
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 171647, 13 pages
http://dx.doi.org/10.1155/2013/171647

Research Article
Compositional Mining of Multiple Object API Protocols through
State Abstraction

Ziying Dai,1 Xiaoguang Mao,1 Yan Lei,1 Yuhua Qi,1 Rui Wang,1 and Bin Gu2

1 School of Computer, National University of Defense Technology, Changsha 410073, China
2 Beijing Institute of Control Engineering, Beijing 100190, China

Correspondence should be addressed to Xiaoguang Mao; xgmao@nudt.edu.cn

Received 26 March 2013; Accepted 17 April 2013

Academic Editors: S. H. Rubin, S. Saini, Y. Takama, and Y. Zhu

Copyright © 2013 Ziying Dai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in
practice because writing them is cumbersome and error prone.Multiple object API protocols aremore expressive than single object
API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic
mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions.
Current approaches utilize various heuristics to focus on small sets ofmethods. In this paper, we present a general, scalable, multiple
object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object
states during themining process.We first mine single object typestates as finite state automata whose transitions are annotated with
states of interacting objects before and after the execution of the corresponding method and then construct multiple object API
protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a
series of experiments.

1. Introduction

In object-oriented programs, programmers write code by
invoking various application programming interfaces (APIs).
In general, not all method invocation sequences are legal.
There are constraints on the temporal order of invocations
of related methods. For example, programmers should not
write into a file after it has been closed. API protocols specify
which API method call sequences are allowed. API protocols
are very useful in many software engineering activities. They
can aid the generation of test cases [1]. Program verification
tools can use API protocols as input to prove the absence of
protocol violations [2, 3], and program analysis tools can use
them to find certain errors [4–7]. In addition, formal speci-
fications including temporal API specifications can support
the understanding of correct software behavior [8], which is
central to software maintenance.

As writing API protocols is cumbersome and requires
expert knowledge of correspondingAPIs, they are oftenmiss-
ing, incomplete, or out of date despite their usefulness. To
address this problem, researchers have developed specifica-
tion mining techniques to mine API protocols from API

client programs [9–17]. Many existing approaches focus on
API protocols of single objects [14–16]. However, an object
is not isolated; they interact by invoking each other’s meth-
ods. Single object protocols are too restrictive because some
API protocols can only be expressed by specifying multiple
interacting objects. For instance, we must consider a collec-
tion and its iterator together to specify one of their safety
properties that the contents of the collection should not be
modified while its iterator is being used. Experiments in
previous work [6] show that 41% of the detected issues can
be only found with multiple object protocols.

According to the information hiding principle of object-
oriented software engineering, states of an object should only
be accessed and modified through the methods defined in
this object’s interface. Since objects interact by invoking each
other’s methods, the receiver object of a method invocation
typically interacts with the method’s parameter objects and
return object if any. Moreover, objects can transitively affect
other objects’ behavior. As methods typically receive param-
eters as input and produce a return, object interactions are
common. There are possible hundreds of millions of objects
during the execution of realistic programs. For dynamic

2 The Scientific World Journal

analysis approaches, the input trace data is usually very large
(e.g., more than 240 million runtime events [10] and more
than 98 million runtime events [11]). These objects compose
a large and complex interaction net, which poses a major
challenge to the mining of multiple object API protocols.
On the one hand, we should consider all object interactions
to mine precise and complete specifications. On the other
hand, large sets of interacting objects lead to very high com-
putational overhead that compromises the usefulness of the
specification mining approach.

Typestates [18] are intended for capturing API protocols.
The observation behind typestates is that whether an opera-
tion is available on an object depends not only on the type
of the object but also its internal states. Researchers develop
several typestate systems for object-oriented programs [19,
20]. State abstraction techniques to mine typestates based on
explicit object states [14, 15] have been proven effective to
mine useful API protocols of single objects. The main idea
of these techniques is to use abstract values of object fields
(or returns of the observer methods) to label states during
the mining process. In this paper, we apply the idea of state
abstraction to mine API protocols of multiple interacting
objects. Our insight is that by labelled object states, we can
conveniently identify the order of method invocations from
different objects. We give a clear definition of object interac-
tions based on the type definitions of objects, and it can cap-
ture all interacting objects. Based on this definition, our
miner first mines single object typestates as finite state mach-
ines (FSMs) whose states are labelled by abstract field values
and whose transitions are labelled with explicit states of
interacting objects before and after the execution of the corre-
sponding methods. Second, our miner extracts the typestates
of the declared types (maybe concrete super types of the
runtime types of objects or even abstract types) of parameters
and returns of methods from the typestates of their imple-
menting subtypes. Then, our miner products typestate FSMs
of interacting objects without violations of the interacting
constraints annotated with transitions of single object type-
states. At last, state labels are discarded, and we get multiple
object API protocols. The most important feature of our
miner is that each object is mined separately without consid-
ering methods of other objects, which guarantees the scal-
ability of our approach. The naive product of the typestate
FSMs of different objects cannot capture the constraints of
object interactions because the product allows arbitrary inter-
leavings of method invocations from different objects.

Previous work on mining multiple object API protocols
employs various approaches to cope with this challenge [10,
11, 13, 17, 21, 22]. In order to reduce the complexity of the
analysis of object interactions, they utilize various heuristics
to focus on small sets of related objects and methods and
then mine subtraces of these related events by commonly
used specification inference techniques. Pradel and Gross
[10] present themethod-centric approach that runtime events
issued during a method’s execution are assumed to be related
to each other. Nguyen et al. [22] also confines interacting
objects to the source code of a single method. Lee et al.
[11] propose the event specification approach that methods
involved in a unit test run are assumed to be interacting

with each other. Yang et al. [17] and Nguyen et al. [21] utilize
the predefined small specification templates such as the
alternating pattern over event pairs to mine simple patterns
dynamically and statically, respectively. Gabel and Su [13] first
mine small patterns based on the predefined simple templates
and then use inference rules to compose them to con-
struct complex properties. These approaches are shown to be
able to mine useful protocols. However, because the potential
interactions with an object are determined by the type
definition (e.g., signatures of methods) of the object, there
may be some unpreferred object interactions that are filtered
out. These approaches exchange some object interactions for
the scalability. In contrast, our approach can capture all object
interactions that manifest during runtime and scalably mine
arbitrarily complexmultiple object API protocols by compos-
ing the typestates of single objects.

The rest of this paper is organized as follows. Section 2
introduces the background of object-oriented typestate sys-
tems and discusses their drawbacks when they are used to
formalize API protocols. Section 3 discusses our approach to
mining multiple object API protocols by composing type-
states of single objects. Section 4 describes our implemen-
tation for Java and presents the experimental evaluation of
our approach. Section 5 discusses related work, and Section 6
concludes.

2. Background: Object-Oriented Typestates

The formalism of multiple object API protocols mined in
this paper is inspired by the object specifications of several
existing object-oriented typestate systems [19, 20]. Because
typestates reflect how state changes of objects can affect valid
method invocations, a typestate is an abstraction over con-
crete object states and can be characterized by the values of all
fields of an object. Typestates aremapped onto the fields of the
implementing class by defining a predicate for each typestate,
called a state invariant, which can be any boolean combina-
tion of state tests, state comparisons, integer comparisons,
boolean constants and fields. The substitutability of subtypes
for super types is preserved by the state refinement that a sub-
type can define a set of substates as special cases of an exist-
ing state. The specification of a method can be changed
through themethod refinement. A method can be respecified
more precisely in a subtype based on the refined substates.
The main role of typestates is to specify methods. Equation
(1) gives a simplified method specification language for type-
states of object-oriented programs:

𝑀 := 𝐶 | 𝑀 ∧𝑀,

𝐶 := 𝑉 󳨀→ 𝑉,

𝑉 := (𝑠
1
, . . . , 𝑠

𝑛
) .

(1)

Amethod is specified with an intersection of cases, which
means that all these cases hold. A case represents a state
transition which is denoted as 𝐴 → 𝐵 to express that a
method requires a source state 𝐴 and produces a destination
state 𝐵. The source state is a vector consisting of the states
of the receiver of the method and its arguments (in their

The Scientific World Journal 3

order in the signature). The destination state has one more
state for the method’s return object if any. Nondeterminism
of state transitions can be expressed using the intersections
of different cases. For example, 𝐴 → 𝐵 ∧𝐴 → 𝐶 represents
that starting at state𝐴, executions of a method can transition
to state 𝐵 or state 𝐶. The state invariant is evaluated to test
whether an object is in a particular state. Either statically
checked [19] or dynamically checked [20], state invariants
of typestates are evaluated for every method invocation:
source state violations are flagged as precondition violations,
and destination state violations are flagged as postcondition
violations. Source states and destination states are actually
treated as preconditions and postconditions of corresponding
methods, respectively.

These typestate systems have been proven useful for
modeling protocols in object-oriented programs [19, 20].
However, there are mainly two drawbacks of them to specify
API protocols. First, it is not trivial to derive state invariants
as this requires expert knowledge of underlying classes. If
there is any, semantic information of APIs is mainly within
informal documents and needs to be manually extracted.
Second, because typestates are tagged with state invariants
which rely on values of fields of corresponding classes,
these typestate systems cannot specify abstract types, such as
interfaces and abstract classes in Java. Abstract types usually
represent high-level abstractions and obey many common
and important properties. Specifications of abstract types
are more clear, explicit, and compact than that of their
implementing classes.

3. Technical Approach

This section discusses the details of our approach. In Section
3.1, we define several concepts to formalize the idea of type-
states composition. In Section 3.2, we present how to mine
single object typestates annotated with object interactions
through state abstraction. In Section 3.3, we present the
technique to extract typestates for super types from typestates
of their implementing subclasses. In Section 3.4, we discuss
how to compose single object typestates into API protocols
of multiple interacting objects.

Figure 1 shows the typestates of interactions between
BufferedInputStream and its wrapped InputStream
mined by our approach.This is the running example through-
out our paper. All classes presented as examples in this paper
are from the standardAPIs of the Java language except explic-
itly stated. These typestates capture the resource-wrapping
protocol that closing the wrapping resource will implicitly
close the wrapped resource, so the wrapped resource can
not be used any more after its wrapping resource is closed.
The is part of this figure is the typestates of InputStream
and the bis part is that of BufferedInputStream. Because
InputStream is an abstract class, we obtain its types-
tates by extracting submodels from typestates of its imple-
menting type through a state-preserving submodel extrac-
tion algorithm. Directed dashed lines represent interactions
between these two typestate models. The directed dashed
line from state 1 of is to <init> of bis denotes that an
InputStream object should be in its state 1 before passed

bis: BufferedInputStream

is: InputStream

read

readread

read

0 1 2

2

0 1 3

close

close⟨init⟩(InputStream)

⟨init⟩

Figure 1: Typestates of interactions between BufferedIn-
putStream and its wrapped InputStreammined by our approach.
is denotes the above highlighted part of the figure, and bis denotes
the below highlighted part of the figure.

into <init> of BufferedInputStream as the parame-
ter. This dashed line characterizes the common usage that
the <init> of BufferedInputStream follows <init> of
InputStream. The directed dashed line from close of bis
to state 2 of is denotes that after the execution of close of
BufferedInputStream, the wrapped InputStream is in its
final state 2.This dashed line specifies the safety property that
thewrapped InputStream cannot be used anymore after the
close of its wrapping BufferedInputStream.

3.1. Approach Overview. Here we give a high-level overview
of our mining approach.

Definition 1 (trace). A trace 𝑇 = ⟨𝑒
1
, . . . , 𝑒

𝑛
⟩ is a sequence of

events, where an event 𝑒 = (𝑠
1
, 𝑚, 𝑠
2
) is a triple, with𝑚 is the

method execution, 𝑠
1
is the state of the training program just

before 𝑚 enters, and 𝑠
2
is the state of the training program

just after𝑚 exits. For object-oriented programs, the program
state is typically a set of objects each of which consists of a
set of field-value pairs. We write 𝑠.𝑜 as the state of 𝑜 when 𝑠
denotes the state of the program.

Definition 2 (interaction specification). Suppose 𝑡 is a ref-
erence type (classes or interfaces in Java, excluding arrays).
For every public method 𝑡

𝑟
𝑚(𝑡
1
, . . . , 𝑡

𝑛
) of 𝑇, where 𝑚 is

the method name, 𝑡
𝑟
is the return type, and 𝑡

1
, . . . , 𝑡

𝑛
are

parameter types, we omit void and primitive types of para-
meters and return and only keep reference types.The interac-
tion specification 𝑆

𝑡
of 𝑡 is the set𝑀 of all its public methods

with retained reference parameters and returns. We use 𝑃
𝑡
to

denote all retained parameters and returns in 𝑆
𝑡
.

The interaction specification of a type is determined by its
definition. We neither make assumptions nor employ heuris-
tics.This is the power of our approach that it has the potential
to capture all objects interacting with an object. For example,

4 The Scientific World Journal

Single object typestates
annotated with object interactions

Typestate extraction

Typestates of
super types(1) Execution traces

(2) Source code
Multiple object
API protocolsProtocols composition

and filtering

Single object
typestates mining

Figure 2: The architecture of our approach.

the interaction specification of BufferedInputStream is
the set {<init> (InputStream), <init> (InputStream,
)} with as the place holder to indicate the position of each
parameter. Methods that have no reference parameters and
no reference return are omitted.

Definition 3 (interacting objects). During runtime, if a
method is invoked, its parameters and return of reference
type if any are bound to null or specific objects. At some
point during runtime, for an object 𝑜 of reference type 𝑡, its
interacting objects (objects interacting with it) form a set 𝑂

𝑜

that includes all objects that are bound to the parameters and
returns of the methods in the interaction specification of 𝑡.
We define the function 𝑏 : 𝑃

𝑡
→ 𝑂
𝑜
∪ {𝑛𝑢𝑙𝑙} to manifest the

mapping between the interaction specification and the inter-
acting objects. 𝑏 involves as the program runs.

For an object, its interacting objects involve as the
program runs. When a method is invoked at the first time for
this object, the parameter objects and return object if any are
added to𝑂. If a method is invoked a second time, new bound
objects are added to 𝑂, and old objects bound to the same
parameter or return are replaced. The concept of interacting
objects reflects one fact of dynamic analysis that object inter-
actions that we can mine are limited to observed executions
of underlying programs. Please note that the number of inter-
acting objects in 𝑂 for an object will not exceed the number
of parameters and returns of all methods in the interaction
specification of the type of this object. For example, when
the method BufferedInputStream. <Init> enters, the
interacting objects of its receiver includes only one object that
is bound to its parameter InputStream.

Definition 4 (multiple object API protocols). Typestates
annotated with interactions for a reference type 𝑡 are a nonde-
terministic finite state machine (NDFSA)𝑀 with transition
annotations that𝑀 = (𝑄, Σ, 𝛿, 𝜆, 𝑆, 𝐹), where 𝑄 is a finite set
of states that represent abstract object states, Σ is the alphabet
that consists of the methods in the interaction specification
of 𝑡, 𝛿 is the transition relation that is a subset of𝑄×Σ×𝑄, 𝜆 :
𝛿 → (𝑃

𝑡
→ 𝐶) is the annotation function that determines

the state change for each interacting object and transition
in 𝛿, where 𝐶 is the set of state changes. A state change
of one interacting object represents that the state of this
object changes from one to another, which can be denoted as
𝑠
1
→ 𝑠
2
to express that the execution of the corresponding

method associated with this transition requires a source state
𝑠
1
andproduces a destination state 𝑠

2
. 𝑆 is the set of start states,

and 𝐹 is the set of final states. Multiple object API protocols
for a set of objects are the set of typestates annotated with
interactions, among which typestates of interacting objects
are composed. By composed, we mean that all states in the
interaction annotations are mapped to corresponding states
in typestates of an type.

Figure 1 presents such an example of multiple object API
protocols.

Figure 2 depicts the architecture of our approach. We
take two types of inputs: the first is the source code of
the target APIs, that is, for the identification of interaction
specifications. The second are program execution traces with
recorded values of object fields. We first mine single object
typestates through state abstraction.These typestates are also
annotated with abstract states of interacting objects to record
object interactions. We then extract the typestates for super
types from typestates of their implementing subclasses. At the
last step, different typestates are composed together to get the
API protocols of multiple interacting objects.

3.2. Mining Single Object Typestates Annotated with Inter-
actions. We adopt the state abstraction technique to mine
single object typestates and object interactions. To produce
succinct and general models, abstract field values instead
of concrete ones are used to label states. We use the same
state abstraction function abs as [15], which is as follows:
values of reference fields (objects or arrays) are abstracted to
null (=null) or not null (̸= null), values of numerical fields
are abstracted to larger than zero (>0), less than zero (<0),
or equal to zero (=0), and values of boolean fields remain
unchanged. This state abstraction approach has been proved
successful in mining single object typestate models [14, 15].
Algorithm 1 presents the algorithm to mine typestates of an
object with interaction annotation. We define the function
𝑓 : 𝛿 → (𝑃

𝑡
→ ℘(𝐶)) to record all observed state changes

of objects bound to a parameter or return for a transition
from the beginning of the program execution to now. ℘(𝐶)
denotes the power set of 𝐶. Each state change is associated
with a frequency, that is, the number of times this state change
is observed. For each event of the object 𝑜, we determine
abstract states of 𝑜 and all its interacting objects just before
and after the invocation. We get a transition of the method
that goes from the source state to the destination state of 𝑜 and

The Scientific World Journal 5

Input: 𝑇 as trace of events of an object 𝑜
𝑆 as interaction specification of type 𝑡 of 𝑜
𝑎𝑏𝑠 as the state abstract function

Output:𝑀 = (𝑄, Σ, 𝛿, 𝜆, 𝑆, 𝐹) as typestates for 𝑜
(1) initialize𝑀 to be empty
(2) foreach event 𝑒 = (𝑝𝑠

1
, 𝑚, 𝑝𝑠

2
) ∈ 𝑇 in the order in 𝑇 do

(3) 𝑠
1
= 𝑎𝑏𝑠(𝑝𝑠

1
.𝑜)

(4) 𝑠
2
= 𝑎𝑏𝑠(𝑝𝑠

2
.𝑜)

(5) create a transition 𝑡 = (𝑠
1
, 𝑚, 𝑠
2
)

(6) 𝛿 = 𝛿 ∪ 𝑡

(7) foreach interacting object 𝑜
𝑖
of 𝑜 when 𝑒 occurs do

(8) 𝑠
𝑖
= 𝑎𝑏𝑠(𝑝𝑠

1
.𝑜
𝑖
)

(9) 𝑠
𝑖

󸀠
= 𝑎𝑏𝑠(𝑝𝑠

2
.𝑜
𝑖
)

(10) increment frequency of 𝑠
𝑖
→ 𝑠
𝑖

󸀠 by 1
(11) 𝑓(𝑡)(𝑏

−1
(𝑜
𝑖
)) = 𝑓(𝑡)(𝑏

−1
(𝑜
𝑖
)) ∪ {𝑠

𝑖
→ 𝑠
𝑖

󸀠
}

(12) if runtime type of 𝑜󸀠 is different from that in IS then
(13) associate 𝑜

𝑖
to 𝑠
𝑖
and 𝑠
𝑖

󸀠

(14) endif
(15) endfor
(16) endfor
(17) foreach 𝑡 ∈ 𝛿 do
(18) foreach𝑝 ∈ 𝑃

𝑡
do

(19) 𝜆(𝑡)(𝑝) = MAX(𝑓(𝑡)(𝑝))
(20) endfor
(21) endfor
(22) return𝑀

Algorithm 1: The algorithm to mine single object typestates annotated with interactions.

add it to the model𝑀. We annotate this transition with state
changes of all interacting objects of 𝑜. When the algorithm
runs to the end of the trace, we determine the annotation
function 𝜆 by choosing the most frequent state transition
(MAX(𝐶)) and discarding others.The typestates of a concrete
class consists of the union of all states and transitions of the
typestates of all its objects. The annotation function has the
value of themost frequent state change for each transition and
parameter or return.The approach to get typestates of a super
type is discussed in Section 3.3.

A state of interacting objects within the interaction
annotations is associated with a parameter or return of the
method in the interaction specification. If the declared type of
the parameter or return is different from the runtime type of
the interacting object bound to it, we also associate this inter-
acting object with this state. This association is requisite for
later typestates composition because different implementa-
tions of a type do not necessarily have the same fields. The
typestates of single objects are mined in the per object way,
which is essential to make our approach scalable. The time
complexity of the algorithm in Algorithm 1 is determined by
the length of the trace and the complexity of the interaction
specification. If the trace contains 𝑚 events and the inter-
action specification has 𝑛 parameters and returns of all its
methods, the complexity of the algorithm is 𝑂(𝑚 × 𝑛).

3.3. Extracting Typestates for Super Types. Abstract types such
as interfaces and abstract classes in Java and the inheritance
are common in object-oriented programs. The behavior of a
super type can be manifested by objects of its implementing

subclasses. However, except public methods declared in the
super type, its implementing subclass usually has additional
public methods. These additional methods are either specific
to the implementing class or belong to another super type that
the class implements simultaneously. The declared types of
the parameters and returns of the methods in the interaction
specificationsmay be abstract or super types of the type of the
bound interacting objects. To get themultiple object API pro-
tocols of the interaction specifications, the additional meth-
ods that do not belong to the declared types must be removed
from the typestates of the interacting objects. Moreover, to
enable the composition of the typestates of single objects,
states in the original typestatesmust be preserved in the result
typestates with the additional methods removed. Existing
FSM transformation algorithms [23] based on the accepted
languages are not applicable here. In this section, we design
an algorithm to extract the typestates of a super type from the
typestates of its implementing subclasses, and meanwhile the
states in the original typestates are preserved.

We first formalize the problem. Assume that the type-
states of a super type are 𝑀

𝑠
= (𝑄

𝑠
, Σ
𝑠
, 𝛿
𝑠
, 𝜆
𝑠
, 𝑆
𝑠
, 𝐹
𝑠
), and

the typestates of one of its implementing subclass are 𝑀 =

(𝑄, Σ, 𝛿, 𝜆, 𝑆, 𝐹) and Σ
𝑠
⊆ Σ. We define the typestate extrac-

tion function te: Σ∗ → Σ
∗

𝑠
as follows: (1) te(𝑎) = 𝑎, if

𝑎 ∈ Σ
𝑠
; (2) te(𝑎) = 𝜀, if 𝑎 ∉ Σ

𝑠
; (3) te(𝜔

1
𝜔
2
) = te(𝜔

1
)te(𝜔
2
).

Intuitively, the function te transforms a string into a new one
that preserves only the interesting symbols in their original
order. Based on te, we can formalize the typestates extraction
problem as how to compute𝑀

𝑠
from𝑀, while 𝐿(𝑀

𝑠
) = {𝜔 |

∃𝜔
󸀠
∈ 𝐿(𝑀), s.t. 𝜔 = te(𝜔󸀠)} and 𝑄

𝑠
⊆ 𝑄 hold.

6 The Scientific World Journal

Input: 𝑀 = (𝑄, Σ, 𝛿, 𝜆, 𝑆, 𝐹) as typestates of type 𝑡
Output: 𝑀

𝑠
= (𝑄
𝑠
, Σ
𝑠
, 𝛿
𝑠
, 𝜆
𝑠
, 𝑆
𝑠
, 𝐹
𝑠
) as typestates of super type 𝑠 of 𝑡

(1) initialize an empty FSM𝑀
𝑠

(2) initialize an empty set of transitions worker
(3) foreach 𝑞 ∈ 𝑆 do
(4) mark 𝑞 as visited
(5) foreach 𝑒 = (𝑞,𝑚, 𝑞󸀠) such that𝑚 ∈ Σ

𝑠
do

(6) add 𝑒 to worker
(7) endfor
(8) endfor
(9) while there is a 𝑒 = (𝑞,𝑚, 𝑞󸀠) in worker do
(10) remove 𝑒 from worker
(11) if 𝑞󸀠 is not visited then
(12) mark 𝑞󸀠 as visited
(13) foreach 𝑒󸀠 = (𝑞󸀠, 𝑚󸀠, 𝑞󸀠󸀠) such that𝑚󸀠 ∈ Σ

𝑠
do

(14) add 𝑒󸀠 to worker
(15) endfor
(16) endif
(17) foreach 𝑝 ∈ cl(𝑀, Σ

𝑠
, 𝑞) such that 𝑝 ̸= 𝑞 do

(18) add (𝑞, 𝑚, 𝑝) to𝑀
𝑠

(19) endfor
(20) remove duplicated transitions in𝑀

𝑠

(21) return𝑀
𝑠

Procedure cl(𝑀, Σ
𝑠
, 𝑞)

(1) 𝑤𝑜𝑟𝑘𝑒𝑟 = 𝑟𝑒𝑠𝑢𝑙𝑡 = {𝑞}

(2) while there is a state 𝑝 in 𝑤𝑜𝑟𝑘𝑒𝑟 do:
(3) add 𝑝 to result
(4) remove 𝑝 from worker
(5) foreach (𝑝, 𝑎, 𝑟) ∈ 𝛿 such that 𝑎 ∈ Σ − Σ

𝑠
do:

(6) if 𝑟 ∉ result then:
(7) add 𝑟 to worker
(8) endif
(9) endfor
(10) endwhile
(11) return result

Algorithm 2: The algorithm to extract the typestates for a super type from the typestates of its implementing subtypes.

To solve this problem, we introduce the closure function
cl: 𝑄 → ℘(𝑄). The function cl maps a state to a set of states
that are reachable from this state by following zero or more
transitions with uninteresting input symbols. Formally, we
define cl as follows: (1) for all 𝑞 ∈ 𝑄, 𝑞 ∈ cl(𝑞); (2) for all
𝑝 ∈ cl(𝑞) ∧ for all 𝑎 ∈ Σ − Σ

𝑠
, 𝛿(𝑝, 𝑎) ∈ cl(𝑞). Now, we define

the extended closure function ecl as follows:

ecl (𝑄󸀠) = ⋃

𝑞∈𝑄
󸀠

cl (𝑞) , 𝑄
󸀠
⊆ 𝑄. (2)

Based on cl and ecl, we formally specify 𝑀
𝑠
= (𝑄
𝑠
, Σ
𝑠
, 𝛿
𝑠
,

𝜆
𝑠
, 𝑆
𝑠
, 𝐹
𝑠
) where 𝑄

𝑠
⊆ 𝑄, 𝛿

𝑠
(𝑞, 𝑎) = ecl(𝛿(𝑞, 𝑎)), 𝜆

𝑠
= 𝜆↾
Σ
𝑠

,
that is, the restriction of 𝜆 to Σ

𝑠
, 𝑆
𝑠
= ecl(𝑆) and 𝐹

𝑠
= {𝑞 |

cl(𝑞) ∩ 𝐹 ̸= 0}. The most important feature of𝑀
𝑠
is 𝑄
𝑠
⊆ 𝑄.

The algorithm to solve this problem is presented inAlgorithm
2. For each transition (𝑞,𝑚, 𝑞󸀠) of𝑀 with 𝑚 ∈ Σ

𝑠
, compute

cl(𝑞󸀠). For every state 𝑝 ∈ cl(𝑞󸀠), add a transition (𝑞,𝑚, 𝑝) to
𝑀
𝑠
.Theworst case complexity of this algorithm is𝑂(𝑚2×𝑛2),

where𝑚 is the number of states of the typestates and 𝑛 is the
number of transitions of the typestates.The complexity of this
algorithm is high; however, we expect no high overhead in

practice as typical typestates FSMs are small with a few tens
of states and transitions.

If there are multiple implementing classes for a super
type, we simply union typestates extracted from them. Such
subtypestates are separate from each other, and we call them
typestates parts. Every typestates part is tagged by the type of
the implementing class where it is extracted. Simple union
may produce large typestates, but we appreciate themerit that
all states of different typestate parts are preserved from their
implementing classes. Formally, if there are 𝑛 implement-
ing classes of a super type and the 𝑛 extracted typstates parts
are 𝑀

1
= (𝑄
1
, Σ, 𝛿
1
, 𝜆
1
, 𝑆
1
, 𝐹
1
), . . ., 𝑀

𝑛
= (𝑄
𝑛
, Σ, 𝛿
𝑛
, 𝜆
𝑛
, 𝑆
𝑛
,

𝐹
𝑛
), we define the protocol of the abstract type 𝑀 = (𝑄, Σ,

𝛿, 𝜆, 𝑆, 𝐹), where

𝑄 =

𝑛

⋃

𝑖=1

𝑄
𝑖
, 𝛿 =

𝑛

⋃

𝑖=1

𝛿
𝑖
, 𝜆 =

𝑛

⋃

𝑖=1

𝜆
𝑖
,

𝑆 =

𝑛

⋃

𝑖=1

𝑆
𝑖
, 𝐹 =

𝑛

⋃

𝑖=1

𝐹
𝑖
.

(3)

The Scientific World Journal 7

3.4. Typestates Composition and Filtering. We generate mul-
tiple object typestates by composing typestates of single
objects. We perform the composition by finding the same
state in corresponding typestates for every state in the interac-
tion annotation. An algorithm to do this is presented in Algo-
rithm 3. For a state 𝑠 associated with an argument or return 𝑝
in the interaction annotation of a transition, we try to identify
the state 𝑠󸀠 in the typestates of the declaring type 𝑡 of𝑝 that has
the same field-value label as 𝑠. If 𝑡 is a concrete class, 𝑠󸀠 is in the
states of the typestates of this concrete class. If 𝑡 is an abstract
type, 𝑠󸀠 is in the states of the typestate part of the typestates of
this abstract type,which is extracted from the typestates of the
object associatedwith 𝑠󸀠. After finding the same state for every
state in interaction annotations of all typestates, we discard
the labels of states and identify them by abstract names such
as numbers. We assure that within typestates of a type, states
with different field-value labels have different names.

Because we discard the state labels, the final multiple
object typestates specify the proper order of method exe-
cutions. To check the behavior of a single object, the legal
method execution sequences are the strings accepted by the
typestates of the type of the object without considering the
interaction annotations. The ordering constraints of method
executions from different objects are imposed by the inter-
action annotation of typestate transitions. To check multiple
object typestates, for a transition with method 𝑚, all state
changes in its interaction annotation must be validated. To
validate a state change, for every argument𝑝 of𝑚, themethod
called on 𝑝 immediately before 𝑚 enters must be one of the
methods directly reaching the source state of 𝑝 in the state
change, and themethod called on𝑝 immediately after𝑚 exits
must be one of the methods directly leaving the destination
state of 𝑝 in the state change. If there is any return object
of 𝑚, the method executed on it immediately after 𝑚 exits
must be one of the methods directly leaving its state in the
state change.Method executions fromdifferent objects can be
arbitrarily interleaved if there are not direct or indirect con-
straints from the interaction annotations between them.

During typestate composition, we apply several rules
to filter out uninteresting interactions. These uninteresting
interactions stem from the common knowledge of software
designs and limitations of the approach to mine single-object
typestates through state abstraction. The latter case will be
further discussed in Section 4.3. The first rule we utilize is
the package-based filtering that is commonly used in multiple
object API protocol mining approaches [4, 10, 11]. The rule
assumes that objects from different packages are not likely to
obey some common API protocols. Adhering to this rule, we
only compose typestates of types from the same package.The
second rule we utilize is that typestates with only one state
are not considered. Typical one-state typestates include type-
states for immutable objects such as strings, class wrappers,
and classes without fields. One-state typestats cannot specify
any method invocation orders. The last rule is that a state
change is discarded if (1) this change has the same source
and destination state, and (2) the object corresponding to this
change is neither a parameter nor the return of the method
of transition associated with this change, and (3) the transi-
tion associated with this change does not go into a final

state. This rule is important to filter out many uninteresting
interactions based on the observation that if the destination
state of a state change does not change from the source state,
the corresponding two objects often do not interact with each
other. The condition (3) is to preserve interactions that the
cleanup of an object usually implicitly cleans up its interacting
objects. For example, during the mining of the typestates in
Figure 1, the last rule filters out interaction annotations of
read of BufferedInputStream but preserves the interac-
tion annotation of close of BufferedInputStream.

4. Implementation and Results

In this section, we describe the implementation and empirical
evaluation of our approach. we also discuss several limita-
tions of our current implementation.

4.1. Implementation. To obtain information required to mine
typestates, We must trace program executions. For this pur-
pose, wewrite an agent using JavaVirtualMachineTool Inter-
face (JVMTI) [24]. JVMTI is convenient to trace programs in
many aspects such as that it is easy to access the call stack
and that we can attach a unique tag to every object. For both
single-threaded and multithreaded applications, events are
recorded in the order of their occurrence, that is, the order
of events is preserved globally. In this way, object interactions
with events coming from different threads can be recognized.
The agent is attached to Java Virtual Machine and writes the
flow of events to plain text files. To mine typestates, we need
both information of method executions and information of
object states. The tracing agent records three types of events:
Method Entry, Method Exit, and Field Modification. A Field
Modification event is issued when some value is assigned
to a field of an object. Table 1 presents the event types and
recorded information for all events handled by the agent.The
largest file we analyzed is about 2.2GB in size and contains
more than 106 million runtime events.

For a Method Entry event of a constructor, we create a
State object to represent the state of the created object.
All fields of the object have default values of the Java lang-
uage. When a Field Modification event on this object is
encountered, we update the corresponding field with the
new value in the State object. The Field Modification event
also captures the initialization of a field at its declaration. In
this way, the State object maintains the state of the cor-
responding object. The object state maintained in the State
object is used to extract abstract field values during typestates
mining.

We can configure events of what types are to be traced,
for example, by providing a package name to indicate that
the tracing agent will record events of all public types in this
package. Because we aim tomine API protocols, onlyMethod
Entry andMethod Exit events of public instance methods are
traced. The interaction specifications of types and other type
information are obtained using Java’s reflection utilities. We
need access to the bytecode of target types. However, source
code is not necessary. Our tracing agent is based on JVMTI
that allows a much less complex and thus less error-prone
implementation of the tracer. The downside of this approach

8 The Scientific World Journal

Input: state 𝑠 in a state change, typestates for every concerning type
Output: state 𝑠󸀠 with the same field-value label as 𝑠
(1) take𝑀 = (𝑄, Σ, 𝛿, 𝜆, 𝑆, 𝐹) of 𝑡 that is the type associated with 𝑠
(2) if 𝑡 is a concrete class then
(3) foreach 𝑠

𝑀
∈ 𝑄 do

(4) if 𝑠
𝑀
has the same field-value label as 𝑠 then

(5) 𝑠
󸀠
= 𝑠
𝑀

(6) break
(7) endif
(8) endfor
(9) else
(10) take the object 𝑜 associated with 𝑠
(11) find the typstate part𝑀󸀠 of𝑀 extracted from o
(12) foreach 𝑠

𝑀
∈ 𝑄
󸀠 do

(13) if 𝑠
𝑀
󸀠 has the same field-value label as 𝑠 then

(14) 𝑠
󸀠
= 𝑠
𝑀
󸀠

(15) break
(16) endif
(17) endfor
(18) return 𝑠

󸀠

Algorithm 3: The algorithm to find the same state in corresponding typestates for a state in the state change of interaction annotations.

Table 1: Types of events and corresponding information traced by
the tracing agent.

Event Traced information

Method entry
Thread name, stack depth of this method,
method name and signature, types and
values for all parameters

Method exit
Thread name, stack depth of this method,
method name and signature, type and value
for return

Field modification
Type of class of object, type of declaring
class of field, object tag, field name and type,
new value

is that the tracing agent incurs significant runtime overhead.
However, our general approach is modular and is not bound
to this tracing agent. Any traces that contain method execu-
tionswith parameter and return values and states of involving
objects can be fed into our typestates miner.

4.2. Empirical Evaluation. This section describes the experi-
ments of applying our approach to several benchmarks from
the literature. At first, we give the experimental setup and
an overview of the benchmarks. Second, we show that object
interactions are common by analyzing the interaction specifi-
cations of targetAPIs andpresent themined typestates.Third,
we evaluate the quality of mined typestates by examining
whether they characterize typical APIs usages. For this aspect,
we compare typestates for the same typemined fromdifferent
applications. Finally, we discuss several typestate models
automatically mined by our approach.

We apply our approach to mine typestates of types from
three packages and their subpackages of Oracle Java JDK 6:

java.lang, java.util and java.io, totally 17 packages.
APIs in these packages obey important properties and are
widely used as experimental targets in the literature [10, 11].
Training programs in our experiments are benchmarks from
the DaCapo benchmark suite 2006-10-MR2, which ensures
a controlled and reproducible execution of all benchmarks
[25]. We use the tracing agent to record events into a plain
text file for each of these benchmarks. We limit the execution
time of every program to half an hour. Although programs do
not run to its end for tracing, the result traces contain large
enough numbers of events for our experimental evaluation.
Table 2 presents the traces used in our experiments. The
elapsed execution time for two separate stages, namely, single
object typestates mining (Section 3.2) and typestates extrac-
tion (Section 3.3), is also presented in Table 2. The time for
typestates composition is not presented. Because we assign
every state a unique number as its abstract name and record
it in state changes during the process of mining single
object typestates annotated with interactions, much of the
work of typestates composition is saved. As our approach
framework is modular, we present the algorithm for typestate
composition in Algorithm 3 for potential use when other
state labelling techniques or alternative implementations are
used. The time used to mine typestates of single objects is
roughly linear to the number of events in the input trace.
The total time of the typestates mining is typically less than
10 minutes for a benchmark program. It is low considering
the huge number of input events and is fast than recent work
in the literature [10, 11]. Although having the complexity of
𝑂(𝑚 × 𝑛), where 𝑚 is the number of states of the typestates
and 𝑛 is the number of transitions of the typestates, extracting
typestates for super types is fast, typically in several minutes,
because common single object typestates have a very small
number of states and transitions.

The Scientific World Journal 9

Table 2: Traces used in the experiments and analysis times in min-
utes.

Application No. of events
Execution time

Single object
typestate mining

Typestate
extraction

antlr 8,079,678 6.5 1.2
bloat 7,235,945 7.5 1.6
chart 9,636,350 8 1.5
eclipse 5,348,521 3 0.7
fop 8,446,844 8.4 1.2
hsqldb 10,629,268 5 1.7
jython 812,978 0.5 0.2
luindex 7,196,849 9.5 0.4
lusearch 5,324,886 10 0.7
pmd 9,279,565 9.2 1.4
xalan 6,042,106 3.5 2.7

Interaction specifications specify object interactions that
potentially occur during runtime. Because the interaction
specification of a type is determined by the type’s definition
(or structure), we present the statistics of object interactions
collected from interaction specifications of public types in the
target packages in Table 3. An interaction in this table is a
pair of different types ⟨𝑡

1
, 𝑡
2
⟩ that 𝑡

2
is the type of a speci-

fic parameter of or that of the return of a specific public
method of 𝑡

1
. They provide the background for evaluating

multiple object typestates mining approaches. The data is
obtained by analyzing the bytecode of target types with the
Java reflection utilities. In accordance with the definition of
the interaction specification, we only care for public types and
public methods here. It can be seen that java.lang is more
complex in terms of objects interactionswith an average of 9.4
interactions per type. The least complex package is java.io
that still has an average of 1.7 interactions per type. These
indicate that common types will interact with more than
one other type, and object interactions are common among
APIs. In addition, there are a nontrivial number of types that
potentially interact with many other types simultaneously.
For example, in the package java.lang, there are 14 types
that have no less than 10 interactions. Object interactions are
not only common but also complex. During inspecting inter-
action specifications of these types, we also find that there are
no simple indicators of which interaction beingmore likely to
obey common usage protocols than others. So it is important
to capture asmany as possible object interactions tomine pre-
cise and complete typestates. Although the package-based fil-
tering has been proved useful in practice, it is not easy to dis-
tinguish methods of the same type in terms of their protocol-
obeying likeliness. The results of mined typestates are pre-
sented in Table 4. Compared with Table 3, It can be seen that
there is a large part of types and interactions that are not cov-
ered by themined typestates.However, this is due to the train-
ing programs that use only part of the target APIs. Our
mining approach can capture all object interactions. we
mine more object interactions from the package java.lang

Table 3: Object interactions for target APIs.The third column is the
number of types with no less than 10 interaction, and the last column
is the average number of interactions per type.

Package No. of interactions No. of types (≥10) Average number
java.lang 390 14 9.3
java.util 443 13 6.4
java.io 105 0 1.7

Table 4: Results of mined typestates. The third column is the total
number of interactions for the package, and the last column is the
number ofmined typestatesmodelswith no less than 10 interactions.

Package No. of single object
typestates

No. of
interactions

No. of models
(≥10)

java.lang 27 161 3
java.util 32 77 0
java.io 30 23 0

because it is themost heavily used package by nearly all of the
training programs. Due to the unavailability of tools and cor-
responding results, we cannot quantitatively evaluate the cov-
erage of object interactions of other multiple object protocol
mining approaches currently [10, 11].

To answer the question that whether our mined multiple
object typestates describe typical API protocols, we have to
evaluate the quality of mined typestates. To this end, we com-
pare typestates of the same type mined from different appli-
cations. If the typestates appear in the results of at least two
different applications, we can think that the typestates are not
application specific but manifesting common API usage. We
find that if two typestates models of the same type are mined
from different applications and we do not consider interac-
tion annotations, it is always the case that one is included in
the other in that states and transitions of one typestate model
is the subset of that of the other model, respectively. This is
due to the fact that objects of the same type have the same
abstract states under the same state abstraction function. Our
miner can mine a model for each object created during the
program execution. However, nearly all the benchmark pro-
grams create objects of some types that are never used by
other benchmark programs. Sowe limit the inspectedmodels
to these ones that have to be mined from at least two bench-
mark programs. Because our major concern is object inter-
actions, we choose to analyze state changes for transitions.
Assume typestates𝑀

1
of type 𝑡 and Γ as the set of all typestates

models of type 𝑡mined from benchmarks different from that
of𝑀
1
. We consider a transition 𝑒

1
of𝑀
1
is validated if there

is one typestates model 𝑀
2
that (1) 𝑀

2
has a transition 𝑒

2

that has the same source state, destination state, and method
as that of 𝑒

1
, respectively, and (2) 𝑒

1
and 𝑒

2
have the same

state change for each of interacting objects associated with
the method of these two transitions. To measure the percent-
age of validated transitions of typestates, we compare the
results from the benchmarks for the target packages together.
The results are presented in Table 5. The results are very
promising. Overall, most (84.0%) of transitions are validated.
We conclude thatmost ofmined typestates ofmultiple objects

10 The Scientific World Journal

Table 5: Quality of mined typestates.

Application No. of
transitions

No. of validated
transitions Percentage

antlr 384 329 85.7%
bloat 303 241 79.5%
chart 331 288 87.0%
eclipse 286 210 73.4%
fop 429 392 91.4%
hsqldb 408 331 81.1%
jython 335 264 78.8%
luindex 453 380 83.9%
lusearch 362 250 69.1%
pmd 402 398 99.0%
xalan 425 405 95.3%
Overall 4118 3488 84.0%

characterize common API usage instead of being incidental
and application specific.

We discuss another typestates model mined by our
approach. Figure 3 presents the typestates of ZipFile and
InputStream. After an ZipFile object is constructed, sev-
eral methods may be invoked, such as entries and getEntry.
The getInputStream method returns an InputStream
object. The dashed line from getInputStream to state 1 of
InputStream indicates this interaction. Then, the method
read is invoked to read bytes from this input stream. After
finishing work, the method close is called to close the
zip file. The dashed lines between close and state 3 of
InputStream manifest that the close of the zip file also
transitions the InputStream object to its final state. This
captures the API protocol that close of ZipFile also closes
the InputStream returned by getInputStream. Another
interesting finding from Figure 3 is that close of ZipFile
actually does not call close of InputStream. After inspecting
the source code, we confirm this and find that ZipFile
ensures the no usage of InputStream after its close call by
a different way.The typestates of InputStream are extracted
from objects of type ZipFileInputStream, that is, a private
inner class of ZipFile.

4.3. Discussions. In this section, we discuss several character-
istics of our approach, mainly its drawbacks. Our approach is
based on a simple state abstractionmechanism to label states.
Although it is shown to be able to mine some useful single
object typestates [14, 15], we find during our experiments that
this state abstraction mechanism prevents us from mining
some typical multiple object typestates. To compare our
approach with other researcher’s work [11], we mine several
typestate models from traces of the conformance tests of the
Apache Harmony project [26]. One of them is the Socket
specification presented in Figure 4. The typestates capture
the property that close of Socket also closes InputStream
returned by getInputStream and OutputStream returned
by getOutputStream. However, there are only two states in
typestates of InputStream and only one state in typestates

InputStream

ZipFile

InputStream getInputStream

read

readread

read

0 1 2

0 1 2

3

getEntryentries

close⟨init⟩

⟨init⟩

Figure 3: Mined typestates of ZipFile and InputStream.

InputStream

OutputStream

Socket

OutputStream getOutputStream

InputStream getInputStream

read

read

0 1 2

0 1

0 1

2
close

write

⟨init⟩

⟨init⟩

⟨init⟩

Figure 4: Mined typestates of Socket, InputStream and Out-
putStream.

of OutputStream due to limitations of the used state
abstraction (when counting the number of states, we do not
consider the initial state, that is, the source state of a con-
structor). This permits read after InputStream is closed
and write after OutputStream is closedwhich are illegal. At
the same time, typestates in Figure 4manifest a characteristic
of our approach that some semantic unrelated events from
different objects can be arbitrarily interleaved, which can
enhance the completeness of mined typestates. For example,
read of InputStream and write of OutputStream are
separate from each other and can be arbitrarily interleaved
because there are no direct or indirect interaction annotations
between them. For approaches that take specification mining
as a language learning problem from a set of input strings,
it is not easy to capture this semantic unrelatedness without
enough input samples.

There are approaches such as [27] that try to mine deep
models. For the state abstraction, they do not simply map
fields of reference types to null or not null, but also consider
the fields of fields. However, considering unrelated fields
can lead to unnecessary states that complicate the mined
typestates. For example, states 1, 2, and 3 in the typestates of
InputStream in Figure 4 are redundant to only represent the

The Scientific World Journal 11

behavior of read. Because our general approach is modular
in that different state labelling techniques can be integrated
with it, new effective state abstraction mechanism can be
employed to enhance mined typestates in future.

5. Related Work

Anapproach tomine single object typestates based on explicit
object states is presented in [14, 15]. A typestate automaton
for an object is a nondeterministic finite state automaton. Its
states represent object states and are labeled with values of all
fields of this object, and its transitions represent executions
of methods of this object and are labeled with method
names. A special state ex exists as the destination state of
all method executions that throw an exception. For each
method execution called on an object, there is a transition
from the source state to the destination state. They combine
all the transitions by merging states with the same field-
value label to mine the typestates model of this object. The
typestates automaton for a class consists of the union of all
states and transitions of typestate automata of all its objects.
Abstract states instead of concrete states are used in typestate
automata. As states of typestate automata are usually anony-
mous, field-value labels of states are discarded, and states
are identified by assigned abstract names. Our approach
currently uses the same state abstraction function as [14, 15].
As we aim to mine normal behavior of programs, we do not
consider method executions that throw exceptions and do
not include a similar error state in our typestates. There are
two main differences between their approach and ours. First,
they cannot mine typestates of abstract types. Second, they
can not mine interactions between objects; that is, they can
only mine single object typestates. Dallmeier et al. [15] also
present the techniques to systematically generate test cases
that cover previously unobserved behavior to enrich mined
single object typestates. Because the poor behavior coverage
of traces is a common problem for all dynamic specification
mining approaches, it is possible to adapt their test generation
technique to enrich typestates of multiple objects.

Pradel and Gross [10] define the concept of object collabo-
rations to capture related events based on the assumption that
methods generally implement small and coherent pieces of
functionality, and so the method invocations issued during a
method’s execution are related to each other. A collaboration
is a sequence of method invocations associated with their
receivers. To limit the number of events, they limit the
depth of nested calls to a certain nesting level. Then, they
apply several heuristics including the package-based filtering
to filter out unrelated events. Similar object collaborations
are grouped into a collaboration pattern. At last, an FSM is
mined for each collaboration pattern. There are mainly two
drawbacks of their approach. First, their approach can mine
models for objects that are not interacting with each other
when events of these objects are issued during a method’s
execution. Second, their approach may fail to group related
events together when they exceed the scope of the execution
of a method.

Lee et al. [11] present the event specification approach to
capture related events based on the assumption that unit tests

perform the behavior of tightly interacting objects, and so
methods involved in a unit test likely obey some specification.
An event specification is a set of methods together with a set
of reference types, each of which is the type of a parameter or
return of a method. Several heuristics including the package-
based filtering are applied to further filter events involved in
a unit test execution. At last, an event specification includes
events that are directly or indirectly related. Two events are
directly related if and only if they share at least one common
receiver, method argument or method return, and related if
and only if they are connected through a sequence of directly
related events. Compared with their event specification, our
interaction specification contains all public methods and
all reference parameters and returns of these methods of a
type. However, event specification does not ensure this.Their
approach relies on the availability and quality of unit test
cases. In addition, a unit test case may not contain complex
interactions of many objects.

To maintain scalability, approaches to mine multiple
object typestates based on predefined property templates can
onlyminemodels for simple property templates such as alter-
nating templates over event pairs [4, 17] and resource usage
patterns over event triples [28]. The predefined, simple
property templates make learning an arbitrarily complex
specification impossible. Gabel and Su [13] propose to learn
simple generic patterns and compose them to construct
large, complex specifications. They use two simple patterns
alternation and resource ownership and two composition rules
branching and sequencing.Their approach is shown to be able
to capturemost temporal specifications published in the liter-
ature. Our approach complements to theirs in that the inter-
action specifications of our approach are determined by the
structure of the type, and they naturally capture all potential
interactions.

Nguyen et al. [22] present a graph-based approach to
mine the usage patterns of one or multiple objects from the
source code. To model object usage, they present the graph-
based representation called graph-based object usage model
which includes action nodes of method calls, control nodes
of control structure, and data flow among these nodes. They
first extract object usage from the source code and then mine
object usage patterns by identifying object usages with fre-
quent appearance. Based on the observation that isomorphic
graphs also contain isomorphic (sub)graphs, they mine the
patterns increasingly by size (i.e., the number of nodes).
Similarly to Pradel and Gross [10], their graph-based object
usage models are extracted from individual methods, and the
data flow analysis to determine the data dependency among
nodes is intraprocedural and explicit. So their approach has
the two drawbacks of Pradel and Gross [10] discussed above.

6. Conclusions

This paper presents a general multiple object typestates
mining approach. We first mine single object typestates
through state abstraction.These typestates are also annotated
with abstract states of interacting objects to record object
interactions. We then extract typestates for super types from
typestates of their implementing classes. At the last step,

12 The Scientific World Journal

different typestates are composed together to get typestates
of multiple interacting objects. Our approach is scalable and
useful in that it can mine typestates of typical API behavior
with low learning complexity. However, the state abstraction
mechanism used here is not very effective to mine multiple
object typestates. In future, we plan to refine our approach by
integrating new state labelling techniques.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant nos. 91118007, 90818024,
and 61133001, and the National High Technology Research
and Development Program of China (863 program) under
Grant nos. 2011AA010 106 and 2012AA011201, and the Pro-
gram for New Century Excellent Talents in University.

References

[1] R. M. Hierons, K. Bogdanov, J. P. Bowen et al., “Using formal
specifications to support testing,”ACMComputing Surveys, vol.
41, no. 2, 2009.

[2] M. Das, S. Lerner, and M. Seigle, “ESP: path-sensitive program
verification in polynomial time,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’02), pp. 57–68, June 2002.

[3] T. Ball and S. K. Rajamani, “The SLAM project: debugging sys-
tem software via static analysis,” in Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’02), pp. 1–3, January 2002.

[4] W. Weimer and G. C. Necula, “Mining temporal specifications
for error detection,” in Proceedings of the 11th international con-
ference on Tools and Algorithms for the Construction and Ana-
lysis of Systems (TACAS ’05), pp. 461–476, 2005.

[5] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Proceed-
ings of the 19th Annual ACMConference onObject-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA ’04),
pp. 132–135, October 2004.

[6] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically
checking API protocol conformance with mined multi-object
specifications,” in Proceedings of the International Conference on
Software Engineering (ICSE ’12), pp. 925–935, 2012.

[7] M. Pradel and T. R. Gross, “Leveraging test generation and spe-
cification mining for automated bug detection without false
positives,” in Proceedings of the International Conference on
Software Engineering (ICSE ’12), pp. 288–298, 2012.

[8] D. Malayeri and J. Aldrich, “Practical exception specifications,”
in Advanced Topics in Exception Handling Techniques, C. Dony,
J. L. . Knudsen, Al. Romanovsky, and A. Tripathi, Eds., pp. 200–
220, Springer, Berlin, Germany, 2006.

[9] G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,”
in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’02), pp. 4–16,
2002.

[10] M. Pradel and T. R. Gross, “Automatic generation of object
usage specifications from large method traces,” in Proceedings
of the 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’09), pp. 371–382, November 2009.

[11] C. Lee, F. Chen, and G. Rosu, “Mining parametric specifica-
tions,” in Proceedings of the 33rd International Conference on
Software Engineering (ICSE ’11), pp. 591–600, 2011.

[12] C. Goues and W. Weimer, “Specification mining with few false
positives,” in Proceedings of the 15th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS, 2009, (TACAS ’09), pp.
292–306, 2009.

[13] M. Gabel and Z. Su, “Javert: fully automatic mining of general
temporal properties from dynamic traces,” in Proceedings of the
16th ACM SIGSOFT International Symposium on the Founda-
tions of Software Engineering (SIGSOFT ’08/FSE-16), pp. 339–
349, November 2008.

[14] V. Dallmeier, C. Lindig, A.Wasylkowski, and A. Zeller, “Mining
object behavior with ADABU,” in Proceedings of the 4th Interna-
tional Workshop on Dynamic Analysis (WODA ’06), pp. 17–23,
May 2006.

[15] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and
A. Zeller, “Automatically generating test cases for specification
mining,” IEEE Transations on Software Engineering, vol. 38, no.
2, pp. 243–257, 2012.

[16] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extraction
of object-oriented component interfaces,” in Proceedings of
the ACM SIGSOFT 2002 International Symposium on Software
Testing and Analysis (ISSTA ’02), pp. 218–228, July 2002.

[17] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, andM.Das, “Perracotta:
mining temporal API rules from imperfect traces,” in Proceed-
ings of the 28th International Conference on Software Engineering
(ICSE ’06), pp. 282–291, May 2006.

[18] R. E. Strom and S. Yemini, “Typestate: a programming language
concept for enhancing software reliability,” IEEE Transactions
on Software Engineering, vol. 12, no. 1, pp. 157–171, 1986.

[19] R. DeLine and M. Fahndrich, “Typestates for objects,” in
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP ’04), pp. 465–490, 2004.

[20] K. Bierhoff and J. Aldrich, “Lightweight object specification
with typestates,” in Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing (ESEC/FSE-13), pp. 217–226, September 2005.

[21] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the 14th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’07), pp. 35–44, September 2007.

[22] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J.M. Al-Kofahi, and T.
N. Nguyen, “Graph-based mining of multiple object usage pat-
terns,” in Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering (ESEC/FSE
’09), pp. 383–392, August 2009.

[23] E. Rich, Automata, Computability, and Complexity: Theory and
Applications, Pearson Education, 2009.

[24] “Java Virtual Machine Tool Interface,” http://download.oracle
.com/javase/docs/technotes/guides/jvmti.

[25] S. M. Blackburn, R. Garner, C. Hoffmann et al., “The DaCapo
benchmarks: java benchmarking development and analysis,” in
Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA ’06), pp. 169–190, October 2006.

[26] “Apache Harmony,” http://harmony.apache.org.
[27] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from

object behavior anomalies,” in Proceedings of the 24th IEEE/

The Scientific World Journal 13

ACM International Conference on Automated Software Engi-
neering (ASE ’09), pp. 550–554, November 2009.

[28] M. Gabel and Z. Su, “Symbolic mining of temporal specifica-
tions,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08), pp. 51–60, 2008.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

