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In this study the feasibility of using the artificial neural networksmodeling in predicting the effect ofMWCNTon amount of cement
hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To
determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are
PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In
this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest
efficiency coefficient and the lowest root mean square error, the best ANNmodel was chosen. The results of TGA test implied that
the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt%) of MWCNT.Moreover, since the efficiency
coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was
concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that
the ANN prediction in higher ages was more precise.

1. Introduction

Cementitious materials (especially concrete) are the most
common construction materials used worldwide. However,
cementitious materials are generally brittle and have very low
tensile strength and strain capacity. Macroscopic steel rein-
forcement bars are commonly used to improve the strength
and ductility of this type of material, but in recent decades
extensive research on the effects of micro- and macrofibers
in controlling the growth of cracks in cementitious materials
has been carried out [1–6]. In recent times, various nano
fibers have raised the interest of researchers due to their
exceptional mechanical properties and high potential in
reinforcing cement matrix. Carbon nanotube (CNT) is one
of the most important areas of research in the field of
nanotechnology. CNTs have already proven their reinforcing
performance in polymer based materials [1, 2]. In addition to
their high strength and elastic constant, CNTs have extremely

high aspect ratios, with values typically higher than 1000 : 1
and reaching as high as 2,500,000 : 1 [7]. Carbon nanotube
is the most common type of carbon nanostructures. In
the early 1990s, Sumio Iijima reported, for the first time,
the formation of carbon nanotube. Carbon nanotubes are
generally divided into two types, single walled (SWNT) and
multiwalled (MWNT). Carbon nanotubes can be represented
as a graphene sheet rolled into a cylinder with specific
alignment of the hexagonal rings and hemifullerenes attached
to the tips [8]. MWNTs can be represented as a family of
SWNTs of different diameters, which are combined within a
single entity in the form of concentric type MWNTs.

Carbon nanotubes can be considered as an exceptional
reinforcing material due to their extremely high aspect ratios
[9], ultra high strength [10], modulus [11], and elasticity [12].
The dimensions of nanotubes are at nanoscale which means
that they can be distributed within the cement matrix at
much more finer scale as compared to traditional reinforcing
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fibers since reinforcement of cement is typically done at
millimeter scale. The application of carbon nanotubes to
reinforce cementitious composites is therefore intended to
enhance the reinforcing behavior at nanolevel instead of
macrolevel. Cracks can be interrupted much more quickly,
and the eventually this hinders growth of crack at early stage
and prevents propagation of cracks tomicroscale. In addition,
nanotubes have the potential to act as filler within the
cement grains, thus producing denser composites.Therefore,
CNT reinforcements have the ability to produce significantly
stronger and tougher composites as compared to traditional
reinforcing fibers.

In this study, the effect of multiwalled carbon nanotube
on cement hydration products especially calcium silicate
hydrates (C–S–H) and consequently on the durability of
cementitious matrix has been studied. And then, based on
the results, the optimum percent of MWCNT has been
determined. Finally, based on the TGA analysis, the effect
of MWCNT on the amount of cement hydration products
and on improving the quality of cement hydration prod-
ucts microstructures of cement paste has been modeled by
using artificial neural networks (ANN). Nowadays, ther-
mogravimetric analysis (TGA) is widely accepted and used
as a very accurate method in determining the amount of
cement hydration products. Recently, some researchers have
attempted to model the TGA test results on a variety of
composites using artificial neural networks. For example,
some researcher in 2010 successfully prepared medium den-
sity polyethylene (MDPE) nanocomposite with 3wt%, 6wt%,
and 9wt% cloisite Na , and the thermal stability of nanocom-
posite was investigated using the thermogravimetric analysis
(TGA) [13]. The TGA in air atmosphere showed significantly
improved thermal stability of 3wt%, 6wt%, and 9wt% cloisite
Na nanocomposite in comparison to pure MDPE. The
results of TGA of MDPE/cloisite Na nanocomposites were
predicted by the artificial neural network (ANN). The ANN
and adaptive neural fuzzy inference systems (ANFIS) models
were developed to predict the degradation of MDPE/cloisite
Na nanocomposite with temperature. The results revealed
that there was a good agreement between predicted thermal
behavior and actual values. The findings of the study also
showed that the artificial neural networks and ANFIS tech-
niques can be applied as a powerful tool. In another study, a
new approach based on artificial neural network (ANN) has
been introduced to study the kinetics of thermal decomposi-
tion reactions of different polymericmaterials, using dynamic
thermogravimetry analysis (TGA) at several heating rates.
A multilayer neural network model was trained and tested
using published experimental data, allowing the proposed
model a very good correlation of the weight-loss data. As an
example, the same kinetic model had been successfully used
at different heating rates, with different polymeric materials
such as polyethylene, cellulose and lignin [14].

2. Materials and Methodology

Type I Portland cement (Tehran Cement, Iran) was used
in this study. Chemical and physical specifications for this

Figure 1: FE-SEM image of the obtained bundles MWCNTs shows
a maximum length of 10 𝜇m and diameters of around 50 nm.
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Figure 2: X-ray diffraction patterns of the pristine MWNTs.

type of cement and its allowable ranges in accordance with
ASTMC 150 are shown in Tables 1 and 2. In this study,
multiwalled carbon nanotubes were used. Figure 1 shows FE-
SEM images of the obtained MWCNTs bundles, which had
a length of 10 𝜇m and diameters of around 50 nm. Figure 2
shows the XRD pattern of the pristine MWNTs. It can be
seen that the diagram of pure MWCNTs exhibits the typical
peaks at 26.051∘ and 43.531∘, corresponding to the graphite
(002) and (100) reflections (Joint Committee for Powder
Diffraction Studies (JCPDS) No. 01-0646) [12].

2.1. Dispersion of Carbon Nanostructures within Cement
Matrix. To disperse the carbon nanotubes within the cement
matrix, the MWCNTs was added gradually to water con-
taining polycarboxylate ether (PCE) superplasticizer and the
mixture was sonicated for 5min after each addition to give
a total sonication time of 40min. The sonication conditions
were as follows: the amplitude was set to 50%, frequency
20Hz, power 500W, titanium alloy probe width 13mm, and
a constant applied energy of 1900 J/min.

After sonication, cement was added to the dispersed
MWCNTs at a water/cement ratio of 0.4 and mixed for 30 s
using a rotary mixer equipped with a flat beater. This process
followed the ASTM C 109 procedure (ASTM C 109/C 109 M,
2008).

2.2. Thermogravimetric Analysis (TGA). The phase changes
in hardening cement paste can be monitored by using
thermogravimetric analysis (TGA) through measuring the
weight of a sample as it is being heated at a controlled rate
in a Mettler TGA (model 851 LF). TGA analysis is performed
on the cement paste samples containing different percentages
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Table 1: Chemical contents of Type I cement, according to ASTM C 150.

Constituent compounds CaO, % SiO2, % Al2O3, % Fe2O3, % MgO, % SO3, % L.O.I, % I.R, %
Measured value 62.35 21.45 4.61 3.3 3.26 2.05 2.00 0.57

Table 2: Properties of Type I cement, according to ASTM C 150.

Chemical properties Physical properties
MgO
%

L.O.I
%

I.R
%

Blaine
specific
surface
cm2/g

Autoclave
expansion, %

Setting time Compressive strength kg/cm2

Initial
minutes

Final
hours 2-days

At
least 28
days

At last
28 days

Value <5 <3 <0.75 >2800 <0.8 >45 <6 >100 >425 <625

(0.1, 0.3, 0.5, and 1.0 wt%) of MWCNTs in comparison with
control samples containing noMWCNTwith a water/cement
ratio of 0.4 at various ages. The ages of testing were 1, 3, 7,
14, 28, and 56 days. The hand mixed pastes were cast into
PMMA moulds (18.0 × 5.0 × 5.0 cm), partially filled and
sealed on top with polyethylene films. The moulds were
vibrated for one minute to remove any air bubbles and voids.
After 1 day, the hardened blocks (18.0 × 5.0 × 5.0 cm) were
demoulded, crushed into smaller pieces, put in the moulds,
and sealed again. The environmental chamber, where the
samples were cured, was at 23±1∘C and 50% RH. At different
curing times crushed samples of each series were extracted
from the ageing chamber and dried to constant weight at 85∘C
for 8 h, to stop hydration: free liquid was thereby eliminated.
Dried samples were grounded in an agate mortar and sieved
to minus 80 mesh and the resulting powders were stored in
desiccators. In this study, TGA measures the weight loss of a
powdered sample which is subjected to heating from 25∘C to
1000∘C at a heating rate of the 10∘C/min in flowing argon (Ar)
atmosphere.

To some extent various hydrate phases decompose (lib-
erate their water) at different temperature ranges. Though
these ranges overlap considerably, some distinctions can be
made between calcium hydroxide (CH) and other hydrates
which include the primary product of hydration, calcium
silicate hydrate (C–S–H). Thermogravimetric analysis has
been widely accepted as an accurate method for the deter-
mination of crystalline calcium hydroxide (CH) content [15].
Calcium hydroxide is mostly crystalline and nonporous, and
it decomposes between about 400 and 450∘C. Weight loss
between 400 and 450∘C will be referred to as the “calcium
hydroxide loss (CHloss).” Though only weight loss from the
decomposition of CH is measured, it is shown that this
weight loss is very close to the amount of water in CH
and therefore proportional to the amount of CH [15]. The
presence of mass loss between 105∘C and 400∘C includes
the loss of water associated with the amorphous and porous
hydration products, the majority of which is the C–S–H
gel [16]. Weight loss computed over this temperature range
will thus be referred to as the “porous hydration products
loss (PHPloss).” Since C–S–H is very difficult to measure
directly due to both a lack of crystallinity and an indefinite

composition, the weight loss between 105∘C and 400∘C can
be treated due to the decomposition of C–S–H.

Meanwhile, it is worth mentioning that the thermogravi-
metric analysis also showed that functionalized MWCNTs
decompose between about 500∘C and 600∘C. But since the
amount ofMWCNTs in this cementmatrixwas somuch little,
the TGA curve of cement matrix reinforced with multiwalled
carbon nanotubes was so similar to the typical TGA curve of
the cement matrix.

The calculated PHP loss and CH loss over time due to
the evolution of hydration are plotted in Figure 3 for different
cement paste samples containing different percentages (0.1,
0.3, 0.5, and 1.0 wt%) of MWCNTs in comparison with
control samples containing no MWCNT with w/cm = 0.4.

As shown in Figure 3 the cement hydration is enhanced in
the presence of theMWCNT.As can be seen fromFigure 3(a),
PHP content (indicated by PHP loss) in cement paste samples
containing 0.1, 0.3, 0.5 wt% exceeds the control cement paste
during the hydration, indicating that nucleation of C–S–H
on the MWCNT accelerated the dissolution, nucleation, and
growth of the hydration products compared with the normal
cement mortar. C–S–H or PHP is responsible for the devel-
opment of many mechanical and physical properties such as
strength, permeability, and shrinkage and consequently for
improving durability [17].

Increase in MWCNTs while the water/cement ratio of
matrix is held constant, causes difficulty in providing suitable
workability and consequently dispersingMWCNTwithin the
matrix due to the presence of hydrophilic groups on the
MWCNT surfaces. In this circumstance, MWCNTs absorb a
nonnegligible amount of water, hampering the hydration of
the cement mortar and also causing them to agglomerate in
the form of clumps which are very difficult to disentangle.
These agglomerates form large voids within the cement
matrix and stresses cannot be transferred across the bundles.
In addition, if the MWCNT bundles remain intact, they no
longer remain within the nanoscale range. Instead of filling
the nanosized void spaces within the cement grains, they
gather between cement hydration products and create zones
of weakness throughout the cement matrix. This could be
why PHP content (indicated by PHPloss) and CH content
(indicated by CHloss) in cement paste samples containing
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Figure 3: TGA results over time for paste cement with MWCNT
at w/cm = 0.4, the calculated PHPloss (a) and CHloss (b) over
time due to the evolution of hydration for different cement paste
samples containing different percentages (0.1, 0.3, 0.5, and 1.0 wt%)
of MWCNTs in comparison with control samples containing no
MWCNT with w/cm = 0.4.

1.0 wt% are much less than that of the control samples
(Figure 3).

2.3. Artificial Neural Networks. Artificial neural networks
(ANNs) are data processing systems consisting of a large
number of simple, highly interconnected processing elements
(artificial neurons) in an architecture inspired by the struc-
ture of the central cortex of the brain [18, 19]. Much of the
success of neural networks is due to such characteristics as
nonlinear processing and parallel processing. Neural network
modeling techniques have been rapidly applied in engineer-
ing, business, psychology, science, and medicine in recent
years. In civil engineering, the methodology of neural net-
works has been successfully applied to a number of areas such
as structural analysis and design [20, 21], structural damage
assessment [22, 23], structural dynamics and control [24],

seismic liquefaction prediction [25], constitutive modeling
[26–28], pavement condition-ratingmodeling [29], and eval-
uating CPT calibration chamber test data [30].

In this study for ANN modeling, the multilayer percep-
tron (MLP) is used. A multilayer perceptron (MLP) is a feed
forward artificial neural network model. An MLP consists of
multiple layers of nodes in a directed graph, with each layer
fully connected to the next one. Three-layered feed forward
neural network (FFNN) shown in Figure 4 is used in this
study. This network is usually applied in forecasting time
series and in providing a general framework for representing
nonlinear functional mapping between a set of input and
output variables [31].

Three-layered FFNNs are based on a linear combination
of the input variables, which are transformed by a nonlinear
activation function. The explicit expression for an output
value of FFNNs is given by following equation:

𝑦
𝑘
= 𝑓
𝑜

[

[

𝑚

∑

𝑗=1

𝑤
𝑘𝑗
⋅ 𝑓
ℎ
(

𝑛

∑

𝑖=1

𝑤
𝑗𝑖
𝑥
𝑖
+ 𝑤
𝑗𝑜
) + 𝑤

𝑘𝑜

]

]

, (1)

where𝑤
𝑗𝑖
is the weight in the hidden layer connecting the 𝑖th

neuron in the input layer and the 𝑗th neuron in the hidden
layer; 𝑤

𝑗𝑜
is the bias for the 𝑗th hidden neuron; 𝑓

ℎ
is the

activation function of the hidden neuron; 𝑤
𝑘𝑗
is the weight

in the output layer connecting the 𝑗th neuron in the hidden
layer and the 𝑘th neuron in the output layer; 𝑤

𝑘𝑜
is the bias

for the 𝑘th output neuron; 𝑓
𝑜
is the activation function for

the output neuron. The weights are different in the hidden
and output layer, and their values can be changed during the
process of network training.

2.4. Goodness-of-Fit Tests. To examine how close the pre-
dicted data to the experimental ones, some different criteria
are used. There are two types of graphical and statistical
criteria goodness of fit where each has its own unique
features, and is used for a specific purpose. Since the graphical
method is not accurate and varies depending on opinion of
individual person, the statistical criteria were used in this
study. Efficiency coefficient (EC) and the root mean square
error (RMSE) are the most widely used statistical criteria [32,
33]. Finally, the best model, based on the highest efficiency
and the lowest root mean square error coefficient, is chosen:

EC = 1 −
∑
𝑛

𝑖=1

(𝑋
𝑒𝑖
− 𝑋
𝑠𝑖
)
2

∑
𝑛

𝑖=1

(𝑋
𝑒𝑖
− 𝑋
𝑒
)
2

, −∞ < EC ≤ 1,

RMSE = [1
𝑛

𝑛

∑

𝑖=1

(𝑋
𝑜𝑖
− 𝑋
𝑐𝑖
)
2

]

1/2

,

(2)

where 𝑛 is the number of data, 𝑋
𝑠𝑖
is experimental data, 𝑋

𝑒𝑖

is simulated data, and𝑋
𝑒
is average of experimental data.

3. Results and Discussions

3.1. Neural Networks on TGA Test Results. As mentioned
above, two main and critical parameters of TGA test are
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Figure 4: A three-layered FFNN with a backpropagation training algorithm.

PHPloss and CHloss. So in order tomodel the TGA test results,
the ANN modeling must be performed on these parameters
separately.

In this study, 60% of data are used for model calibration
and the remaining 40% are used for model verification.
Accordingly, the data are normalized according to the follow-
ing formula and is then used in the neural networks [34]

𝑌
𝑖
=
𝑋
𝑠𝑖

𝑋
𝑠max

, 𝑖 = 1, 2, 3, . . . , 𝑛, (3)

where 𝑌
𝑖
is the normalized data, 𝑋

𝑠𝑖
is the input data, and

𝑋
𝑠max is the maximum of the input data.
The process of network training is accomplished by a

feedback propagation algorithm. This algorithm is based on
the error-correction learning rule of Levenberg-Marquardt
(LM). The activation function is hyperbolic tangent sigmoid
(TANSIG) type. This neural network model has one input
layer, one output layer, and one hidden layer. The modeling
process is performed by the ANN toolbox in the MATLAB
environment.

3.2. Modeling of 𝑃𝐻𝑃
𝑙𝑜𝑠𝑠

by Artificial Neural Network. In
order to predict the PHPloss values for 7, 14, 28, and 56 ages,
(4) to (7) were used, respectively:

PHPTGA7D = 𝑓 (PHPTGA3D,PHPTGA1D) , (4)

PHPTGA14D = 𝑓 (PHPTGA7D,PHPTGA3D,PHPTGA1D) , (5)

PHPTGA28D = 𝑓 (PHPTGA14D,PHPTGA7D,

PHPTGA3D,PHPTGA1D) ,
(6)

PHPTGA56D = 𝑓 (PHPTGA28D,PHPTGA14D,PHPTGA7D,

PHPTGA3D,PHPTGA1D) .
(7)

The goodness-of-fit test results (RMSE and EC) of PHPloss
modeling using artificial neural networks are presented in
Table 3.
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Figure 5: Experimental and simulated values of PHPloss for 7 days
by artificial neural networks.
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Figure 6: Experimental and simulated values of PHPloss for 14 days
by artificial neural networks.

The experimental and simulated data of PHPloss in terms
of MWCNTs content percentages for different ages of 7, 14,
28, and 56 days are shown in Figures 5 and 8, respectively.

It can be concluded from Table 3 and Figures 4, 5, 6, and
7 that PHPloss values can be efficiently modeled by artificial
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Figure 7: Experimental and simulated values of PHPloss for 28 days
by artificial neural networks.
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Figure 8: Experimental and simulated values of PHPloss for 56 days
by artificial neural networks.

neural network at ages of 7, 14, 28, and 56 days. Furthermore,
it was shown that the prediction of PHPloss in higher ages
was more accurate. It is because of increasing the number of
input variables of ANN method in higher ages samples.

3.3. Modeling of𝐶𝐻
𝑙𝑜𝑠𝑠

by Artificial Neural Network. In order
to predict the CHloss values for 7, 14, 28, and 56 ages, (8) to
(11) were used, respectively:

CHTGA7D = 𝑓 (CHTGA3D,CHTGA1D) , (8)

CHTGA14D = 𝑓 (CHTGA7D,CHTGA3D,CHTGA1D) , (9)

CHTGA28D = 𝑓 (CHTGA14D,CHTGA7D,CHTGA3D,CHTGA1D) ,
(10)

CHTGA56D = 𝑓 (CHTGA28D,CHTGA14D,CHTGA7D,

CHTGA3D,CHTGA1D) .
(11)

The goodness-of-fit test results (RMSE and EC) of CHloss
modeling using artificial neural networks are presented in
Table 4.
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Figure 9: Experimental and simulated values of CHloss for 7 days by
artificial neural networks.
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Figure 10: Experimental and simulated values of CHloss for 14 days
by artificial neural networks.

The experimental and simulated data of CHloss in terms
of MWCNTs content percentages for different ages of 7, 14,
28, and 56 days are shown in Figures 9 and 12, respectively.

It can be concluded from Table 4 and Figures 9, 10, 11, and
12 that CHloss values can be efficiently modeled by artificial
neural network at ages of 7, 14, 28, and 56 days. Furthermore,
similar to the PHPloss modeling, the prediction of CHloss
in higher ages because of increasing the number of input
variables was more precise.

4. Conclusions

(1) The results of TGA test implied that the cement
hydration is enhanced in the presence of the optimum
percentage of MWCNT. It can be seen that PHP
content (indicated by PHP loss) in cement paste
samples containing 0.1, 0.3, and 0.5 wt% exceeds the
control cement paste during the hydration.Therefore,
due to the point that the amount of C–S–H, the most
desirable cement hydration products, in the presence
of the 3% of MWCNTs was the highest, it can be
concluded that the optimum content of MWCNT is
0.3 wt%.
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Table 3: The results of PHPloss modeling method based on artificial neural networks.

RMSE EC Network model Type
Verification phase Calibration phase Verification phase Calibration phase
0.0031 0.0015 0.9557 0.9981 2-3-1 PHPloss 7 day
0.0018 0.0018 0.9724 0.9942 3-3-1 PHPloss 14 day
0.0031 0.0004 0.9842 0.9996 4-4-1 PHPloss 28 day
0.0013 0.0010 0.9937 0.9966 5-4-1 PHPloss 56 day

Table 4: The results of PHPloss modeling method based on artificial neural networks.

RMSE EC Network model Type
Verification phase Calibration phase Verification phase Calibration phase
0.0018 0.0003 0.9511 0.9961 2-3-1 PHPloss 7 day
0.0008 0.0003 0.9791 0.9955 3-3-1 PHPloss 14 day
0.0007 0.0002 0.9838 0.9998 4-4-1 PHPloss 28 day
0.0002 0.0001 0.9950 0.9999 5-4-1 PHPloss 56 day
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Figure 11: Experimental and simulated values of CHloss for 28 days
by artificial neural networks.
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Figure 12: Experimental and simulated values of CHloss for 56 days
by artificial neural networks.

(2) Increase in MWCNTs while the water/cement ratio
of matrix is held constant, due to the presence of
hydrophilic groups on the MWCNT surfaces and
consequently absorption of a nonnegligible amount
of water, caused hampering of the hydration of the
cement mortar and agglomerating MWCNTs in the

form of clumps. Therefore, hampering the hydration
of the cement mortar is the main reason of the
significant decrease in CH and PHP loss sample
values containing 1.0% MWCNTs compared to the
other samples.

(3) Since the efficiency coefficient (EC) of the modeling
results of CH and PHP loss using artificial neural
networks in both the calibration and verification
stages is more than 0.96, it can be concluded that the
ANN can be used as an accurate and ultrafast tool for
modeling the TGA test results.

(4) This study also showed that the PHP and CH loss val-
ues of samples can be easily ANN-modeled by using
those values for smaller age samples. For instances, by
using the CH and PHP loss values of 1, 3, 7, 14, and
28 days samples, the CHloss and PHPloss of 56 days
samples can be ANN-modeled, easily.

(5) Another finding of this study was that the ANN
prediction of CHloss and PHPloss in higher ages
because of increasing the number of input variables
and consequently more concentration on input data
to achieve optimum result was more precise.
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