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In the biomedical domain, word sense ambiguity is a widely spread problem with bioinformatics research effort devoted to it
being not commensurate and allowing for more development. This paper presents and evaluates a learning-based approach for
sense disambiguation within the biomedical domain. The main limitation with supervised methods is the need for a corpus of
manually disambiguated instances of the ambiguous words. However, the advances in automatic text annotation and tagging
techniques with the help of the plethora of knowledge sources like ontologies and text literature in the biomedical domain will
help lessen this limitation. The proposed method utilizes the interaction model (mutual information) between the context words
and the senses of the target word to induce reliable learning models for sense disambiguation. The method has been evaluated with
the benchmark dataset NLM-WSD with various settings and in biomedical entity species disambiguation. The evaluation results
showed that the approach is very competitive and outperforms recently reported results of other published techniques.

1. Introduction

Word sense disambiguation is the task of determining the
correct sense of a given word in a given context. In the general
language domain, and within natural language processing
(NLP), the word sense disambiguation (WSD) problem has
been studied and investigated extensively over the past few
decades [1, 2]. In the biomedical domain, on the other hand,
WSD is more widely spread in the biological and medical
texts and sometimes with more severe consequences. The
amount of WSD research in the biomedical domain is not
proportional to the extent of the problem. As an example,
in the biomedical texts, the term “blood pressure” has three
possible senses according to the Unified Medical Language
System (UMLS) [3] as follows: organism function, diagnostic
procedure, and laboratory or test result. Thus, if this term blood
pressure is found in a medical text, the reader has to manually
judge and determines which one of these three senses is
intended in that text. Word sense disambiguation contributes
in many important applications including the text mining,
information extraction, and information retrieval systems
[1, 2, 4]. It is also considered a key component in most intel-
ligent knowledge discovery and text mining applications.

The main classes of approaches of word sense disambig-
uation include supervised methods and unsupervised meth-
ods. The supervised methods rely on training and learning
phases that require a dataset or corpus containing manually
disambiguated instances to be used to train the system [5, 6].
The unsupervised methods, on the other hand, are based on
knowledge sources like ontology, for example, from UMLS,
or text corpora [2, 4, 7, 8]. Our approach in this paper is a
supervised approach. In this paper, we present and evaluate a
supervised method for biomedical word sense disambigua-
tion. The method is based on machine learning and uses
some feature selection techniques in constructing feature
vectors for the words to be disambiguated. We conducted
the evaluation using the NLM-WSD benchmark corpus
and species disambiguation dataset. The evaluation results
proved the competitiveness of the proposed approach as it
outperforms some recently published techniques including
supervised techniques.

2. Related Work

In the biomedical domain, the applications of text mining
and machine learning techniques were quite successful
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and encouraging [6]. Most of the methods for biomedical
entity name recognition, classification, or disambiguation
can be roughly divided into three categories: (i) supervised
and machine-learning-based techniques, (ii) statistical and
corpus-based techniques, and (iii) syntactic and rule-based
techniques [9–11]. Moreover, the bioinformatics literature
shows that biomedical WSD has been a quite active area of
research with a number of approaches proposed and applied
to biomedical data [1, 2, 4, 8, 12, 13].

Agirre et al. proposed a graph-based WSD technique
which is considered unsupervised but relies on UMLS [2].
The concepts of UMLS are represented as a graph, and WSD
is done using personalized page rank algorithm [2].

In another related research, Jimeno-Yepes and Aron-
son [4] presented a review and evaluation of four WSD
approaches that rely on UMLS as the source for knowledge
for disambiguation. In [1], Stevenson et al. use supervised
learners with linguistic features extracted from the context of
the word in combination with MeSH terms for disambigua-
tion.

The UMLS has been used, by Humphrey et al., as a
knowledge source for assigning the correct sense for a given
word [13]. They used journal descriptor indexing of the
abstract containing the term to assign a semantic type from
UMLS metathesaurus [3, 13].

In bioinformatics and computational biology, there are
quite a few tasks similar to WSD like biomedical term
disambiguation, gene protein name disambiguation, and
disambiguating species for biomedical named entities [9–
11]. The task of biomedical named entity disambiguation
or classification is an augmentation of the well-known task
of biomedical named entity recognition (NER). In NER,
biomedical entity names, for example, gene names, are
recognized and extracted from the text. In the biomedical
named entity disambiguation, the extracted entity names
(e.g., gene product names) will be applied onto a process
such that each occurrence should be disambiguated as either
gene name or protein name as the same name can refer to
a gene or protein. For example, the biomedical entity name
SBP2 can be a gene name or a protein name depending on the
context [10, 11]. Furthermore, in species disambiguation, the
term c-myc is a gene, but it can be either in a human gene
(homo sapiens) or mouse gene (mus musculus) depending on
the context [9–11, 14–16].

In [9], Wang et al. devised a rule based system to disam-
biguate biomedical entity names, like gene products, based
on species. In that approach [9], some parsing techniques are
used and syntactic parse tree with paths between words to
determine if there exists a path between species word and the
entity name. They employed and examined several parsers in
the task including C&C, Enju, Minipar, and Stanford-Genia
[9, 15, 16].

3. A Method for WSD

A word sense disambiguation method is an algorithm that
assigns the most accurate sense to a given word in a given
context. Our method is a supervised method requiring
a training corpus that contains manually disambiguated

instances of the ambiguous words. The method is based on
a word classification and disambiguation technique that we
have proposed in a preliminary work [17]. In the previous
work, [17], we introduced a method for term disambiguation
and evaluated it with biomedical terms to disambiguate gene
and protein names in medical texts.

The method relies on representing the instances of the
word to be disambiguated, wx, as a feature vector, and
the components of this vector are neighborhood context
words in the training instances. In the context of the target
word, wx, we select the words with the high discriminating
capabilities as the components of the vectors. As a supervised
technique, this method consists of two stages learning (or
training) stage and a testing (or application) stage. The
trained models (classifiers) produced from the learning phase
will then be used to disambiguate unseen and unlabeled
examples in the testing phase. That is, during the learn-
ing phase, the constructed feature vectors of the training
instances will be used as labeled examples to train classifiers.
The classifier will be then used to disambiguate unseen and
unlabeled examples in the application phase. One of the
main strength of this method is that the features are selected
for learning and classification.

Feature Selection. The features selected from the training
examples have great impact on the effectiveness of the
machine learning technique. Extensive research efforts have
been devoted to feature selection in machine learning
research [18–21]. The labeled training instances will be used
to extract the word features for the feature vectors.

Suppose the word wx has two senses s1, s2, let the set
C1 be the set of wx instances labeled with s1, and suppose
C2 contains instances of wx labeled with sense s2. So, each
instance of wx labeled with sense s1 or s2 (i.e., in the set C1 or
in the set C2) can be viewed as

pn · · · p3p2p1 < wx; si > f1 f2 f3 · · · fn, (1)

where the words p1, p2, . . . , pn and f1, f2, . . . , fn are the
context words surrounding this instance, and n is the
window size. Next, we collect all the context words pi
and fi of all instances in C1 and C2 in one set W (s.t.
W = {w1,w2, . . . ,wm}). Each context word wi ∈ W may
occur in the contexts of instances labeled with s1 or with
s2 or combination and in any distribution. We want to
determine that, if we see a context word wq in an ambiguous
instance/example, to what extent this occurrence of wq

suggests that this example belongs to C1 or to C2. Thus,
we use as features those context words wi that can highly
discriminate between C1 and C2. For that, we use feature
selection techniques such as mutual information (MI) [19,
20] as follows. For each context word wi ∈ W in the labeled
training examples, we compute four values a, b, c, and d as
follows:

a = number of occurrences of wi in C1,

b = number of occurrences of wi in C2,

c = number of examples of C1 that do not contain wi,

d = number of examples of C2 that do not contain wi.
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Therefore, the mutual information (MI) can be defined as

MI = N ∗ a
(a + b)∗ (a + c)

, (2)

and N is the total number of training examples. MI is a
well-known concept in information theory and statistical
learning. MI is a measure of interaction and common
information between two variables [22]. In this work, we
adapted MI to represent the interaction between the context
words wi and the class label based on the values a through
d as defined above. We utilized the training corpus of the
labeled instances of the word to be disambiguated to compile
the list of all context words (W = {w1,w2, . . . ,wm}) as
explained above; all instances of one sense are under one
class label. We notice that if the context word, wi, is mostly
occurring in class C1 (or mostly in C2), then the MI indicates
this as shown in (2). Thus, MI can be used as a means
to estimate the amount of information interaction between
a context work and a class label. So, MI is used to select
the context words with the highest discriminating capability
between C1 and C2. For simplicity, and without loss of
generality, we assume that we have two senses (two class
labels). Moreover, following the same intuitive reasoning of
mutual information, MI, we define another method, M2, for
selecting the words as features to be included in the feature
vectors as follows:

M2 = a + d

b + c
. (3)

In the following example, assume that the target word wx has
10 instances already labeled with one of two senses as shown
in Table 1. ClassC1 are the instances of wx with the first sense,
while C2 are the instances of wx instances in the second sense.
Each instance is shown with its context words within certain
window size. The target wordwx is shown in bold face. In this
example, N = 10 is the total number of training examples.
The values of a, b, c, d for wp are (4,1,1,4), respectively. That
is, wp has 4 occurrences in C1 and one instance in C2, and so
on. The values of a, b, c, d for wq are (3, 2, 2, 3), respectively.
As we can see, wp is more highly related with the class C1

than wq, and so it has more discriminating power than wq,
and this is quantified by their MI values. MI values for wp

and wq are 1.8 and 1.2, respectively.
Then, MI (or M2) value is computed for all context

words wi ∈ W. Then, the context words wi are ordered
based on their MI values, and the top k words wi with
highest MI values are selected as features. In this research, we
experimented with k values of 100, 200, and 300. With k =
100, for example, each training example will be represented
by a vector of 100 entries such that the first entry represent
the context word wi with the highest MI value, and the
second entry represents the context word with the second
highest MI value and so on.

Then, for a given training example, the feature vector
entry is set to +MI (or −MI) if the corresponding feature
(context word) occurs (does not occur) in that training
example and set to −MI otherwise. Table 2 shows the
top 10 context words with the ten highest MI values for

Table 1: An example of a training corpus of 10 instances of an
ambiguous word wx where 5 instances are in the first sense listed
under class label C1 and 5 instances of the second sense listed under
class C2. The context word wp has 4 and 1 occurrences in Class C1

and C2, respectively, while wq has 3 and 2 occurrences in C1 and C2,
respectively.

C1 C2

· · ·wp · · ·wx · · ·wq · · · · · ·wp · · ·wx · · ·
· · ·wp · · ·wx · · ·wq · · · · · ·wq · · ·wx · · ·
· · ·wp · · ·wx · · · · · ·wq · · ·wx · · ·
· · ·wp · · · wx · · · · · ·wx · · ·
· · ·wq · · ·wx · · · · · ·wx · · ·

Table 2: Context words with the top MI values for the ambiguous
word “cold”.

Context words wi

Import

Understand

Ischemia

Reperfus

Respons

Stor

Arteri

Attempt

Repress

Quantit

the ambiguous word “cold” in the NLM-WSD benchmark
corpus explained in Section 3. These 10 words will be used to
compose the feature vectors for training or testing examples
of the terms to be disambiguated. For example, a simple
feature vector of size 5 can be as follows:

[
1.23 −1.21 0.95 0.92 −0.88

]
. (4)

This feature vector represents an instance that has the first,
third, and fourth context words available in its context, and
1.23 is the MI value of the context word with the highest MI.

The Learning Phase. From the labeled training examples of
the word, we build the feature vectors using the top context
words selected by MI or M2 as features. After that, we use
the support vector machine (SVM) [23] as the learner to
train the classifier using the training vectors. SVM has been
shown as one of the most successful and efficient machine
learning algorithms and is well founded theoretically and
experimentally [7, 17, 18, 23]. The applications of SVM
are abound; in particular, in NLP domain like text cat-
egorization, relation extraction, named entity recognition,
SVM proved to be the best performer. We use SVM-
light (http://svmlight.joachims.org/) implementation with
the default parameters and with the Radial Basis Function
(RBF) kernel.
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The Disambiguation Step. In the testing step, we want to
disambiguate an instance wq of the word w. We construct a
feature vector Vq for the instance wq the same way as in the
learning step. The induced learning model (classifier) from
the learning step will be employed to classify it (assign wq) to
one of the two senses.

4. Evaluation and Experiments

4.1. Biomedical WSD (NLM-WSD)

Dataset. We used the benchmark dataset NLM-WSD for
biomedical word sense disambiguation [24]. This dataset
was created as a unified and benchmark set of ambiguous
medical terms that have been reviewed and disambiguated
by reviewers from the field. Most of the previous work on
biomedical WSD uses this dataset [1, 2, 4]. The NLM-WSD
corpus contains 50 ambiguous terms with 100 instances
for each term for a total of 5000 examples. Each example
is basically a Medline abstract containing one or more
occurrences of the ambiguous word. The instances of these
ambiguous terms were disambiguated by 11 annotators who
assigned a sense for each instance [24]. The assigned senses
are semantic types from UMLS. When the annotators did
not assign any sense for an instance, then that instance is
tagged with “none”. Only one term “association” with all of
its 100 instances were annotated none and so dropped from
the testing.

Text Preprocessing. On this benchmark corpus, we have car-
ried out some text preprocessing steps.

(i) Converting all words to lowercase.

(ii) Removing stopwords: removing all common function
words like “is” “the” “in”, . . . and so forth.

(iii) Performing word stemming using Porter stemming
algorithm [25].

Moreover, unlike other previous work, words with less than 3
or more than 50 characters are not ignored currently (unless
dropped by the stopword removal step). Also words with
parentheses or square brackets are not ignored and part of
speech is not used.

After the text preprocessing is completed, for each word
we convert the instances into numeric feature vectors. Then,
we use SVM for training and testing with 5-fold cross
validation 5FCV such that 80% of the instances are used for
training and the remaining 20% are used for testing, and
this is repeated five times by changing the training-testing
portions of the data. The accuracy is taken as the mean
accuracy of the five folds and the accuracy is computed as

Accuracy = no. of instances with correct assigned senses
total no. of tested instances

.

(5)

We also use the baseline method which is the most frequent
sense (mfs) for each word.

Experiments. Initially, we evaluated our WSD method with
all the 49 words (excluding association as mentioned pre-
viously) such that, a word is included in the evaluation
only if it has at least two or more senses with each sense
having at least two instances annotated with it. This lead,
to a total of 31 words tested in this evaluation, and 18
words were dropped because they do not have at least two
instances annotated for each one of two senses. For example,
the word “depression” has two senses: mental or behavioral
dysfunction and functional concept. Out of the 100 instances
of depression, 85 instances are tagged with the first sense,
and remaining 15 instances are tagged with “None” (i.e., no
instances tagged with a second sense), and so it was excluded
in this evaluation. Likewise, the word “discharge” was not
tested as it has only one instance tagged with the first sense,
74 instances tagged with the second sense, and 25 instances
tagged with None. We used k = 200, and the window size is 5.
The accuracy results of this first evaluation (EV1) are shown
in Table 4. The detailed results of this evaluation are included
in Table 5.

In the second evaluation (EV2) and third evaluation
(EV3), we changed the parameter and the word/features
selection formula. In EV2, we set k = 300, and window
size is still 5. In EV3, we kept k = 300, window = 5, and
changed the word/feature selection formula to M2 defined in
(3). Table 5 contains the results of EV2 and EV3. To judge on
performance of our method and compare our results with
similar techniques, we included several reported results from
three recent publications from 2008 to 2010 [1, 2, 4] with our
results in Table 6 under the same experimental settings.

4.2. Species Disambiguation. In biomedical text, named en-
tities, like gene name, are used the same way irrespective
of the species of the entity. As a result, it will be difficult
to extract relevant medical information automatically from
texts using information extraction system. In biomedical
named entity species disambiguation, for a given entity
name, for example, c-myc, we want to disambiguate this
entity name, c-myc, based on the species (e.g., human versus
mouse) [9]. In one instance, c-myc might refer to a human
gene, while in another instance it refers to a mouse gene.

For example, in Table 3, the biomedical entity name BCL-
2 (a protein name) in the first text (no. 1) is human while in
the second one is a mouse protein. We examined our system
on this task of species disambiguation. We obtained the data
from the project of Wang et al. [9]. From their data, we tested
the biomedical entity names that occur in at least two species
with at least 3 occurrences in each species. This enables us to
use two instances for training and one for testing and repeat
it three times. If the entity has 5 or more occurrences in one
species, we repeat five times using 5FCV as in Section 4.1.
We extracted and tested our system on a total 465 instances
of entity names with an average of 8 instances per species
for each entity name. In the original dataset (gold standard),
90% of the terms have all their instances occurring in only
one species [9] and so cannot be tested in our system. Our
system requires that each term should have instances in two
or more species with at least 3 occurrences in each species.
The results of Wang et al. are shown in Table 7, whereas the
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Table 3: A sample text from species disambiguation.

Homosapiens (human) Mus Musculus (mouse)

(No. 1) Significantly, Diva lacks critical residues in the
conserved BH3 region that mediate the interaction
between BH3-containing proapoptotic Bcl-2
homologues and their prosurvival binding partners.
Consistent with this, Diva did not bind to cellular Bcl-2
family members including Bcl-2, Bcl-XL, Bcl-w, Mcl-1,
and A1/Bfl-1

(No. 2) The BCL-2 family has various pairs of
antagonist and agonist proteins that regulate apoptosis.
Whether their function is interdependent is uncertain.
Using a genetic approach to address this question, we
utilized gain- and loss-of-function models of Bcl-2 and
Bax and found that apoptosis and thymic hypoplasia
characteristic of Bcl-2-deficient mice are largely absent
in mice also deficient in Bax

Table 4: Accuracy results of the first evaluation, EV1, where each
sense has to have at least two instances tagged with it.

Accuracy

Fold 1 0.912

Fold 2 0.931

Fold 3 0.917

Fold 4 0.897

Fold 5 0.862

Average 0.903

results of our proposed system are shown in Table 8 in terms
of precision, recall, and F1.

5. Discussion and Conclusion

The main weakness of the supervised and machine-learning-
based methods for WSD is their dependency on the anno-
tated training text which includes manually disambiguated
instances of the ambiguous word [2, 17]. However, over
the time, the increasing volumes of text and literature in
very high rates and the new algorithms and techniques
for text annotation and concept mapping will alleviate this
problem. Moreover, the advances in ontology development
and integration in the biomedical domain will facilitate even
more the process of automatic text annotation.

In this paper, we reported a machine learning approach
for biomedical WSD. The approach was evaluated with a
benchmark dataset, NLM-WSD, to facilitate the comparison
with the results of previous work. The average accuracy
results of our method, compared to some recent reported
results (Table 6), are promising and proving that our method
outperforms those recently reported methods. Table 6 con-
tains the results for 11 methods: baseline method (mfs), our
method (last column), and 9 other methods from recent
work published in 2008 to 2010 (from [1, 2, 4]). The average
accuracy of our method is the highest (90.3%), and the
closest one is NB (86.0%).

Our method also outperforms all 10 other methods in 12
out of 31 words followed by NB which outperforms the rest
in 7 words.

Stevenson et al. in their paper [1] report extensive ac-
curacy results of their method (we call it Stevenson-2008)
along with four other methods including Joshi-2005 and
McInnes-2007, with various combinations of words from

Table 5: Detailed accuracy results of three evaluations EV1, EV2,
and EV3.

Word
Baseline

(mfs)
EV1 EV2 EV3

Adjustment 0.67 0.99 0.96 0.93

Blood Pressure 0.54 0.98 0.80 0.83

Cold 0.91 0.94 0.92 0.95

Condition 0.98 0.95 0.95 0.95

Culture 0.89 0.87 0.96 0.94

Degree 0.97 0.93 0.93 0.93

Evaluation 0.50 0.98 0.82 0.85

Extraction 0.94 0.94 0.93 0.94

Failure 0.86 0.83 0.83 0.83

Fat 0.97 0.93 0.93 0.93

Ganglion 0.93 0.93 0.91 0.93

Glucose 0.91 0.90 0.90 0.93

Growth 0.63 0.92 1.00 0.96

Immune Suppression 0.59 0.98 0.88 0.87

Implantation 0.83 0.91 0.96 0.87

Japanese 0.92 0.92 0.97 0.92

Lead 0.93 0.84 0.84 0.84

Man 0.63 0.98 0.90 0.92

Mosaic 0.54 0.99 0.77 0.87

Nutrition 0.51 0.94 0.70 0.88

Pathology 0.86 0.79 0.96 0.92

Radiation 0.62 0.83 0.93 0.89

Reduction 0.82 0.63 0.63 0.63

Repair 0.76 0.92 0.91 0.96

Sex 0.80 0.94 0.97 0.88

Support 0.80 0.67 0.67 0.67

Surgery 0.98 0.95 0.95 0.95

Ultrasound 0.84 0.93 0.93 0.91

Variation 0.80 0.86 0.94 0.89

Weight 0.55 0.83 0.57 0.85

White 0.54 1.00 0.69 0.77

Mean Accuracy 0.775 0.903 0.87 0.88

NLM-WSD corpus used for testing. For example, Joshi-2005
tested their system on 28 words (out of the whole set 50
words) and other techniques used 22 words, 15 words, or
the whole set [1]. In Table 6, the results of the three methods
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Table 6: Comparison of our results with the best reported results from recent reported techniques.

Word
Baseline
(mfs)

Previous Results
Our
method
(EV1)

Stevenson et al. [1] Agirre et al. [2] Jimeno-Yepes and Aronson [4]

Joshi-2005
McInnes

2007
Stevenson-

2008
Single Subset Full NB CombSW CombV

Adjustment 67 71 70 74 33.3 35.5 76.3 69 53.9 99

Blood pressure 54 53 46 46 53.0 50 48 57.0 38 44 98

Cold 91 90 89 88 32.6 26.3 28.4 92.6 39 79 94

Condition 98 — 89 89 95.7 39.1 48.9 97.8 78 69 95

Culture 89 — 94 95 33 77 93.0 100 54 87

Degree 97 89 79 95 95.4 93.8 96.9 88 82 93

Evaluation 50 69 73 81 59 54 50 78.0 52 50 98

Extraction 94 84 86 85 23 27.6 94.3 98 86 94

Failure 86 — 73 67 27.6 72.4 86.2 86 100 83

Fat 97 84 77 84 56.2 63 95.9 97.3 91 84 93

Ganglion 93 — 94 96 66 77 64 95.0 88 86 93

Glucose 91 — 90 91 91 91 90 91.0 78 39 90

Growth 63 71 69 68 37 37 37 73.0 55 66 92

Immune
suppression

59 80 75 80 64 59 62 79.0 60 65 98

Implantation 83 94 92 93 75 84.7 84.7 98.0 94 97 91

Japanese 92 77 76 75 70.9 70.9 64.6 92.4 63 94 92

Lead 93 89 90 94 93.1 93.1 93.1 93.1 83 86 84

Man 63 89 80 90 61.5 34.8 44.6 87.0 65 42 98

Mosaic 54 87 75 87 60.8 66 82.5 84 72 99

Nutrition 51 52 49 54 33.7 32.6 55.1 45 43 94

Pathology 86 85 84 85 34.3 28.3 85.9 76 83 79

Radiation 62 82 81 84 58.2 53.1 53.1 83.7 76 76 82

Reduction 82 91 92 89 36.4 54.5 54.5 81.8 100 82 63

Repair 76 87 93 88 63.2 72.1 76.5 95.6 87 88 92

Sex 80 88 87 87 84 85 85 84.0 60 53 94

Support 80 — 91 89 80 80 80 80.0 100 90 67

Surgery 98 — 94 97 95.9 97 97 98.0 43 96 95

Ultrasound 84 92 85 90 84 84 83 85.0 81 83 93

Variation 80 — 91 95 85 80 75 91.0 65 86 86

Weight 55 83 79 81 56.6 56.6 56.6 84.9 66 68 83

White 54 79 74 76 68.9 67.8 63.3 81.1 57 58 100

Average 77.5 81.1 81.2 83.6 68.8 59.7 63.5 86.0 73.1 72.7 90.3

(Joshi-2005, McInnes-2007, and Stevenson-2008) are taken
from Stevenson et al. [1]. These three methods are supervised
methods and used various machine learning algorithm and
wide sets of features. For example, Stevenson-2008 used
linguistic features, CUI’s, MeSH terms, and combination of
these features. They employed three learners VSM (vector
space model), Naı̈ve Bayes (NB), and SVM. The results
included in Table 6 are their best results with VSM and
(linguistic + MeSH) features [1]. The method of Joshi-
2005 uses five supervised learning methods and collocation
features, while McInnes-2007 uses NB [1].

Our evaluation is done on 31 words (as explained in
Section 3). We obtained the results of the other methods

on these 31 words from the references shown in Table 6 to
allow for direct comparison. The best result reported in their
paper is 87.8% using all words with VSM model and for
McInnes 85.3% also with the whole set [1]. The best result
of Stevensons-2008 for subsets was 85.1% using a subset of
22 words defined by Stevenson et al. [1].

The results of the three methods (single, subset, full) in
Table 6 are taken directly from Agirre et al. [2]. As shown in
Table 6, the average accuracy of these three methods (68.8%,
59.7%, and 63.5%) on the 31 words is significantly lower
than our method (90.3%) and also the average accuracy of
their method on the whole set (65.9%, 63.0%, and 65.9%);
we note that their method is unsupervised and does not
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Table 7: The averaged evaluation results from Wang et al. [9].

Micro-avg. Macro-avg.

Precision Recall F1 Precision Recall F1

RULE-MAJORITY 72.2 62.39 66.94 27.77 46.67 29.32

RULE-SP 74.09 64.03 68.69 29.77 53.81 32.2

RULE-SPSENT 72.94 63.03 67.63 30.22 54.76 32.93

C&C 73.82 63.79 68.44 30.51 53.59 33.43

ENJU 72.98 63.06 67.66 31.35 55 34.61

ENJU-Genia 73 63.08 67.68 30.11 53.42 32.97

Minipar 73.02 63.1 67.69 30.19 53.56 33.1

Stanford 73.67 63.66 68.3 31.17 56.35 34.35

Stanford-Genia 73.48 63.5 68.13 30.61 55.61 33.78

ML 82.69 82.69 82.69 27.01 27.84 27.37

RELATION 75.24 63.99 69.16 31.97 55.61 34.8

HYBRID 83.8 83.8 83.8 57.56 49.72 49.9

Table 8: Precision, recall, and F1 results of our method on the
fivefold in the species disambiguation experiments.

Micro-avg

Precision Recall F1

Fold 1 81.86 92.78 87.0

Fold 2 82.08 94.77 88.0

Fold 3 82.95 97.31 89.6

Fold 4 84.12 98.70 90.8

Fold 5 81.25 85.83 83.5

Average 82.45 93.88 87.8

Total instances tested: 465

require tagged instances [2]. In another work, Jimeno-Yepes
and Aronson evaluate four unsupervised methods on the
whole NLM-WSD set [4] as well as NB and combination
of the four methods. The accuracy of the four methods
ranges from 58.3% to 88.3% (NB) on the whole set, and NB
was found to be the best performer followed by CombSW
(76.3%) [4]. The average accuracy results of NB and two
combinations (NB, CombSW, and CombV) on our 31 word-
subset are 86%, 73.1%, and 72.1% respectively which are
lower than our results, see Table 6.

When we applied our system onto the species disam-
biguation task, the results are also encouraging as shown
in Table 8. The evaluation results of our method compare
very well with those reported in [9] as shown in Table 7.
From their results (Table 7), we notice that the best overall
performance was obtained with the ML method (machine
learning) with precision, recall, and F1 values being equal
at 82.69. Our results as shown in Table 8 are not directly
comparable with those in Table 7 due to the difference
in the size of test set. However, we can see that our
method’s performance is reasonably well standing in terms
of precision, recall, and F1. The main strength of this method
is in using MI values as weights encoded in the feature
vectors. These weights enable the learner to induce quite

reliable models for sense disambiguation. As the components
of the vectors, +MI and −MI, are the common information
between context word and class labels, the induced learners
are finely calibrated towards the disambiguation task.

All the results showed that the technique is fairly
successful and effective in the disambiguation task. Thus,
more research work should be exerted to carry out further
improvements on the performance of this technique. In
future work of this research, we plan to investigate the
possibility of disambiguating entity names when all instances
of that entity are occurring in one species. Currently, our
method is supervised and required annotated instances in
both classes to be able to test new samples.
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