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Based on the theory of membrane elasticity, we use a continuum model to

explain the rhythmic opening and closing of the fusion pore. The following

is the derivation of the membrane force derived from the anisotropy of the

fusion pore membrane. The equilibrium analysis performed in our study is

described in more detail.

Derivation of the curvature-dependent force

The membrane free energy of the system is [1, 2]:

F =
κ

4

∫
[ (2H − 2Hm)2 + (2D − 2Dm)2 + σ]dA , (1)

where κ is the membrane bending modulus, H = (C1 + C2)/2 is the mean

membrane curvature, D = |C1−C2|/2 is the curvature deviator of the mem-

brane, Hm is the spontaneous membrane curvature and Dm is the intrinsic
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(spontaneous) membrane curvature deviator, C1 and C2 are the principal

membrane curvatures, σ is the surface membrane tension, and dA is the

infinitesimal membrane area element. It can be seen from Eq.(1) that the

membrane bending properties can be expressed in a simple way as a func-

tion of Hm and Dm. The difference between the membrane curvature and

the membrane intrinsic (spontaneous) curvature determines the energy cost

for bending the membrane away from its favourable curvature. The cation

concentration in the vesicle (n+) affects the intrinsic membrane curvatures,

as follows :

Hm = H̄m(1− n+/n+
max)

Dm = D̄m(1− n+/n+
max) , (2)

where H̄m and D̄m are the intrinsic membrane curvature and membrane

curvature deviator, respectively, and n+
max is the maximum concentration

of cations. Note that the spontaneous curvature of the anisotropic mem-

brane nanodomain depends on the normalized cation concentration (0 6

n+/n+
max 6 1).

The anisotropic membrane nanodomain has cylindrical intrinsic curvatures,

where C2m = 0, and consequently, H̄m = 1
2C1m = D̄m.

The radius of the fusion pore is :

r(z) = R+ h(z) (3)

where h(z) is a small deviation from the initial equilibrium radius R of the

tubular fusion pore.
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Membrane curvatures of the fusion pore

The surface of revolution of the fusion pore that has a tubular structure is

defined by the two principal curvatures,

C1 =
1

r(1 + r′2)1/2
, C2 = − r′′

(1 + r′2)3/2
. (4)

The mean membrane curvature is :

H =
C1 + C2

2
=

−r′′r + r′2 + 1

2r(1 + r′2)3/2
=

1

2

(
−h′′(z) +

1

R
− h(z)

R2

)
, (5)

where the curvature was expanded for small deviations from the tube radius,

r(z) = R+ h(z), r′(z) = h′(z), and r′′(z) = h′′(z).

The membrane curvature deviator is :

D =
C1 − C2

2
=

(1 + r′2) + r′′r

2r(1 + r′2)3/2
=

1

2

(
h′′(z) +

1

R
− h(z)

R2

)
, (6)

where the curvature was expanded for small deviations from the radius, and

where we assumed C1¿C1.

0.1 Equilibrium model

The equation of motion of the membrane height deflection (i.e. in the radial

direction) along the cylindrical main axis is given by [3, 4]:

φ
∂h(z)

∂t
= − ∂F

∂h(z)
, (7)

where φ is the friction coefficient describing the drag of the fluid surround-

ing the membrane, and F is the system free energy (Veksler and Gov, 2007;
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Kabaso et al., 2011a). The forces (per unit area) derived from the differen-

tiation of the free energy (Eq.1) are :

− ∂F

∂h(z)
= −φκ

(−2 + 2C1m
2(n+ − 1)2R2 +R2σ)

4R3
(8)

+φκ
((2 + 8C1m(n+ − 1)R+ 2C1m

2(n+ − 1)2R2 +R2σ)h[z]

4R4

+φκ
R2((2 + 4C1m(n+ − 1)R+ 2C1m

2(n+ − 1)2R2 +R2σ)h′′[z]− 4R2h′′′′[z])

4R4
.

The fusion pore and the vesicle share the same cation concentration. As

a result, the effects of cations on the spontaneous curvature of the fusion

pore is uniform throughout the pore.

By a small perturbation to the uniform initial state, we obtain :

r(z) = R+ δh(z, t) , (9)

where δh(z, t) is a small deviation from the uniform value.

The linearization of Eq. (7) yields :

φ
∂h(z)

∂t
=

∫ (
U + δL(h) +O(δ2)

)
dA (10)

where the function δL(h) describes the small undulation in the membrane

force, and O(δ2) describes higher order terms of the membrane undulation.

The force acting on the membrane at equilibrium state is described by U .

The equilibrium radius Req is obtained by assuming that the undulation U

equals zero. The equilibrium radii of the fusion pore is :

Req =
1√

C1m
2(n+ − 1)2 + σ/2

. (11)

The infinitesimal area dA of the axisymmetric model is (up to quadratic
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order):

dA = r(z)

(
1 +

1

2
h′(z)2

)
2π dz . (12)
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