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This paper shows a new finding about the decrease of relaxative response to loperamide in prostate of spontaneously hypertensive
rats (SHR) as compare to normal rats (WKY). Authors demonstrated the reduction of ATP-sensitive potassium channels is res-
posible for this change using immunoblotting analysis and the decrease of action induced by diazoxide. This view is not mentioned
before and is the first one reporting this result.

1. Introduction

Benign prostatic hyperplasia (BPH) occurs frequently in
older men and is correlated with lower urinary tract symp-
toms causing obstruction of the proximal urethra and
urinary flow disturbances [1]. Some studies have indicated a
relationship between BPH and hypertension [2, 3]. In clinics,
medical treatments for BPH are widely used alpha-1 antago-
nists and 5-alpha-reductase inhibitors.

However, the side effects, such as postural hypotension,
erectile dysfunction, and ejaculatory difficulty, still disturb
patients’ life qualities [4, 5]. Therefore, understanding the
changes of prostatic relaxation in hypertension is helpful.

Loperamide is widely used in clinics for a variety of
diarrheal syndromes, including acute and nonspecific (infec-
tious) diarrhea [6, 7]. In recent years, we identified opioid
μ-receptors expression in rat prostates, and prostatic relax-
ation was induced by an activation of opioid μ-receptors
using loperamide [8]. Loperamide has been introduced as
the peripheral agonist of opioid μ-receptors with poor ability
to penetrate the blood-brain barrier [9, 10]. Basically, opioid
μ-receptor has been divided into 3 subtypes, including μ-1,
μ-2, and μ-3 opioid receptors [11]. It has been identified
that prostatic relaxation induced by loperamide is mediated

through an activation of opioid μ-2 receptors [12]. However,
change of this prostatic relaxation in hypertension is still
unclear.

Otherwise, ATP-sensitive K+ (KATP) channels are in-
volved in the relaxation of urethral smooth muscle [13].
Actually, opening of KATP channel is introduced to lower
intracellular Ca+ concentration [14, 15]. Moreover, the im-
pairment of KATP channel may be associated with the dys-
function of lower urinary tract [16]. Actually, KATP channel
is mentioned as the signal in prostatic relaxation induced by
loperamide [12]. However, role of KATP channel in the change
of prostatic relaxation in hypertension remains obscure.

In an attempt to clarify the change of prostatic relaxation
in hypertension, we used loperamide as agonist to induce
relaxation in isolated prostate. Then, we compared the differ-
ences of responses to loperamide in prostates isolated from
normal and hypertensive rats. Also, signal expressions were
investigated to understand the potential mechanism(s) of
this change.

2. Materials and Methods

2.1. Experimental Animals. We obtained 12-week-old male
Wistar-Kyoto (WKY) rats and spontaneously hypertensive
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rats (SHR) from the animal center of National Cheng Kung
University Medical College. Rats were maintained in a tem-
perature-controlled room (25 ± 1◦C) under a 12 h light-
dark cycle (lights on at 06:00). All rats were given water and
fed standard chow (Purina Mills, LLC, St Louis, MO, USA)
ad libitum. All animal-handling procedures were performed
according to the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health, as well as the
guidelines of the Animal Welfare Act.

2.2. Preparation of Isolated Prostate Strips. In all prostatic
experiments, the isolated prostates from WKY and SHR rats
were used. Each rat was killed by decapitation under anes-
thesia with pentobarbital (50 mg/kg). Following our previous
study, the prostate strips were rapidly removed and placed
in oxygenated Krebs’ buffer (95% O2, 5% CO2). After the
prostate strips had been carefully freed from fat and connec-
tive tissue, the strips were then mounted in organ baths filled
with 10 mL oxygenated Krebs’ buffer (95% O2, 5% CO2) at
37◦C containing (in mmol/L): NaCl 135; KCl 5; CaCl2 2.5;
MgSO4 1.3; KH2PO4 1.2; NaHCO3 20; d-glucose 10 (pH
7.4).

Each preparation was connected to strain gauges (FT03;
Grass Instrument, Quincy, MA, USA). Isometric tension was
recorded using chart software (MLS023, Powerlab; ADIn-
struments, Bella Vista, NSW, Australia). Strips were mounted
and allowed to stabilize for 2 h. Each preparation was then
gradually stretched to achieve an optimal resting tension of
0.5 g.

2.3. Prostatic Relaxation Caused by Loperamide. After the
resting tension had stabilized, solution of phenylephrine
(Sigma-Aldrich, St Louis, MO, USA) or KCl prepared in dis-
tilled water was added into bathing buffer to induce a rapid
increase in prostatic tone followed by stable constriction (to-
nic contraction). The final concentration in the organ bath
for phenylephrine was 1 μmol/L and for KCl was 50 mmol/L,
respectively. Prostate strips in the treatment group were ex-
posed to loperamide (0.1–10 μmol/L) to observe the decrease
in tonic tone (relaxation). Relaxation is expressed as the per-
centage decrease of maximal tonic contraction. Concen-
tration-relaxation curves were generated in cumulative fash-
ion.

2.4. Effects of Blockers on Loperamide-Induced Prostatic Re-
laxation. Prostate strips were exposed to glibenclamide
(Research Biochemical, Wayland, MA, USA) or opioid μ-re-
ceptor antagonist, cyprodime or naloxonazine (Tocris Cook-
son, Bristol, UK), for 15 min before the addition of lop-
eramide into organ bath. In addition, the inhibitor of cyclic
AMP phosphodiesterase (IBMX) or protein kinase A (H-89)
was treated in the same manner. The changes of relaxation
caused by loperamide were compared with that in vehicle-
(distilled water-) treated controls.

2.5. Western Blotting Analysis. The prostate tissues were put
in ice-cold homogenized buffer containing 10 mM Tris-HCl

(pH 7.4), 20 mM EDTA, 10 mM EGTA, 20 mM β-glycer-
olphosphate, 50 mM NaF, 50 mM sodium pyrophosphate,
1 mM phenylmethylsulfonyl fluoride, and the protease
inhibitors 25 μg/mL leupeptin and 25 μg/mL aprotinin. The
mixture was centrifuged at 1000×g for 10 min at 4◦C. The
supernatant containing the membrane fraction was cen-
trifuged at 48,000×g for 30 min at 4◦C. The supernatant was
removed, and the pellet was resuspended in Triton X-100
lysis buffer on ice for 30 min, homogenized, and then centri-
fuged at 14,010×g for 20 min at 4◦C. Finally, the supernatant
was transferred to a new Eppendorf tube and stored at
−80◦C. The membrane extracts (20–80 μg) were separated
by performing SDS-polyacrylamide gel electrophoresis, and
the proteins were transferred onto a BioTraceTM polyvinyli-
dene fluoride (PVDF) membrane (Pall Corporation, Pen-
sacola, FL). Following blocking, the blots were developed
using antibodies for opioid μ-receptors (MOR) (Abcam,
Cambridge, UK), sulfonylurea receptor (SUR) (Millipore)
or inwardly-rectifying potassium channel (Kir) 6.2 subunits
(Kir 6.2) (Santa Cruz Biotechnology, CA). The blots were
subsequently hybridized using horseradish peroxidase-con-
jugated goat anti-goat IgG (Jackson ImmunoResearch Lab-
oratories, Inc., PA), and developed using the Western
Lightning Chemiluminescence Reagent PLUS (PerkinElmer
Life Sciences Inc., Boston, MA). Densities of the obtained
immunoblots at 48 KDa for OMR, 170 KDa for SUR, 40 KDa
for Kir 6.2 and 43 KDa for actin were quantified using Gel-
Pro analyser software 4.0 (Media Cybernetics, Silver Spring,
MD, USA).

2.6. Statistical Analysis. All values are presented as the
mean ± SEM for a given number of animals or samples.
Analysis of variance and Dunnett’s post hoc test were used to
evaluate the significance between groups. P < 0.05 was consi-
dered as a significant difference.

3. Results

3.1. Reduction of Loperamide-Induced Prostatic Relaxation in
SHR. Prostate strips strongly contracted by the application
of phenylephrine (PE) (1 μmol/L) or KCl (50 mmol/L). The
prostatic contractions evoked by PE or KCl were not altered
in SHR. As shown in Figure 1(a), loperamide relaxed PE-
contracted prostate strips from WKY and SHR in a concen-
tration-dependent manner. The effect of loperamide was re-
versible after washout and repeatable with a second appli-
cation. Compared to that from WKY, the relaxation of PE-
induced prostatic contraction by loperamide in SHR was sig-
nificantly reduced. Also, the loperamide-induced relaxation
in prostate strips precontracted with KCl isolated from SHR
was markedly lower than that in WKY (Figure 1(b)). Reduc-
tion of loperamide-induced prostatic relaxation in SHR
seems more significant in samples contracted with KCl
than that with PE. At the maximal concentration tested
(10 μmol/L), loperamide significantly attenuated the con-
traction of SHR prostate strips induced by PE from 59.69 ±
3.54% to 72.91 ± 1.05% of tonic contraction. However,
10 μmol/L loperamide lowered KCl-induced contraction
from 33.08 ± 1.89% to 61.45 ± 2.43% of the tonic tone.
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Figure 1: Concentration-dependent relaxation induced by loperamide in isolated prostate strips contracted with 1 μmol/L phenylephrine
(a) or 50 mmol/L KCl (b) in WKY and SHR, respectively. Data represent mean ± SEM of eight animals. ∗P < 0.05, and ∗∗∗P < 0.001
compared with WKY group.

3.2. Effect of Opioid Receptor Blockade on Loperamide-
Induced Prostatic Relaxation. At the maximal concentration
(10 μmol/L), loperamide significantly attenuated the tonic
contraction of isolated prostate strips induced by PE to
72.91 ± 1.05% in SHR. Also, 10 μmol/L loperamide lowered
KCl-induced contraction to 61.45 ± 2.43% of the tonic tone.
Then, cyprodime (0.1–1 μmol/L) produced a significant and
concentration-dependent attenuation of the relaxant effect
of loperamide on tonic contraction of PE-contracted prostate
strips from SHR. The prostatic relaxation due to loperamide
in KCl-treated prostate strips was also abolished in a similar
manner in the presence of cyprodime (Table 1). In addition,
naloxonazine failed to abolish the relaxant effect of lop-
eramide on tonic contraction in PE (1 μmol/L)-contracted
prostate strips at higher concentration (1 μmol/L). As shown
in Table 1, the prostatic relaxation by loperamide in KCl-(50
mmol/L-) contracted prostate strips was also not reversed by
naloxonazine even at higher concentration.

3.3. Characterization of Signals in Loperamide-Induced Pro-
static Relaxation in SHR. In prostate strips of SHR precon-
tracted with phenylephrine (1 μmol/L) or KCl (50 mmol/L),
as shown in Table 2, loperamide-induced relaxation was also
abolished by pretreatment with glibenclamide (1 μmol/L).
Moreover, prostatic relaxation by loperamide was increased
by 3-isobutyl-1-methylxanthine (IBMX) at concentration
(10 μmol/L) sufficient to inhibit cAMP-phosphodiesterase
[17], and decreased by H-89 at concentration (1 μmol/L)
enough to abolish the protein kinase A (PKA) [18].

3.4. No Change of Opioid μ-Receptors in Prostate of SHR. The
expression of opioid μ-receptors in prostates from SHR was
similar to that from WKY (Figure 2). Quantification of the
protein levels was shown in Figure 2 and no difference can be
obtained in samples between WKY and SHR.

Table 1: The inhibitory effect of cyprodime or naloxonazine on
the relaxation of loperamide (10 μmol/L) in isolated SHR prostates
contracted with 1 μmol/L phenylephrine (PE) or 50 mmol/L KCl.
Data represent mean ± SEM of eight animals.

PE (%) KCl (%)

Loperamide (10 μmol/L)

+ Vehicle 72.91 ± 1.05 61.45 ± 2.43

+ Cyprodime

0.1 μmol/L 81.23 ± 0.71∗∗∗ 78.92 ± 0.76∗∗

1.0 μmol/L 92.60 ± 1.30∗∗∗ 86.68 ± 1.98∗∗∗

+ Naloxonazine

0.1 μmol/L 70.62 ± 1.02 60.77 ± 1.00

1.0 μmol/L 70.19 ± 2.17 63.79 ± 1.92
∗∗

P < 0.01 and ∗∗∗P < 0.001 compared with vehicle-treated control.

3.5. Reduction of Diazoxide-Induced Prostatic Relaxation in
SHR. As shown in Figure 3, diazoxide relaxed PE-contracted
prostate strips from WKY and SHR in a concentration-
dependent manner. Compared to that from WKY, the re-
laxation of PE-induced prostatic contraction by diazoxide in
SHR was significantly reduced.

3.6. Changes of Potassium Channels (SUR and Kir 6.2) in
Prostate of SHR. The expressions of SUR and Kir 6.2 in
prostates from SHR were significantly decreased as compared
with that from WKY (Figure 4). Quantification of the protein
levels was also shown in Figure 4.

4. Discussion

In the present study, we found that prostatic relaxation
caused by loperamide is markedly reduced in SHR as
compared to that in WKY. The dose-dependent relaxation
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Figure 2: Comparison of the protein level for opioid μ-receptor in
prostates between WKY and SHR. Data represent mean ± SEM of
six animals. There was no difference between WKY and SHR.
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Figure 3: Concentration-dependent relaxation of diazoxide in
isolated SHR prostates contracted with 1 μmol/L phenylephrine.
Data represent mean ± SEM of eight animals. ∗∗P < 0.01 and
∗∗∗P < 0.001 compared with WKY group.

induced by loperamide was observed in prostate strips
contracted with PE or KCl. Also, the decrease of loperamide-
induced prostatic relaxation seems more significant in KCl-
contracted samples than that in PE-contracted samples.
Thus, it is of special interesting to understand the potential
mechanism(s) of this difference.

The action of loperamide is mostly related to the activa-
tion of opioid receptors in peripheral tissue because lop-
eramide is hard to enter into central nervous system [10, 19].
In the present study, the action of loperamide is effectively
abolished by cyprodime at a concentration sufficient to
block opioid μ-receptors, suggesting an activation of opioid
μ-receptors by loperamide in bladder relaxation of SHR.
However, the action of loperamide was not reversed by

naloxonazine even at a concentration sufficient to block opi-
oid μ-1 receptors. Mediation of opioid μ-1 receptors seems
unlikely in the prostatic relaxation of loperamide caused in
SHR. In recent, opioid μ-receptor has been divided into 3
subtypes, including μ-1, μ-2, and μ-3 opioid receptors [20–
22]. The activation of opioid μ-1 receptors seems related to
smooth muscle contraction via PLC-PKC pathway [23, 24].
Also, opioid μ-3 receptors are mostly presented in endothelial
cells associated with the production of nitric oxide to induce
vasodilatation [25]. Therefore, mediation of opioid μ-1 or
μ-3 receptors in prostatic relaxation seems unlikely. More-
over, activation of opioid μ-2 receptors participated in the
relaxation of guinea pig ileum and inhibition of gastrointesti-
nal transit [26, 27]. Taken together, an activation of opioid
μ-2 receptors is more reliable to participate in the action
of loperamide for relaxation of prostate strips isolated from
SHR. This result is consistent with our previous report in
normal rats [12]. The concentration of loperamide tested in
the present study is sensitive to the receptor sites especially
in the isolated preparation. The concentration for a clinical
situation is hard to calculate from the dose used in animal
only and it should be really monitored in human.

However, the decrease of prostatic relaxation induced by
loperamide seems not to be related to the change of opioid μ-
receptors in SHR because there was no difference in protein
level of opioid μ-receptors between SHR and WKY identified
by western blotting analysis (Figure 2).

Otherwise, prostatic relaxation by loperamide in SHR
was attenuated by blockade of ATP-sensitive K+ (KATP) chan-
nels, indicating the involvement of KATP channels in prostatic
relaxation by loperamide. Potassium channels playing an
important role in the regulation of prostatic contractility has
been indicated in guineapig [28]; the activation of KATP chan-
nels causes hyperpolarization of cell membrane and conse-
quently relaxes smooth muscle. It has been established that
an activation of adenylyl cyclase can increase the intracellular
cyclic AMP (cAMP) to activate cAMP-dependent protein
kinase (PKA) for opening of KATP channels [18]. As shown in
Table 2, we characterized that loperamide-induced prostatic
relaxation was blocked by glibenclamide. The prostatic relax-
ation of loperamide was abolished by H-89 at the concen-
tration sufficient to block PKA [18] and enhanced by IBMX
at concentration enough to inhibit cAMP-posphodiesterase
[17]. These data suggest that the possible mechanism for
loperamide-induced prostatic relaxation in SHR is mediated
through cAMP-PKA pathway to open KATP channels, which
is consistent with the previous phenomenon for loperamide-
induced prostatic relaxation in normal rats [12]. Thus, we
focused on the role of KATP channels in the change of pro-
static relaxation by loperamide in SHR.

We used diazoxide the well-known agent as potassium
channel opener [29] to investigate the changes of action in
SHR. Similar to the previous report [30], diazoxide induced
a dose-dependent relaxation in prostate contracted with PE.
Prostatic relaxation caused by diazoxide was also reduced in
samples from SHR as compared to that from WKY (Figure
3). Role of potassium channels in the change of prostatic
relaxation by loperamide in SHR can be considered. A
reduction of potassium channel has been observed in human
prostate cancer [31].
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Figure 4: The difference in the protein levels of sulphonylurea receptors (SUR) and inwardly rectifying K+ channel subunit 6.2 (Kir 6.2)
obtained from prostates between WKY and SHR. Data represent mean ± SEM of six animals. ∗P < 0.05 and ∗∗P < 0.01 compared with
WKY group.

Table 2: The effects of inhibitors for signals on the relaxation in-
duced by loperamide (10 μmol/L) in SHR isolated prostates con-
tracted with 1 μmol/L phenylephrine (PE) or 50 mmol/L KCl. Data
represent mean ± SEM of eight animals.

PE (%) KCl (%)

Loperamide (10 μmol/L)

+ Vehicle 73.53 ± 1.06 63.17 ± 2.55

+ IBMX (10 μmol/L) 62.16 ± 1.62∗∗ 51.20 ± 1.18∗

+ H-89 (1 μmol/L) 86.42 ± 1.59∗∗∗ 81.66 ± 1.62∗∗

+ Glibenclamide (1 μmol/L) 93.21 ± 0.62∗∗∗ 85.02 ± 0.68∗∗∗
∗
P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001 compared with vehicle-treated

control, respectively.

Moreover, the ATP-sensitive K+ (KATP) channels are com-
posed of four inwardly rectifying K+ channel (Kir) subunits
and four regulatory sulphonylurea receptors (SUR) [32]. In
the present study, we found that expressions of Kir and SUR
in prostate tissues are both lowered in SHR (Figure 4). A
decrease of KATP channels in prostate of SHR can thus be
identified; this is consistent with the reduction of prostatic
relaxation caused by diazoxide in SHR. Also, the relaxation
of loperamide in prostate strips of SHR was abolished by the
pretreatment with glibenclamide at concentration sufficient
to block KATP channels. Therefore, decrease of KATP chan-
nels is important in the reduction of prostatic relaxation
induced by loperamide in SHR; the obtained results provide
novel insight into the potential mechanisms that were not
mentioned before. In the present study, prostate relaxat-
ion induced by loperamide was reduced in relation to the

changes of potassium channels expression under hyperten-
sive condition. Many factors can be involved in this change,
such as the continuous high blood pressure or endogenous
substance(s) induced by hypertension and/or others. How-
ever, the real mechanism(s) remain obscure and it requires
more experiments to clarify in advance. Moreover, the role
of KATP channels is mainly focused for prostatic relaxation in
this study. Actually, other targets are possibly involved in the
mechanism for potential drug development, such as phos-
phodiesterase V [33] and cyclic GMP-dependent protein
kinase-1 [34]. However, the improvement of hypertension
would be helpful in the treatment of BPH. Thus, regular
control of blood pressure is important in the prevention of
prostatic damage.

5. Conclusions

In conclusion, we suggest that the dysfunction of KATP

channels explains poor prostatic relaxation-induced by lop-
eramide under hypertensive condition. Therefore, improve-
ment of prostatic KATP channels will be a new target in the
development of agents for handling BPH in hypertensive
patients.
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