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We introduce and investigate an interesting subclassNP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) of analytic and bi-univalent functions in the open unit disk U.

For functions belonging to the classNP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ), we obtain estimates on the first two Taylor-Maclaurin coefficients |𝑎2| and |𝑎3|.

1. Introduction

Let R = (−∞,∞) be the set of real numbers, C the set of
complex numbers, and

N := {1, 2, 3, . . .} = N0 \ {0} (1)

the set of positive integers.
LetA denote the class of all functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑
𝑘=2

𝑎𝑘𝑧
𝑘 (2)

which are analytic in the open unit disk

U = {𝑧 : 𝑧 ∈ C and |𝑧| < 1} . (3)

We also denote by S the class of all functions in the normal-
ized analytic function classA which are univalent in U.

For two functions 𝑓 and 𝑔, analytic in U, we say that the
function 𝑓 is subordinate to 𝑔 in U and write

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U) , (4)

if there exists a Schwarz function 𝜔, which is analytic in U

with

𝜔 (0) = 0, |𝜔 (𝑧)| < 1, (𝑧 ∈ U) (5)

such that

𝑓 (𝑧) = 𝑔 (𝜔 (𝑧)) , (𝑧 ∈ U) . (6)

Indeed, it is known that

𝑓 (𝑧) ≺ 𝑔 (𝑧) , (𝑧 ∈ U) ⇒ 𝑓 (0) = 𝑔 (0) ,

𝑓 (U) ⊂ 𝑔 (U) .
(7)

Furthermore, if the function 𝑔 is univalent inU, then we have
the following equivalence:

𝑓 (𝑧) ≺ 𝑔 (𝑧) , (𝑧 ∈ U) ⇐⇒ 𝑓 (0) = 𝑔 (0) ,

𝑓 (U) ⊂ 𝑔 (U) .
(8)

For 𝑓 ∈ A, Al-Oboudi [1] introduced the following oper-
ator:

𝐷
0

𝛿
𝑓 (𝑧) = 𝑓 (𝑧) , (9)

𝐷
1

𝛿
𝑓 (𝑧) = (1 − 𝛿) 𝑓 (𝑧) + 𝛿𝑧𝑓


(𝑧) =: 𝐷𝛿𝑓 (𝑧) , (𝛿 ≥ 0) ,

(10)

𝐷
𝑛

𝛿
𝑓 (𝑧) = 𝐷𝛿 (𝐷

𝑛−1

𝛿
𝑓 (𝑧)) , (𝑛 ∈ N) . (11)
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If 𝑓 is given by (2), then from (10) and (11) we see that

𝐷
𝑛

𝛿
𝑓 (𝑧) = 𝑧 +

∞

∑
𝑘=2

[1 + (𝑘 − 1)𝛿]
𝑛
𝑎𝑘𝑧
𝑘
, (𝑛 ∈ N0) , (12)

with 𝐷𝑛
𝛿
𝑓(0) = 0. When 𝛿 = 1, we get Sǎlǎgean’s differential

operator𝐷𝑛
1
= 𝐷𝑛, [2].

Since univalent functions are one-to-one, they are invert-
ible and the inverse functions need not be defined on the
entire unit diskU. In fact, the Koebe one-quarter theorem [3]
ensures that the image of U under every univalent function
𝑓 ∈ S contains a disk of radius 1/4. Thus every function
𝑓 ∈ A has an inverse 𝑓−1, which is defined by

𝑓
−1
(𝑓 (𝑧)) = 𝑧 (𝑧 ∈ U) ,

𝑓 (𝑓
−1
(𝑤)) = 𝑤 (|𝑤| < 𝑟0 (𝑓) ; 𝑟0 (𝑓) ≥

1

4
) .

(13)

In fact, the inverse function 𝑓−1 is given by

𝑓
−1
(𝑤) = 𝑤 − 𝑎2𝑤

2
+ (2𝑎
2

2
− 𝑎3)𝑤

3

− (5𝑎
3

2
− 5𝑎2𝑎3 + 𝑎4)𝑤

4
+ ⋅ ⋅ ⋅ .

(14)

A function 𝑓 ∈ A is said to be bi-univalent in U if both
𝑓 and 𝑓−1 are univalent in U. Let Σ denote the class of bi-
univalent functions in U given by (2). For a brief history and
interesting examples of functions in the class Σ, see [4] (see
also [5, 6]). In fact, the aforecited work of Srivastava et al.
[4] essentially revived the investigation of various subclasses
of the bi-univalent function class Σ in recent years; it was
followed by such works as those by Frasin and Aouf [7],
Porwal and Darus [8], and others (see, e.g., [9–17]).

Motivated by the abovementioned works, we define the
following subclass of function class Σ.

Definition 1. Let ℎ : U → C be a convex univalent function
such that

ℎ (0) = 1, ℎ (𝑧) = ℎ (𝑧) (𝑧 ∈ U;R (ℎ (𝑧)) > 0) . (15)

A function 𝑓, defined by (2), is said to be in the class
NP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) if the following conditions are satisfied:

𝑓 ∈ Σ,

𝑒
𝑖𝛽
((1 − 𝜆)

𝐷𝑛
𝛿
𝑓 (𝑧)

𝑧
+ 𝜆(𝐷

𝑛

𝛿
𝑓 (𝑧))


) ≺ ℎ (𝑧) cos𝛽 + 𝑖 sin𝛽

(𝑧 ∈ U) ,

𝑒
𝑖𝛽
((1 − 𝜆)

𝐷𝑛
𝛿
𝑔 (𝑤)

𝑤
+ 𝜆(𝐷

𝑛

𝛿
𝑔 (𝑤))


)

≺ ℎ (𝑤) cos𝛽 + 𝑖 sin𝛽 (𝑤 ∈ U) ,

(16)

where 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝜆 ≥ 1, the function 𝑔 is given by

𝑔 (𝑤) = 𝑤 − 𝑎2𝑤
2
+ (2𝑎
2

2
− 𝑎3)𝑤

3

− (5𝑎
3

2
− 5𝑎2𝑎3 + 𝑎4)𝑤

4
+ ⋅ ⋅ ⋅ ,

(17)

and𝐷𝑛
𝛿
is the Al-Oboudi differential operator.

Remark 2. If we set

ℎ (𝑧) =
1 + 𝐴𝑧

1 + 𝐵𝑧
(−1 ≤ 𝐵 < 𝐴 ≤ 1) (18)

in Definition 1, then the class NP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) reduces to the

class denoted by NP𝜆,𝛿
Σ
(𝑛, 𝛽; 𝐴, 𝐵) which is the subclass of

the functions 𝑓 ∈ Σ satisfying

𝑒
𝑖𝛽
((1 − 𝜆)

𝐷𝑛
𝛿
𝑓 (𝑧)

𝑧
+ 𝜆(𝐷

𝑛

𝛿
𝑓 (𝑧))


)

≺
1 + 𝐴𝑧

1 + 𝐵𝑧
cos𝛽 + 𝑖 sin𝛽 (𝑧 ∈ U) ,

𝑒
𝑖𝛽
((1 − 𝜆)

𝐷𝑛
𝛿
𝑔 (𝑤)

𝑤
+ 𝜆(𝐷

𝑛

𝛿
𝑔 (𝑤))


)

≺
1 + 𝐴𝑤

1 + 𝐵𝑤
cos𝛽 + 𝑖 sin𝛽 (𝑤 ∈ U) ,

(19)

where 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝜆 ≥ 1, the function 𝑔 is defined by
(17), and𝐷𝑛

𝛿
is the Al-Oboudi differential operator.

Remark 3. If we set

ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1) (20)

in Definition 1, then the class NP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) reduces to the

class denoted by NP𝜆,𝛿
Σ
(𝑛, 𝛽, 𝛼) which is the subclass of the

functions 𝑓 ∈ Σ satisfying

R{𝑒
𝑖𝛽
((1 − 𝜆)

𝐷𝑛
𝛿
𝑓 (𝑧)

𝑧
+ 𝜆(𝐷

𝑛

𝛿
𝑓 (𝑧))


)} > 𝛼 cos𝛽

(𝑧 ∈ U) ,

R{𝑒
𝑖𝛽
((1 − 𝜆)

𝐷
𝑛

𝛿
𝑔 (𝑤)

𝑤
+ 𝜆(𝐷

𝑛

𝛿
𝑔 (𝑤))


)} > 𝛼 cos𝛽

(𝑤 ∈ U) ,

(21)

where 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝜆 ≥ 1, the function 𝑔 is defined by
(17), and𝐷𝑛

𝛿
is the Al-Oboudi differential operator.

Remark 4. If we set

𝛿 = 1, ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1) (22)

in Definition 1, then the class NP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) reduces to the

class denoted by NP𝜆
Σ
(𝑛, 𝛽, 𝛼) which is the subclass of the

functions 𝑓 ∈ Σ satisfying

R{𝑒
𝑖𝛽
((1 − 𝜆)

𝐷
𝑛𝑓 (𝑧)

𝑧
+ 𝜆(𝐷

𝑛
𝑓 (𝑧))


)} > 𝛼 cos𝛽

(𝑧 ∈ U) ,

R{𝑒
𝑖𝛽
((1 − 𝜆)

𝐷
𝑛𝑔 (𝑤)

𝑤
+ 𝜆(𝐷

𝑛
𝑔 (𝑤))


)} > 𝛼 cos𝛽

(𝑤 ∈ U) ,

(23)

where 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝜆 ≥ 1, the function 𝑔 is defined by
(17), and𝐷𝑛 is the Sǎlǎgean differential operator.
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Remark 5. If we set

𝑛 = 0, ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1) (24)

in Definition 1, then the class NP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) reduces to the

class denoted by NP𝜆
Σ
(𝛽, 𝛼) which is the subclass of the

functions 𝑓 ∈ Σ satisfying

R{𝑒
𝑖𝛽
((1 − 𝜆)

𝑓 (𝑧)

𝑧
+ 𝜆𝑓

(𝑧))} > 𝛼 cos𝛽 (𝑧 ∈ U) ,

R{𝑒
𝑖𝛽
((1 − 𝜆)

𝑔 (𝑤)

𝑤
+ 𝜆𝑔

(𝑤))} > 𝛼 cos𝛽 (𝑤 ∈ U) ,

(25)

where 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝜆 ≥ 1, and the function 𝑔 is defined
by (17).

Remark 6. If we set

𝑛 = 0, 𝜆 = 1, ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1)

(26)

in Definition 1, then the class NP𝜆,𝛿
Σ
(𝑛, 𝛽; ℎ) reduces to the

class denoted by NPΣ(𝛽, 𝛼) which is the subclass of the
functions 𝑓 ∈ Σ satisfying

R {𝑒
𝑖𝛽
𝑓

(𝑧)} > 𝛼 cos𝛽 (𝑧 ∈ U) ,

R {𝑒
𝑖𝛽
𝑔

(𝑤)} > 𝛼 cos𝛽 (𝑤 ∈ U) ,

(27)

where 𝛽 ∈ (−𝜋/2, 𝜋/2) and the function 𝑔 is defined by (17).

We note that

NP
𝜆

Σ
(𝑛, 0, 𝛼) =H

Σ (𝑛, 𝛼, 𝜆) (see [8]) ,

NP
𝜆

Σ
(0, 𝛼) =B

Σ (𝛼, 𝜆) (see [7]) ,

NPΣ (0, 𝛼) =HΣ (𝛼) (see [4]) .

(28)

Firstly, in order to derive our main results, we need the
following lemma.

Lemma 7 (see [18]). Let the function ℎ(𝑧) given by

ℎ (𝑧) =

∞

∑
𝑛=1

𝐵𝑛𝑧
𝑛 (29)

be convex in U. Suppose also that the function 𝜑(𝑧) given by

𝜑 (𝑧) =

∞

∑
𝑛=1

𝑐𝑛𝑧
𝑛 (30)

is holomorphic in U. If 𝜑(𝑧) ≺ ℎ(𝑧) (𝑧 ∈ U), then
𝑐𝑛
 ≤
𝐵1
 (𝑛 ∈ N) . (31)

The object of the present paper is to find estimates on the
Taylor-Maclaurin coefficients |𝑎2| and |𝑎3| for functions in
this new subclassNP𝜆,𝛿

Σ
(𝑛, 𝛽; ℎ) of the function class Σ.

2. A Set of General Coefficient Estimates

In this section, we state and prove our general results involv-
ing the bi-univalent function class NP𝜆,𝛿

Σ
(𝑛, 𝛽; ℎ) given by

Definition 1.

Theorem8. Let the function𝑓(𝑧) given by the Taylor-Maclau-
rin series expansion (2) be in the function class

NP
𝜆,𝛿

Σ
(𝑛, 𝛽; ℎ) (𝛽 ∈ (−𝜋/2, 𝜋/2) , 𝜆 ≥ 1, 𝛿 ≥ 0, 𝑛 ∈ N0)

(32)

with

ℎ (𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧
2
+ ⋅ ⋅ ⋅ . (33)

Then

𝑎2
 ≤ min

{

{

{

𝐵1
 cos𝛽

(1 + 𝛿)
𝑛
(1 + 𝜆)

, √
𝐵1
 cos𝛽

(1 + 2𝛿)
𝑛
(1 + 2𝜆)

}

}

}

,

(34)

𝑎3
 ≤

𝐵1
 cos𝛽

(1 + 2𝛿)
𝑛
(1 + 2𝜆)

. (35)

Proof. It follows from (16) that

𝑒
𝑖𝛽
((1 − 𝜆)

𝐷
𝑛

𝛿
𝑓 (𝑧)

𝑧
+ 𝜆(𝐷

𝑛

𝛿
𝑓 (𝑧))


)

= 𝑝 (𝑧) cos𝛽 + 𝑖 sin𝛽 (𝑧 ∈ U) ,

(36)

𝑒
𝑖𝛽
((1 − 𝜆)

𝐷𝑛
𝛿
𝑔 (𝑤)

𝑤
+ 𝜆(𝐷

𝑛

𝛿
𝑔 (𝑤))


)

= 𝑞 (𝑤) cos𝛽 + 𝑖 sin𝛽 (𝑤 ∈ U) ,

(37)

where 𝑝(𝑧) ≺ ℎ(𝑧) and 𝑞(𝑤) ≺ ℎ(𝑤) have the following
Taylor-Maclaurin series expansions:

𝑝 (𝑧) = 1 + 𝑝1𝑧 + 𝑝2𝑧
2
+ ⋅ ⋅ ⋅ , (38)

𝑞 (𝑤) = 1 + 𝑞1𝑤 + 𝑞2𝑤
2
+ ⋅ ⋅ ⋅ , (39)

respectively. Now, upon equating the coefficients in (36) and
(37), we get

𝑒
𝑖𝛽
(1 + 𝛿)

𝑛
(1 + 𝜆) 𝑎2 = 𝑝1 cos𝛽, (40)

𝑒
𝑖𝛽
(1 + 2𝛿)

𝑛
(1 + 2𝜆) 𝑎3 = 𝑝2 cos𝛽, (41)

−𝑒
𝑖𝛽
(1 + 𝛿)

𝑛
(1 + 𝜆) 𝑎2 = 𝑞1 cos𝛽, (42)

𝑒
𝑖𝛽
[−(1 + 2𝛿)

𝑛
(1 + 2𝜆) 𝑎3 + 2(1 + 2𝛿)

𝑛
(1 + 2𝜆) 𝑎

2

2
]

= 𝑞2 cos𝛽.
(43)

From (40) and (42), we obtain

𝑝1 = −𝑞1, (44)

2𝑒
2𝑖𝛽
(1 + 𝛿)

2𝑛
(1 + 𝜆)

2
𝑎
2

2
= (𝑝
2

1
+ 𝑞
2

1
) cos2𝛽. (45)
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Also, from (41) and (43), we find that

𝑎
2

2
=
𝑒−𝑖𝛽 (𝑝2 + 𝑞2) cos𝛽
2(1 + 2𝛿)

𝑛
(1 + 2𝜆)

. (46)

Since 𝑝, 𝑞 ∈ ℎ(U), according to Lemma 7, we immediately
have

𝑝𝑘
 =



𝑝(𝑘) (0)

𝑘!


≤
𝐵1
 (𝑘 ∈ N) ,

𝑞𝑘
 =



𝑞(𝑘) (0)

𝑘!


≤
𝐵1
 (𝑘 ∈ N) .

(47)

Applying (47) and Lemma 7 for the coefficients𝑝1,𝑝2, 𝑞1, and
𝑞2, from the equalities (45) and (46), we obtain

𝑎2

2
≤

𝐵1

2cos2𝛽

(1 + 𝛿)
2𝑛
(1 + 𝜆)

2
, (48)

𝑎2

2
≤

𝐵1
 cos𝛽

(1 + 2𝛿)
𝑛
(1 + 2𝜆)

, (49)

respectively. So we get the desired estimate on the coefficient
|𝑎2| as asserted in (34).

Next, in order to find the bound on the coefficient |𝑎3|, we
subtract (43) from (41). We thus get

2(1 + 2𝛿)
𝑛
(1 + 2𝜆) 𝑎3 − 2(1 + 2𝛿)

𝑛
(1 + 2𝜆) 𝑎

2

2

= 𝑒
−𝑖𝛽
(𝑝2 − 𝑞2) cos𝛽.

(50)

Upon substituting the value of 𝑎2
2
from (45) into (50), it fol-

lows that

𝑎3 =
𝑒
−2𝑖𝛽
(𝑝
2

1
+ 𝑞
2

1
) cos2𝛽

2(1 + 𝛿)
2𝑛
(1 + 𝜆)

2
+
𝑒−𝑖𝛽 (𝑝2 − 𝑞2) cos𝛽
2(1 + 2𝛿)

𝑛
(1 + 2𝜆)

. (51)

So we get

𝑎3
 ≤

𝐵1

2cos2𝛽

(1 + 𝛿)
2𝑛
(1 + 𝜆)

2
+

𝐵1
 cos𝛽

(1 + 2𝛿)
𝑛
(1 + 2𝜆)

. (52)

On the other hand, upon substituting the value of 𝑎2
2
from

(46) into (50), it follows that

𝑎3 =
𝑒−𝑖𝛽 (𝑝2 + 𝑞2) cos𝛽
2(1 + 2𝛿)

𝑛
(1 + 2𝜆)

+
𝑒−𝑖𝛽 (𝑝2 − 𝑞2) cos𝛽
2(1 + 2𝛿)

𝑛
(1 + 2𝜆)

. (53)

And we get

𝑎3
 ≤

𝐵1
 cos𝛽

(1 + 2𝛿)
𝑛
(1 + 2𝜆)

. (54)

Comparing the inequalities in (52) and (54) completes the
proof of Theorem 8.

3. Corollaries and Consequences

By setting

ℎ (𝑧) =
1 + 𝐴𝑧

1 + 𝐵𝑧
(−1 ≤ 𝐵 < 𝐴 ≤ 1) (55)

in Theorem 8, we have the following corollary.

Corollary 9. Let the function 𝑓(𝑧) given by the Taylor-
Maclaurin series expansion (2) be in the function class

NP
𝜆,𝛿

Σ
(𝑛, 𝛽; 𝐴, 𝐵)

(𝛽 ∈ (−𝜋/2, 𝜋/2) , 𝜆 ≥ 1, 𝛿 ≥ 0, −1 ≤ 𝐵 < 𝐴 ≤ 1, 𝑛 ∈ N0) .

(56)

Then

𝑎2
 ≤ min{

(𝐴 − 𝐵) cos𝛽
(1 + 𝛿)

𝑛
(1 + 𝜆)

, √
(A − B) cos𝛽
(1 + 2𝛿)

𝑛
(1 + 2𝜆)

} ,

𝑎3
 ≤

(𝐴 − 𝐵) cos𝛽
(1 + 2𝛿)

𝑛
(1 + 2𝜆)

.

(57)

By setting

ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1) (58)

in Theorem 8, we have the following corollary.

Corollary 10. Let the function 𝑓(𝑧) given by the Taylor-
Maclaurin series expansion (2) be in the function class

NP
𝜆,𝛿

Σ
(𝑛, 𝛽, 𝛼)

(𝛽 ∈ (−𝜋/2, 𝜋/2) , 𝜆 ≥ 1, 𝛿 ≥ 0, 0 ≤ 𝛼 < 1, 𝑛 ∈ N0) .
(59)

Then

𝑎2
 ≤ min{

2 (1 − 𝛼) cos𝛽
(1 + 𝛿)

𝑛
(1 + 𝜆)

, √
2 (1 − 𝛼) cos𝛽
(1 + 2𝛿)

𝑛
(1 + 2𝜆)

} ,

𝑎3
 ≤

2 (1 − 𝛼) cos𝛽
(1 + 2𝛿)

𝑛
(1 + 2𝜆)

.

(60)

By setting

𝛿 = 1, ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1) (61)

in Theorem 8, we have the following corollary.

Corollary 11. Let the function 𝑓(𝑧) given by the Taylor-
Maclaurin series expansion (2) be in the function class

NP
𝜆

Σ
(𝑛, 𝛽, 𝛼)

(𝛽 ∈ (−𝜋/2, 𝜋/2) , 𝜆 ≥ 1, 0 ≤ 𝛼 < 1, 𝑛 ∈ N0) .
(62)
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Then

𝑎2
 ≤ min{

2 (1 − 𝛼) cos𝛽
2𝑛 (1 + 𝜆)

, √
2 (1 − 𝛼) cos𝛽
3𝑛 (1 + 2𝜆)

} ,

𝑎3
 ≤
2 (1 − 𝛼) cos𝛽
3𝑛 (1 + 2𝜆)

.

(63)

Remark 12. When 𝛽 = 0, Corollary 11 is an improvement of
the following estimates obtained by Porwal and Darus [8].

Corollary 13 (see [8]). Let the function 𝑓(𝑧) given by the
Taylor-Maclaurin series expansion (2) be in the function class

HΣ (𝑛, 𝛼, 𝜆) (𝜆 ≥ 1, 0 ≤ 𝛼 < 1, 𝑛 ∈ N0) . (64)

Then

𝑎2
 ≤ √

2 (1 − 𝛼)

3𝑛 (1 + 2𝜆)
,

𝑎3
 ≤
4(1 − 𝛼)

2

22𝑛(1 + 𝜆)
2
+
2 (1 − 𝛼)

3𝑛 (1 + 2𝜆)
.

(65)

By setting

𝑛 = 0, ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1) (66)

inTheorem 8, we have the following corollary.

Corollary 14. Let the function 𝑓(𝑧) given by the Taylor-
Maclaurin series expansion (2) be in the function class

NP
𝜆

Σ
(𝛽, 𝛼) (𝛽 ∈ (−𝜋/2, 𝜋/2) , 𝜆 ≥ 1, 0 ≤ 𝛼 < 1) . (67)

Then

𝑎2
 ≤ min

{

{

{

2 (1 − 𝛼) cos𝛽
1 + 𝜆

,√
2 (1 − 𝛼) cos𝛽
1 + 2𝜆

}

}

}

,

𝑎3
 ≤
2 (1 − 𝛼) cos𝛽
1 + 2𝜆

.

(68)

Remark 15. When 𝛽 = 0, Corollary 14 is an improvement of
the following estimates obtained by Frasin and Aouf [7].

Corollary 16 (see [7]). Let the function 𝑓(𝑧) given by the
Taylor-Maclaurin series expansion (2) be in the function class

BΣ (𝛼, 𝜆) (𝜆 ≥ 1, 0 ≤ 𝛼 < 1) . (69)

Then

𝑎2
 ≤
√
2 (1 − 𝛼)

1 + 2𝜆
,

𝑎3
 ≤
4(1 − 𝛼)

2

(1 + 𝜆)
2
+
2 (1 − 𝛼)

1 + 2𝜆
.

(70)

By setting

𝑛 = 0, 𝜆 = 1, ℎ (𝑧) =
1 + (1 − 2𝛼) 𝑧

1 − 𝑧
(0 ≤ 𝛼 < 1)

(71)

in Theorem 8, we have the following corollary.

Corollary 17. Let the function 𝑓(𝑧) given by the Taylor-
Maclaurin series expansion (2) be in the function class

NPΣ (𝛽, 𝛼) (𝛽 ∈ (−𝜋/2, 𝜋/2) , 0 ≤ 𝛼 < 1) . (72)

Then

𝑎2
 ≤ min

{

{

{

(1 − 𝛼) cos𝛽,√
2 (1 − 𝛼) cos𝛽

3

}

}

}

,

𝑎3
 ≤
2 (1 − 𝛼) cos𝛽

3
.

(73)

Remark 18. When 𝛽 = 0, Corollary 17 is an improvement of
the following estimates obtained by Srivastava et al. [4].

Corollary 19 (see [4]). Let the function 𝑓(𝑧) given by the
Taylor-Maclaurin series expansion (2) be in the function class

HΣ (𝛼) (0 ≤ 𝛼 < 1) . (74)

Then

𝑎2
 ≤
√
2 (1 − 𝛼)

3
,

𝑎3
 ≤
(1 − 𝛼) (5 − 3𝛼)

3
.

(75)

References

[1] F. M. Al-Oboudi, “On univalent functions defined by a gener-
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