dτ. (4)

If system (2) has relative degree [1, . . . , 1] at x = 0
(i.e., Lgh(0) is nonsingular) and the distribution spanned by
the vector field g1(x), . . . , gm(x) is innovative, then it can be
represented as the following normal form:

ż = f0(z) + p
(
z, y
)
y,

ẏ = b
(
z, y
)

+ a
(
z, y
)
u,

(5)

where a(z, y) is nonsingular for any (z, y).

Theorem 3 (see [13]). If system (2) is a minimum phase
system and has relative degree [1, 1, . . .] at x = 0, then
system (5) will be equivalent to a passive system and will be
asymptotically stable at any equilibrium points through the
following local feedback control:

u = a
(
z, y
)−1
[
−bT(z, y

)− ∂W(z)
∂z

p
(
z, y
)− αy + v

]
. (6)

3. Hybrid Synchronization of the New
Hyperchaotic System

Let system (1) be the drive system, and the response system
is given by the following form:

ẇ1 = a(w2 −w1) + w4,

ẇ2 = cw2 −w1w3 + u1,

ẇ3 = − bw3 + w1w2,

ẇ4 = dw1 + kw2w3 + u2,

(7)

where a, b, c, d, and k are unknown parameters; u1 and u2

are controllers to be determined.
To investigate the hybrid synchronization, we define the

state errors between the drive system (1) and the response
system (7) as

e1 = w1 + x1,

e2 = w2 + x2,

e3 = w3 − x3,

e4 = w4 + x4.

(8)

Then the following error dynamical system can be obtained

ė1 = a(e2 − e1) + e4,

ė2 = ce2 − e1e3 + x1e3 − x3e1 + u1,

ė3 = − be3 + e1e2 − x1e2 − x2e1,

ė4 = de1 + k(e2e3 − x2e3 + x3e2) + u2.

(9)

Let z1 = e1, z2 = e3, y1 = e2, and y2 = e4; the error
dynamical system (9) can be rewritten as

ż1 = a
(
y1 − z1

)
+ y2,

ż2 = − bz2 + z1y1 − x1y1 − x2z1,

ẏ1 = cy1 − z1z2 + x1z2 − x3z1 + u1,

ẏ2 = dz1 + k
(
y1z2 − x2z2 + x3y1

)
+ u2,

(10)

which is a normal formal

ż = f0(z) + p
(
z, y
)
y,

ẏ = b
(
z, y
)

+ a
(
z, y
)
u,

(11)
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Figure 1: Hyperchaotic attractor for system (1).

where z = [z1, z2]T , y = [y1, y2]T and

f0(z) =
[

−az1

−x2z1 − bz2

]
,

p
(
z, y
) =

[
a 1

z1 − x1 0

]
,

b =
[

cy1 − z1z2 + x1z2 − x3z1

dz1 + k
(
y1z2 − x2z2 + x3y1

)
]
.

(12)

Theorem 4. The error dynamical system (9) is a minimum
phase system.

Proof. Choose the following storage function:

V
(
z, y
) =W(z) +

1
2
yT y +

1
2

(a1 − a)2 +
1
2

(b1 − b)2

+
1
2

(c1 − c)2 +
1
2

(d1 − d)2 +
1
2

(k1 − k)2,

(13)

where W(z) = (N2/4ab)z2
1 + (1/2)z2

2 is a Lyapunov function
of f0(0), N is a bound of x2, namely, |x2| ≤ N , and a1, b1, c1,
d1, and k1 are estimated values of the uncertain parameters
a, b, c, d, and k, respectively.

The zero dynamics of system (11) describes the internal
dynamics, which is consistent with the external constraint
y = 0, that is, ż = f0(z), then we have

d

dt
W(z) = ∂W(z)

∂z
f0(z)

= −N2

2b
z2

1 − bz2
2 − x2z1z2

= −b
(
z2 +

x2

2b
z1

)2

+
x2

2

4b
z2

1 −
N2

2b
z2

1

≤ −b
(
z2 +

x2

2b
z1

)2

− N2

4b
z2

1

≤ 0.

(14)
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Figure 2: The time response of states for the drive system (1) and the response system (7).

Then, f0(z) is globally asymptotically stable. Meanwhile,
Lgh(0) = [

1 0
0 1

]
is nonsingular. In the light of Definition 1,

system (9) is a minimum phase system.

Theorem 5. If we choose the controllers as

u1 = − (c1 + α)y1 +

(
x3 − N2

2b

)
z1 + v1,

u2 = −
(
d1 +

N2

2ab

)
z1 − k1

(
y1z2 + x3y1 − x2z2

)− αy2 + v2,

(15)

and the parameter estimation update laws as

ȧ1 = 0,

ḃ1 = 0,

c1 = y2
1,

d1 = z1y2,

k1 = (w2w3 + x2x3)y2,

(16)

where v = [v1, v2]T is an external signal vector which is
connected with the reference input, the error dynamical system
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(9) will be asymptotically stable at any desired equilibrium
points with different values of v, and the hybrid synchroniza-
tion between the two hyperchaotic systems (1) and (7) with
different initial values will be achieved.

Proof. Taking the time derivative of V(z, y) along the
trajectory of the error dynamical system (9) yields

d

dt
V
(
z, y
) = ∂W(z)

∂z
ż + yT ẏ + (a1 − a)ȧ1 + (b1 − b)ḃ1

+ (c1 − c)ċ1 + (d1 − d)ḋ1 + (k1 − k)k̇1

= ∂W(z)
∂z

f0(z) +
∂W(z)
∂z

p
(
z, y
)
y + yTb

(
z, y
)

+ yTa
(
z, y
)
u + (a1 − a)ȧ1 + (b1 − b)ḃ1

+ (c1 − c)ċ1 + (d1 − d)ḋ1 + (k1 − k)k̇1.
(17)

According to Theorem 4, the error dynamical system (9)
is a minimum phase system, that is, (∂W(z)/∂z) f0(z) ≤ 0,
then (17) becomes

d

dt
V
(
z, y
) ≤ ∂W(z)

∂z
p
(
z, y
)
y + yTb

(
z, y
)

+ yTa
(
z, y
)
u

+ (a1 − a)ȧ1 + (b1 − b)ḃ1 + (c1 − c)ċ1

+ (d1 − d)ḋ1 + (k1 − k)k̇1.
(18)

Substituting (15) and (16) into (18) yields

d

dt
V
(
z, y
) ≤ −αyT y + vT y. (19)

Then, taking integration on both sides of (19), we get

V
(
z, y
)−V

(
z0, y0

) ≤ −
∫ t

0
αyT(τ)y(τ)dτ

+
∫ t

0
vT(τ)y(τ)dτ.

(20)

For V(z, y) ≥ 0, let V(z0, y0) = μ; the above inequality
can be rewritten as
∫ t

0
vT(τ)y(τ)dτ + μ ≥

∫ t

0
αyT(τ)y(τ)dτ + V

(
z, y
)

≥
∫ t

0
αyT(τ)y(τ)dτ.

(21)

According to Definition 2, system (9) is a passive system.
Because W(z) is radially unbounded, it follows from (13)
that V(z, y) is also radially unbounded, so that the closed-
loop system is bounded state stable for [zT , yT]T . This means
that we can use the controllers (15) and parameter estimation
update laws (16) to regulate the error dynamical system (9)
to the equilibrium points, and the two hyperchaotic systems
(1) and (7) with different initial values will be synchronized.
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Figure 3: The time response of error states for the error dynamical
system (9).

4. A Numerical Simulation

In this section, a numerical simulations is carried out to
verify the theoretical results obtained in Section 3. In the
following numerical simulation, the fourth order Runge-
Kutta method is applied to solve the equations with time step
size 0.001. The system parameters are selected as a = 35,
b = 3, c = 12, d = 1, and k = 0.5, so that system (1) can
exhibit a hyperchaotic attractor.

For the hybrid synchronization of the new hyperchaotic
system, we consider the drive system (1) and the response
system (7). The initial values for them are given as x1(0) = 1,
x2(0) = 1, x3(0) = 1, x4(0) = 1, and w1(0) = 2, w2(0) =
2, w3(0) = 2, w4(0) = 2, respectively. Thus, the initial
errors are e1(0) = 3, e2(0) = 3, e3(0) = 1, e4(0) = 3.
And the initial values of the parameter estimation update
laws are a1(0) = b1(0) = c1(0) = d1(0) = k1(0) = 0.1.
We choose α = 1 and v1 = v2 = 0. Figure 2 shows the
time response of states determined by the drive system (1)
and the response system (7) with the controllers (15) and
the parameter estimation update laws (16). Figures 2(a),
2(b), and 2(d) illustrate antisynchronization of x1 versus w1,
x2 versus w2, and x4 versus w4, and Figure 2(c) illustrates
complete synchronization of x3 versus w3. As expected, one
can observe that the trajectories of the error dynamical
system (9) are asymptotically stabilized at the equilibrium
point O(0, 0, 0, 0), as illustrated in Figure 3. From Figures
2 and 3, we can conclude that the hybrid synchronization
between the drive system (1) and the response system (7)
starting from different initial values is achieved. And the
estimations of the parameters are shown in Figure 4, which
converge to constants as time goes.

5. Conclusions

In this paper, we have investigated the adaptive hybrid
synchronization of a new hyperchaotic system with unknown
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Figure 4: The estimations of the parameters c1, d1, k1.

parameters, which includes complete synchronization and
antisynchronization. Based on the passivity theory and the
adaptive control theory, hybrid synchronization between two
identical hyperchaotic systems with uncertain parameters
starting from different initial values is achieved. A numerical
simulation is presented to illustrate and verify the theoretical
analysis. The simulation result and the theoretical analysis
agree quite well.
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