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We investigate the dynamic stochastic multicriteria decision making (SMCDM) problems, in which the criterion values take the
form of log-normally distributed random variables, and the argument information is collected from different periods. We propose
two new geometric aggregation operators, such as the log-normal distribution weighted geometric (LNDWG) operator and the
dynamic log-normal distribution weighted geometric (DLNDWG) operator, and develop a method for dynamic SMCDM with
log-normally distributed random variables. This method uses the DLNDWG operator and the LNDWG operator to aggregate the
log-normally distributed criterion values, utilizes the entropy model of Shannon to generate the time weight vector, and utilizes the
expectation values and variances of log-normal distributions to rank the alternatives and select the best one. Finally, an example is
given to illustrate the feasibility and effectiveness of this developed method.

1. Introduction

In the socioeconomic activities, there are a large num-
ber of stochastic multicriteria decision making (SMCDM)
problems in which the criterion values take the form of
random variables [1–13]. In SMCDM problems, the normal
distribution with well-known bell-shaped curve is most often
assumed to describe the random variation that occurs in
the criterion values, and each criterion value is commonly
characterized and described by two values: the arithmetic
mean and the standard deviation [1, 14, 15].

However, many measurements of criterion values show
a more or less skewed distribution. Particularly, skewed dis-
tributions are common when mean values are low, variances
large, and values cannot be negative. Such skewed distri-
butions often approximately fit the log-normal distribution
[16, 17]. The log-normal distribution is a continuous prob-
ability distribution of a random variable whose logarithm
is normally distributed [16, 18]. It is similar to the normal
distribution, but there are still several major differences
between them: first, the normal distribution is symmetrical;
the log-normal distribution is skewed to the left. Second,
both forms of normal and log-normal variability are based

on a variety of forces acting independent of one another,
but a major difference is that the effects can be additive
or multiplicative, thus leading to normal or log-normal
distributions, respectively. A variable might be distributed
as log-normally if it can be thought of as the multiplicative
product of a large number of independent random variables
each of which is positive. Third, the sum of several indepen-
dent normal distributed random variables itself is a normal
distributed random variable. For log-normally distributed
random variables, however, multiplication is the relevant
operation for combining them in most applications; that
is, the product of several independent log-normal random
variables also follows a log-normal distribution. The log-
normal distribution can model many instances, such as the
loss of investment risk, the change in price distribution of
a stock, and the failure rates in product tests [16, 19–21].
This is because the time series creates random variables. By
taking the natural log of each of the random variables, the
resulting set of numbers shall be distributed log-normally.
Thus, in real-life, there are many SMCDMproblems in which
the criterion values take the form of log-normally distributed
random variables.
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At present, the SMCDM problems, in which the crite-
rion values take the form of normally distributed random
variables, have attracted lots of attentions from researchers
[1–8]. But regarding the SMCDM problems, in which the
criterion values take the form of log-normally distributed
random variables, there is still few related research.

Moreover, in some SMCDM situations, such as multi-
periods investment decision making, medical dynamic diag-
nosis, personnel dynamic examination, military system effi-
ciency dynamic evaluation, etc., the original decision infor-
mationmay be collected at different periods (for convenience,
we call this kind of SMCDM problems the dynamic SMCDM
problems) [8]. Thus, accordingly, time should be taken into
account, and it is an interesting and important research issue.

In this paper, we shall focus on the dynamic SMCDM
problems, in which the criterion values take the form of
log-normally distributed random variables and the argument
information is given at different periods, and develop a
method for dynamic SMCDMwith log-normally distributed
random variables. This method uses two new geometric
aggregation operators to aggregate the log-normally dis-
tributed criterion values, utilizes the entropy model of Shan-
non to generate the time weight vector, and utilizes the
expectation values and variances of log-normal distributions
to rank the alternatives and select the best one.

To do so, this paper is organized as follows. Section 2
introduces some operational laws of log-normal distribu-
tions and presents a method for the comparison between
two log-normal distributions. Section 3 proposes two new
geometric aggregation operators, such as the log-normal
distribution weighted geometric (LNDWG) operator and
the dynamic log-normal distribution weighted geometric
(DLNDWG) operator. Section 4 develops an approach to
solve the dynamic SMCDM problems, in which the criterion
values take the form of log-normally distributed random
variables, and the argument information is given at different
periods. Section 5 gives an illustrative example. Finally, we
conclude the paper in Section 6.

2. Preliminaries

The normal distribution is a continuous probability distri-
bution defined by the following probability density function
[22]:

𝑓
𝑋 (𝑥) =

1

√2𝜋𝜎
𝑒−(𝑥−𝜇)

2
/2𝜎
2

, −∞ < 𝑥 < +∞, (1)

where 𝜇 is the expectation, 𝜎 > 0 is the standard deviation,
and 𝜎2 is the variance. Generally, we use 𝑋 ∼ 𝑁(𝜇, 𝜎2)
as a mathematical expression meaning that 𝑋 is distributed
normally with the expectation 𝜇 and variance 𝜎2.

The log-normal distribution is a probability distribution
of a random variable whose logarithm is normally distributed
[16]; that is, if ln𝑌 ∼ 𝑁(𝜇, 𝜎2), then 𝑌 has a log-normal
distribution. The probability density function of the log-
normal distribution has the following form:

𝑓
𝑌
(𝑦) =

1

𝑦𝜎√2𝜋
𝑒−(ln𝑦−𝜇)

2
/2𝜎
2

, 𝑦 > 0. (2)

If 𝑌 is distributed log-normally with parameters 𝜇 and 𝜎,
thenwewrite𝑌 ∼ log−𝑁(𝜇, 𝜎2), and for convenience, we call
𝛽 = log−𝑁(𝜇, 𝜎2) a log-normal distribution, and letΘ be the
set of all log-normal distributions.

Definition 1 (see [16]). Let 𝛽
1
= log−𝑁(𝜇

1
, 𝜎2
1
) and 𝛽

2
=

log−𝑁(𝜇
2
, 𝜎2
2
) be two log-normal distributions, then

(1) 𝛽
1
⊗ 𝛽
2
= log−𝑁(𝜇

1
+ 𝜇
2
, 𝜎2
1
+ 𝜎2
2
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(2) 𝛽𝑎
1
= log−𝑁(𝑎𝜇

1
, 𝑎2𝜎2
1
), 𝑎 ̸= 0.

It is easy to prove that all operational results are still log-
normal distributions, and by these two operational laws, we
have

(1) 𝛽
1
⊗ 𝛽
2
= 𝛽
2
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1
;

(2) (𝛽
1
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2
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3
= 𝛽
1
⊗ (𝛽
2
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(3) (𝛽
1
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2
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2
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(4) 𝛽𝑎1
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1
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Furthermore, if log−𝑁(𝜇, 𝜎2) is a log-normal distribu-
tion, then its expected value 𝜇log and standard deviation 𝜎log
can be calculated by the following formulas [16]:

𝜇log = 𝑒
𝜇+(1/2)𝜎

2

,

𝜎log = 𝑒
𝜇+(1/2)𝜎

2

√𝑒𝜎
2

− 1.

(3)

According to the relation between expectation and vari-
ance in statistics, in the following, we propose a method for
the comparison between two log-normal distributions, which
is based on the expected value 𝜇log and the standard deviation
𝜎log.

Definition 2. Let 𝛽
1
= log−𝑁(𝜇

1
, 𝜎2
1
) and 𝛽

2
= log−𝑁(𝜇

2
,

𝜎2
2
) be two log-normal distributions, then

(1) if 𝜇log(𝛽1) < 𝜇log(𝛽2), then 𝛽1 is smaller than 𝛽
2
,

denoted by 𝛽
1
< 𝛽
2
;

(2) if 𝜇log(𝛽1) = 𝜇log(𝛽2), then

(i) if 𝜎log(𝛽1) = 𝜎log(𝛽2), then 𝛽1 is equal to 𝛽2,
denoted by 𝛽

1
= 𝛽
2
;

(ii) if 𝜎log(𝛽1) < 𝜎log(𝛽2), then 𝛽1 is bigger than 𝛽
2
,

denoted by 𝛽
1
> 𝛽
2
;

(iii) if 𝜎log(𝛽1) > 𝜎log(𝛽2), then 𝛽1 is smaller than 𝛽
2
,

denoted by 𝛽
1
< 𝛽
2
.

3. The LNDWG and DLNDWG Operators

To aggregate the log-normally distributed criterion values, in
what follows, based on Definition 1, we first propose a new
geometric aggregation operator, which is called the LNDWG
operator.
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Definition 3. Let 𝛽
𝑗
= log−𝑁(𝜇

𝑗
, 𝜎2
𝑗
) (𝑗 = 1, 2, . . . , 𝑛) be

a collection of log-normal distributions, and let LNDWG
Θ𝑛 → Θ, if
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then LNDWG is called the log-normal distribution
weighted geometric operator of dimension 𝑛, where
𝑤 = (𝑤
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Theorem 4. Let 𝛽
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𝑗=1
𝑤
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= 1; then their aggregated result

using the LNDWG operator is also a log-normal distribution,
and

LNDWG
𝑤
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1
, 𝛽
2
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𝑛
) = log−𝑁(

𝑛
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𝑛
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𝑤2
𝑗
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𝑗
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(5)

Proof. Obviously, from Definition 1, the aggregated value by
using the LNDWGoperator is also a log-normal distribution.
In the following, we prove (5) by using mathematical induc-
tion on 𝑛.

(1) For 𝑛 = 2, since
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(2) If (5) holds for 𝑛 = 𝑘, that is,

LNDWG
𝑤
(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑘
) = log−𝑁(

𝑘

∑
𝑗=1

𝑤
𝑗
𝜇
𝑗
,
𝑘

∑
𝑗=1

𝑤2
𝑗
𝜎2
𝑗
) .

(8)

Then, when 𝑛 = 𝑘 + 1, by Definition 1, we have
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That is, (5) holds for 𝑛 = 𝑘 + 1.
Thus, based on (1) and (2), (5) holds for all 𝑛 ∈ 𝑁, which

completes the proof of Theorem 4.

The LNDWG operator is an extension of the well-known
weighted geometric averaging (WGA) operator [23]. Similar
to theWGAoperator, the LNDWGoperator has the following
properties.

Theorem 5 (properties of LNDWG). Let 𝛽
𝑗
= log−𝑁(𝜇

𝑗
,

𝜎2
𝑗
) (𝑗 = 1, 2, . . . , 𝑛) be a collection of log-normal distributions,

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)𝑇 be the weight vector of 𝛽

𝑗
(𝑗 =

1, 2, . . . , 𝑛), with𝑤
𝑗
∈ [0, 1] and∑𝑛

𝑗=1
𝑤
𝑗
= 1; then we have the

following.

(1) Idempotency: If all 𝛽
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are equal, that

is, 𝛽
𝑗
= 𝛽 for all 𝑗, then

LNDWG
𝑤
(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) = 𝛽. (10)

(2) Boundary: min(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) ≤ LNDWG

𝑤
(𝛽
1
, 𝛽
2
,

. . . , 𝛽
𝑛
) ≤ max(𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
).

(3) Monotonicity: Let 𝛽
𝑗
= log−𝑁(𝜇

𝑗
, 𝜎2
𝑗
) and 𝛽∗

𝑗
=

log−𝑁(𝜇∗
𝑗
, (𝜎∗
𝑗
)2) (𝑗 = 1, 2, . . . , 𝑛) be two collections

of log-normal distributions. If 𝛽
𝑗
≤ 𝛽∗
𝑗
, for all 𝑗, then

LNDWG
𝑤
(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) ≤ LNDWG

𝑤
(𝛽∗
1
, 𝛽∗
2
, . . . , 𝛽∗

𝑛
) .
(11)

Consider that in many SMCDM problems, the original
decision information is usually collected at different periods;
then the aggregation operator and its associated weights
should not keep constant. In the following, based on Defini-
tions 1 and 3, we propose another new aggregation operator
for aggregating the log-normally distributed criterion values
given at different periods.
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Definition 6. Let 𝑡 be a time variable and 𝑌 be a random
variable, if 𝑌 ∼ log−𝑁(𝜇(𝑡), (𝜎(𝑡))2) at the period 𝑡, where
𝜇(𝑡) and (𝜎(𝑡))2 is the expectation and the variance of 𝑌 at
the period 𝑡, respectively, then we call log−𝑁(𝜇(𝑡), (𝜎(𝑡))2)
the log-normal distribution of 𝑌 at the period 𝑡, denoted by
𝛽(𝑡) = log−𝑁(𝜇(𝑡), (𝜎(𝑡))2).

Similar to Definitions 1 and 3, we have the following.

Definition 7. Let 𝛽(𝑡
1
) = log−𝑁(𝜇(𝑡

1
), (𝜎(𝑡

1
))2) and 𝛽(𝑡

2
) =

log−𝑁(𝜇(𝑡
2
), (𝜎(𝑡

2
))2) be two log-normal distributions at

two different periods 𝑡
1
, 𝑡
2
, respectively; then their opera-

tional laws can be defined as follows:

(1) 𝛽(𝑡
1
) ⊗ 𝛽(𝑡

2
) = log−𝑁(𝜇(𝑡

1
) + 𝜇(𝑡

2
), (𝜎(𝑡

1
))2 +

(𝜎(𝑡
2
))2);

(2) (𝛽(𝑡
1
))𝑎 = log−𝑁(𝑎𝜇(𝑡

1
), 𝑎2(𝜎(𝑡

1
))2), 𝑎 ̸= 0.

Definition 8. Let 𝛽(𝑡
𝑘
) = log−𝑁(𝜇(𝑡

𝑘
), (𝜎(𝑡

𝑘
))2) (𝑘 =

1, 2, . . . , 𝑝) be a collection of 𝑝 log-normal distributions at
𝑝 different periods 𝑡

𝑘
(𝑘 = 1, 2, . . . , 𝑝), and let 𝜆(𝑡) =

(𝜆(𝑡
1
), 𝜆(𝑡
2
), . . . , 𝜆(𝑡

𝑝
))𝑇 be the weight vector of the periods

𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑝), with 𝜆(𝑡

𝑘
) ≥ 0 and ∑𝑝

𝑘=1
𝜆(𝑡
𝑘
) = 1; then

we call

DLNDWG
𝜆(𝑡)
(𝛽 (𝑡
1
) , 𝛽 (𝑡

2
) , . . . , 𝛽 (𝑡

𝑝
))

= (𝛽 (𝑡
1
))
𝜆(𝑡
1
)
⊗ (𝛽 (𝑡

2
))
𝜆(𝑡
2
)
⊗ ⋅ ⋅ ⋅ ⊗ (𝛽 (𝑡

𝑛
))
𝜆(𝑡
𝑛
)

(12)

the dynamic log-normal distribution weighted geometric
(DLNDWG) operator.

Theorem 9. Let 𝛽(𝑡
𝑘
) = log−𝑁(𝜇(𝑡

𝑘
), (𝜎(𝑡

𝑘
))2) (𝑘 =

1, 2, . . . , 𝑝) be a collection of 𝑝 log-normal distributions at
𝑝 different periods 𝑡

𝑘
(𝑘 = 1, 2, . . . , 𝑝), and let 𝜆(𝑡) =

(𝜆(𝑡
1
), 𝜆(𝑡
2
), . . . , 𝜆(𝑡

𝑝
))𝑇 be the weight vector of the periods

𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑝), with 𝜆(𝑡

𝑘
) ≥ 0 and ∑𝑝

𝑘=1
𝜆(𝑡
𝑘
) = 1; then

their aggregated result using the DLNDWG operator is also a
log-normal distribution, and

DLNDWG
𝜆(𝑡)
(𝛽 (𝑡
1
) , 𝛽 (𝑡

2
) , . . . , 𝛽 (𝑡

𝑝
))

= log−𝑁(
𝑝

∑
𝑘=1

𝜆 (𝑡
𝑘
) 𝜇 (𝑡
𝑘
) ,

𝑝

∑
𝑘=1

(𝜆 (𝑡
𝑘
))
2
(𝜎 (𝑡
𝑘
))
2
) .

(13)

In (12) and (13), the time weight vector 𝜆(𝑡) reflects
the importance degree of different periods, which can be
given by decision maker(s) or can be obtained by using
one of the existing methods, including the arithmetic series
based method [24], the geometric series based method
[24], the BUM function based method [25], the normal
distribution based method [25], the exponential distribution
based method [26], the Poisson distribution based method
[27], the binomial distribution based method [28], and the
average age method [25]. In the following, we propose
another method to generate the time weight vector 𝜆(𝑡) =
(𝜆(𝑡
1
), 𝜆(𝑡
2
), . . . , 𝜆(𝑡

𝑝
))𝑇 by using the entropy model of Shan-

non [29–31]. Consider that, on one hand, the real weights

Table 1: 0.1–0.9 scale for the relative average age 𝜏.

𝜏 Implication
0.1 Paying more attention to recent data
0.3 Paying much attention to recent data
0.5 Paying the same attention to every period
0.7 Paying much attention to distant data
0.9 Paying more attention to distant data
0.2, 0.4, 0.6, 0.8 Intermediate values between adjacent scale values

of different periods are random variables and we can utilize
the time weight vector’s entropy 𝐻(𝜆(𝑡)) to describe the
uncertainty of the time weight vector 𝜆(𝑡) [30], which is
defined as

𝐻(𝜆 (𝑡)) = −

𝑝

∑
𝑘=1

𝜆 (𝑡
𝑘
) ln 𝜆 (𝑡

𝑘
) . (14)

On the other hand, we can associate with a concept of the
relative average age of the data [31], which is defined as

𝜏 =
1

𝑝 − 1

𝑝

∑
𝑘=1

(𝑝 − 𝑘) 𝜆 (𝑡
𝑘
) , (15)

where 𝜏 indicates the relative average age of the data.
The concept of relative average age is an extension of the

average age concept [25, 31]. The average age of the data is
defined by 𝑡 = ∑𝑝

𝑘=1
(𝑝−𝑘)𝜆(𝑡

𝑘
), but 𝑡 only can be obtained by

using approximate method.The relative average age 𝜏 reflects
the degree paid attention to the data of different periods by
the decisionmakers in the process of information aggregation
and can be represented by using a 0.1–0.9 scale (Table 1).
When 𝜏 is close to 0, it indicates that the decision makers pay
more attention to recent data; when 𝜏 is close to 1, it indicates
that the decision makers pay more attention to distant data;
when 𝜏 = 0.5, it indicates that the decision makers pay
the same attention to every period, with no preference.
Particularly, when 𝜏 = 1, then 𝜆(𝑡) = (1, 0, . . . , 0)𝑇; when
𝜏 = 0, then 𝜆(𝑡) = (0, 0, . . . , 1)𝑇; when 𝜏 = 0.5, then 𝜆(𝑡) =
(1/𝑝, 1/𝑝, . . . , 1/𝑝)𝑇.

Thus, we can obtain the time weights by maximizing the
time weight vector’s entropy 𝐻(𝜆(𝑡)) for a specified level of
the relative average age 𝜏 and then find a set of weights that
satisfies the following mathematical programming model for
the 𝜆(𝑡

𝑘
):

Maximize : 𝐻 (𝜆 (𝑡)) = −

𝑝

∑
𝑘=1

𝜆 (𝑡
𝑘
) ln 𝜆 (𝑡

𝑘
) ,

Subject to : 𝜏 =
1

𝑝 − 1

𝑝

∑
𝑘=1

(𝑝 − 𝑘) 𝜆 (𝑡
𝑘
)

𝑝

∑
𝑘=1

𝜆 (𝑡
𝑘
) = 1

𝜆 (𝑡
𝑘
) ≥ 0, 𝑘 = 1, 2, . . . , 𝑝.

(M-1)
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Table 2: Decision matrix 𝑅(𝑡
1
).

𝐼
1

𝐼
2

𝐼
3

𝐴
1

log-N (385, 9.22) log-N (259, 7.92) log-N (139, 5.62)
𝐴
2

log-N (392, 10.12) log-N (266, 8.52) log-N (136, 6.12)
𝐴
3

log-N (358, 8.92) log-N (253, 6.82) log-N (130, 6.82)
𝐴
4

log-N (468, 10.92) log-N (317, 7.52) log-N (166, 7.22)
𝐴
5

log-N (451, 9.62) log-N (303, 6.92) log-N (159, 7.52)

Table 3: Decision matrix 𝑅(𝑡
2
).

𝐼
1

𝐼
2

𝐼
3

𝐴
1

log-N (371, 9.62) log-N (251, 7.62) log-N (134, 5.52)
𝐴
2

log-N (385, 10.22) log-N (269, 9.32) log-N (138, 6.12)
𝐴
3

log-N (359, 9.32) log-N (253, 8.62) log-N (135, 6.52)
𝐴
4

log-N (463, 10.92) log-N (319, 9.12) log-N (169, 7.52)
𝐴
5

log-N (455, 9.72) log-N (319, 8.92) log-N (155, 8.62)

Table 4: Decision matrix 𝑅(𝑡
3
).

𝐼
1

𝐼
2

𝐼
3

𝐴
1

log-N (369, 9.22) log-N (255, 7.92) log-N (131, 5.72)
𝐴
2

log-N (391, 9.82) log-N (269, 9.22) log-N (136, 6.12)
𝐴
3

log-N (351, 10.62) log-N (257, 8.62) log-N (133, 6.72)
𝐴
4

log-N (467, 11.12) log-N (316, 9.32) log-N (168, 7.12)
𝐴
5

log-N (469, 11.72) log-N (306, 8.82) log-N (158, 7.62)

4. A Procedure for Dynamic SMCDM
with Log-Normally Distributed
Random Variables

In this section, we consider a dynamic SMCDM problem
where all criterion values take the form of log-normally
distributed random variables collected at different periods.
The following notations are used to depict the considered
problems.

(i) 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
}: a discrete set of 𝑚 feasible

alternatives.

(ii) 𝐼 = {𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
}: a finite set of criteria. The criterion

weight vector is 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)𝑇, with 𝑤

𝑗
≥ 0

and ∑𝑛
𝑗=1
𝑤
𝑗
= 1.

(iii) There are 𝑝 different periods 𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑝) with

𝑡
𝑝
being the most recent period and 𝑡

1
being the most

distant period.

(iv) 𝑅(𝑡
𝑘
) = (𝛽

𝑖𝑗
(𝑡
𝑘
))
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑝): 𝑘 log-normal
distribution decision matrices at the periods 𝑡

𝑘
(𝑘 =

1, 2, . . . , 𝑝), where 𝛽
𝑖𝑗
(𝑡
𝑘
) = log−𝑁(𝜇

𝑖𝑗
(𝑡
𝑘
), (𝜎
𝑖𝑗
(𝑡
𝑘
))2)

are the criterion values of the alternatives 𝐴
𝑖
with

respect to the criteria 𝐼
𝑗
at the periods 𝑡

𝑘
(𝑖 =

1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑝).

Based on the above decision information, in the follow-
ing, we develop a practical procedure to rank the alternatives
and select the most desirable one.

Step 1. Utilize the model (M-1) to generate the time weight
vector 𝜆(𝑡) = (𝜆(𝑡

1
), 𝜆(𝑡
2
), . . . , 𝜆(𝑡

𝑝
))𝑇.

Step 2. Utilize the DLNDWG operator:

𝛽
𝑖𝑗
= DLNDWG

𝜆(𝑡)
(𝛽
𝑖𝑗
(𝑡
1
) , 𝛽
𝑖𝑗
(𝑡
2
) , . . . , 𝛽

𝑖𝑗
(𝑡
𝑝
)) , (16)

to aggregate all the log-normal distribution decisionmatrices
𝑅(𝑡
𝑘
) = (𝛽

𝑖𝑗
(𝑡
𝑘
))
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑝) into an overall
log-normal distribution decision matrix 𝑅 = (𝛽

𝑖𝑗
)
𝑚×𝑛

=

(log−𝑁(𝜇
𝑖𝑗
, 𝜎2
𝑖𝑗
))
𝑚×𝑛

, where

𝛽
𝑖𝑗
= log−𝑁(𝜇

𝑖𝑗
, 𝜎2
𝑖𝑗
) , 𝜇

𝑖𝑗
=

𝑝

∑
𝑘=1

𝜆 (𝑡
𝑘
) 𝜇
𝑖𝑗
(𝑡
𝑘
) ,

𝜎2
𝑖𝑗
=

𝑝

∑
𝑘=1

(𝜆 (𝑡
𝑘
))
2
(𝜎
𝑖𝑗
(𝑡
𝑘
))
2

,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛

(17)

and 𝜆(𝑡) = (𝜆(𝑡
1
), 𝜆(𝑡
2
), . . . , 𝜆(𝑡

𝑝
))𝑇 is the time weight vector,

with 𝜆(𝑡
𝑘
) ≥ 0 and ∑𝑝

𝑘=1
𝜆(𝑡
𝑘
) = 1.

Step 3. Normalize the decision matrix 𝑅 = (𝛽
𝑖𝑗
)
𝑚×𝑛

. Let
𝐼𝑏 be the set of all benefit criteria, and let 𝐼𝑐 be the set
of all cost criteria; then we can use the following formulas
to transform the decision matrix 𝑅 = (𝛽

𝑖𝑗
)
𝑚×𝑛

into the
corresponding normalized decision matrix 𝑅̃ = (𝛽

𝑖𝑗
)
𝑚×𝑛

=

(log−𝑁(𝜇
𝑖𝑗
, 𝜎̃2
𝑖𝑗
))
𝑚×𝑛

:

𝜇
𝑖𝑗
=

𝜇
𝑖𝑗

max
𝑖
{𝜇
𝑖𝑗
}
, 𝐼
𝑗
∈ 𝐼𝑏, 𝑖 = 1, 2, . . . , 𝑚, (18)

𝜇
𝑖𝑗
=
min
𝑖
{𝜇
𝑖𝑗
}

𝜇
𝑖𝑗

, 𝐼
𝑗
∈ 𝐼𝑐, 𝑖 = 1, 2, . . . , 𝑚, (19)

𝜎̃
𝑖𝑗
=

𝜎
𝑖𝑗

max
𝑖
{𝜇
𝑖𝑗
}
, 𝐼
𝑗
∈ 𝐼, 𝑖 = 1, 2, . . . , 𝑚. (20)

Note that standard deviation is relative to mean, so (20) is
suitable for all 𝐼

𝑗
∈ 𝐼.

Step 4. Utilize the LNDWG operator

𝛽
𝑖
= LNDWG

𝑤
(𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖𝑛
) , (21)

to aggregate the overall criterion values 𝛽
𝑖𝑗
in the 𝑖th column

of the normalized decision matrix 𝑅̃ = (𝛽
𝑖𝑗
)
𝑚×𝑛

into
the complex overall values 𝛽

𝑖
of the alternatives 𝐴

𝑖
(𝑖 =

1, 2, . . . , 𝑚), where

𝛽
𝑖
= log−𝑁(𝜇

𝑖
, 𝜎̃2
𝑖
) , 𝜇

𝑖
=
𝑛

∑
𝑗=1

𝑤
𝑗
𝜇
𝑖𝑗

𝜎̃2
𝑖
=
𝑛

∑
𝑗=1

𝑤2
𝑗
𝜎̃2
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑚.

(22)
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Table 5: Overall decision matrix 𝑅.

𝐼
1

𝐼
2

𝐼
3

𝐴
1

log-N (370.7830, 6.71262) log-N (254.3824, 5.71452) log-N (132.3641, 4.12342)
𝐴
2

log-N (389.6641, 7.15112) log-N (268.7543, 6.68272) log-N (136.4726, 4.42992)
𝐴
3

log-N (353.4637, 7.58892) log-N (255.7272, 6.23062) log-N (133.2269, 4.85142)
𝐴
4

log-N (466.1367, 8.04402) log-N (316.7908, 6.72362) log-N (168.0725, 5.18862)
𝐴
5

log-N (464.2176, 8.33702) log-N (308.8262, 6.38282) log-N (157.3730, 5.59972)

Table 6: Normalized decision matrix 𝑅̃.

𝐼
1

𝐼
2

𝐼
3

𝐴
1

log-N (0.9533, 0.01442) log-N (0.8030, 0.01802) log-N (1.0000, 0.02452)
𝐴
2

log-N (0.9071, 0.01532) log-N (0.8484, 0.02112) log-N (0.9699, 0.02642)
𝐴
3

log-N (1.0000, 0.01632) log-N (0.8072, 0.01972) log-N (0.9935, 0.02892)
𝐴
4

log-N (0.7583, 0.01732) log-N (1.0000, 0.02122) log-N (0.7875, 0.03092)
𝐴
5

log-N (0.7614, 0.01792) log-N (0.9749, 0.02012) log-N (0.8411, 0.03332)

Step 5. Utilize (3) to calculate the expected values𝜇log(𝛽𝑖) and
the standard deviations 𝜎log(𝛽𝑖) of the complex overall values
𝛽
𝑖
of the alternatives 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 6. Use Definition 2 to rank all the alternatives 𝐴
𝑖
(𝑖 =

1, 2, . . . , 𝑚) and then select the best one according to the
values 𝜇log(𝛽𝑖) and 𝜎log(𝛽𝑖) (𝑖 = 1, 2, . . . , 𝑚).

5. Illustrative Example

In this section, we use a practical dynamic SMCDM problem
(adapted from [2]) to illustrate the application of the devel-
oped approach.

An investment company wants to invest a total amount of
money in the best option. There are five possible companies
𝐴
𝑖
(𝑖 = 1, 2, . . . , 5) to be invested: (1) 𝐴

1
is an arms company;

(2) 𝐴
2
is a computer company; (3) 𝐴

3
is a food company;

(4) 𝐴
4
is an auto company; and (5) 𝐴

5
is a TV company.

The criteria considered here in selection of the five possible
companies are the following: (1) 𝐼

1
is cost; (2) 𝐼

2
is net

present value; and (3) 𝐼
3
is loss, whose weight vector 𝑤 =

(0.3100, 0.3600, 0.3300)𝑇. The investment company evaluates
the performance of these companies 𝐴

𝑖
(𝑖 = 1, 2, . . . , 5) in

2009–2011 according to the criteria 𝐼
𝑗
(𝑗 = 1, 2, 3) and con-

structs the decision matrices 𝑅(𝑡
𝑘
) = (𝛽

𝑖𝑗
(𝑡
𝑘
))
𝑚×𝑛

(𝑘 = 1, 2, 3,
here, 𝑡

1
denotes “2009”, 𝑡

2
denotes “2010”, 𝑡

3
denotes “2011”)

as listed in Tables 2, 3, and 4 (unit: ten thousands RMB). In
the decision matrices 𝑅(𝑡

𝑘
) = (𝛽

𝑖𝑗
(𝑡
𝑘
))
𝑚×𝑛

, all the criterion
values are expressed in log-normal distributions 𝛽

𝑖𝑗
(𝑡
𝑘
) =

log−𝑁(𝜇
𝑖𝑗
(𝑡
𝑘
), (𝜎
𝑖𝑗
(𝑡
𝑘
))2), where 𝜇

𝑖𝑗
(𝑡
𝑘
) and (𝜎

𝑖𝑗
(𝑡
𝑘
))2 can be

estimated by using statistic methods (𝑖 = 1, 2, . . . , 5, 𝑗 =
1, 2, 3, 𝑘 = 1, 2, 3).

To get the best company, the following steps are involved.

Step 1. Suppose that the relative average age 𝜏 = 0.2 by
taking advice from the decision makers; then we use (M-1)
to construct the optimization model and obtain time weight
vector 𝜆(𝑡) = (0.0819, 0.2363, 0.6818)𝑇.

Step 2. Utilize (16) to aggregate all the log-normal distri-
bution decision matrices 𝑅(𝑡

𝑘
) = (𝛽

𝑖𝑗
(𝑡
𝑘
))
5×3

(𝑘 = 1, 2, 3)
into the overall log-normal distribution decision matrix 𝑅 =
(𝛽
𝑖𝑗
)
5×3

(Table 5).

Step 3. Utilize (18), (19), and (20) to normalize the decision
matrix 𝑅 = (𝛽

𝑖𝑗
)
5×3

into the corresponding decision matrix
𝑅̃ = (𝛽

𝑖𝑗
)
5×3

(Table 6). Note that the criterion 𝐼
2
is benefit

criterion, and the criteria 𝐼
1
and 𝐼
3
are cost criteria.

Step 4. Utilize (21) to aggregate the overall criterion values
𝛽
𝑖𝑗
in the 𝑖th column of the normalized decision matrix

𝑅̃ = (𝛽
𝑖𝑗
)
𝑚×𝑛

and derive the complex overall values 𝛽
𝑖
of the

alternatives 𝐴
𝑖
(𝑖 = 1, 2, . . . , 5):

𝛽
1
= log−𝑁(0.9146, 0.01132) ,

𝛽
2
= log−𝑁(0.9067, 0.01252) ,

𝛽
3
= log−𝑁(0.9285, 0.01292) ,

𝛽
4
= log−𝑁(0.8550, 0.01382) ,

𝛽
5
= log−𝑁(0.8645, 0.01432) .

(23)

Step 5. Use (3) to calculate the expected values 𝜇log(𝛽𝑖) (𝑖 =
1, 2, . . . , 5):

𝜇log (𝛽1) = 2.4959, 𝜇log (𝛽2) = 2.4763,

𝜇log (𝛽3) = 2.5309, 𝜇log (𝛽4) = 2.3516,

𝜇log (𝛽5) = 2.3741.

(24)

Thus,

𝜇log (𝛽3) > 𝜇log (𝛽1) > 𝜇log (𝛽2) > 𝜇log (𝛽5) > 𝜇log (𝛽4) .

(25)
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Step 6. Use Definition 2 to rank all the alternatives 𝐴
𝑖
(𝑖 =

1, 2, . . . , 5): 𝐴
3
≻ 𝐴
1
≻ 𝐴
2
≻ 𝐴
5
≻ 𝐴
4
. Therefore, the best

alternative (company) is 𝐴
3
.

6. Conclusions

In this paper, we have proposed two new geometric aggre-
gation operators, such as the LNDWG operator and the
DLNDWG operator. Both operators can be used to aggregate
the log-normally distributed random variables, can avoid
losing the original decision information, and thus ensure the
veracity and rationality of the aggregated results. But weights
represent different aspects in both the LNDWG operator
and the DLNDWG operator. The weights of the LNDWG
operator only reflect the importance degrees of the given
log-normal distributions themselves, whereas the weights of
the DLNDWG operator only reflect the importance degrees
of different periods. Thus, the LNDWG operator is a time
independent operator, and because of taking time into
account in the aggregation process, the DLNDWG operator
is a time-dependent operator. The weights associated with
the DLNDWG operator can be given by decision maker(s)
or can be obtained by using the existing methods, but we
have proposed another method by using the entropy model
of Shannon.We have also developed an approach to dynamic
SMCDM, in which the criterion values take the form of log-
normally distributed random variables, and the argument
information is given at different periods. This method has
been detailedly illustrated with a practical example. This
paper enriches and develops aggregation operator theory and
SMCDM theory, and it can be widely applied in medical
dynamic diagnosis, personnel dynamic examination,military
system efficiency dynamic evaluation, and other related
decision making fields.
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