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For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m
non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of
the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented,
an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a
hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and
resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The
computational result and comparison prove that the presented approach is quite effective for the considered problem.

1. Introduction

The sheet cutting is widely used in engineering machin-
ery, mining machinery, port machinery, and other industry
machinery. The manufacturing model and management of
modern enterprises have been changed greatly by the devel-
opment of science and technology. Since integrated cutting
stock has become a new cutting model, the integrated cutting
stock brings much economic benefits to the enterprise, but it
also brings some difficulty for solving the nesting and cutting
scheduling problem in the meantime. Therefore, finding an
advanced approach to solving the cutting scheduling problem
for integrated cutting stock has an important practical and
theoretical significance.

The processing capacity of different types of cutting
machines is different. For example, 0.15mm∼6mm thick steel
plate can be cut on the laser cutting machine, and the cutting
speed can reach 10000mm/min. Meanwhile, 5mm∼200mm
thick steel plate can be cut on the flame cutting machine,
and its cutting speed is 0–700mm/min.Therefore, the cutting
patterns of different material and thickness can be cut on the

different types of cutting machines. In other words, there are
some process constraints in the process of integrated cutting
stock. Furthermore, the same cutting pattern can be cut on
the different types of cutting machines with different cutting
speed.

Assignment of 𝑛 cutting patterns to 𝑚 unit different
cutting machines is considered as an integrated cutting
scheduling problem. Each cutting pattern can be only cut
one time on a machine. The objective of integrated cutting
scheduling is minimizing the weighted completed time.
It belongs to scheduling problem for nonidentical parallel
machines with process constraint and sequence-independent
setups.

Lots of algorithms and approaches are used in cutting
stock problem including conventional optimization algo-
rithms and various metaheuristic algorithms. For instance,
Blazewicz et al. [1], Gomes andOliveira[2], Umetani et al. [3],
Bennell et al. [4], Cui et al. [5], Cui and Chen [6], Xie et al.
[7], and others proposed some nesting algorithms and gave
some suggestions on the two-dimensional cutting stock prob-
lem. However, literatures on the cutting scheduling problem
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(CSP) are not vast. There are some papers concerning the
combined cutting stock and lot-sizing problem. NonÅs and
Thorstenson [8] wanted to find an optimal production sched-
ule involves the solution of a combined two-dimensional
irregular cutting-stock and lot-sizing problem. In that paper,
they proposed a problem formulation and suggested different
solution algorithms (e.g., local search algorithms and simple
tree-search algorithm) for a combined cutting-stock and lot-
sizing problem. Gramani and França [9] analyzed the trade-
off that arises when they solve the cutting stock problem
by taking into account the production planning for various
periods. In that paper, they formulated a mixed-integer
mathematical model that combines the cutting stock and lot-
sizing problems and developed a solution method based on
an analogy with the network shortest path problem. NonÅs
and Thorstenson [8] suggested a new column generating
solution procedure (CGSP) for a combined cutting-stock
and lot-sizing problem. Those papers are mainly concerned
how to generate the cutting patterns, and minimize the
trim-lost or trim-lost, setup cost and holding cost. However,
how to assign those cutting patterns to different cutting
machines, which belongs to cutting scheduling problem, is
not concerned. As a good cutting scheduling can reduce
production costs and raise the production efficiency, this
problem is also important in the whole sheet cutting process.
In this paper, our goal is to find a suitable cutting schedule
and minimize the weighted completed time.

The cutting scheduling problem belongs to scheduling
problem for nonidentical parallel machines with process
constraint and sequence-independent setups. Scheduling
problem has also been studied extensively, for example,
Allahverdi et al. classified scheduling problems into batch and
non-batch, sequence-independent and sequence-dependent
setup, and categorizes the literature according to the shop
environments of single machine, parallel machines, flow-
shops, and job shops [10]. Each scheduling problem is
denoted by the standard threefield notation 𝛼/𝛽/𝛾. The first
field 𝛼 describes the scheduling type, the second field 𝛽 is
reserved for the information and conditions of scheduling,
while the third field 𝛾 contains the performance criteria.
Cheng and Sin surveyed the major research results in deter-
ministic parallel-machine scheduling [11]. And lots of the
literatures of scheduling have considered parallel-machine
scheduling problems. Peng and Liu, Anglani et al., Fowler
et al., and other scholars have done some works on parallel
machines problem [12–14]. And the vast majority of these
studies have concentrated on studying the case of identical
parallel machines. However, the case of nonidentical parallel-
machine schedules has more practical sense than the case of
identical parallel machines in real production (e.g. cutting
and scheduling problem belong to nonidentical parallel-
machine schedule).

Literatures on nonidentical parallel-machine schedules
problem are not vast. Li and Yang gave a review of the
nonidentical parallel-machine total weighted/weighted com-
pletion time problems [15]. Van Hop and Nagarur proposed
a new approach to solve the PCB scheduling problem on a set
of nonidenticalmachines.This approachmodel which related
tasks of grouping, sequencing, and component switching as

one integrated problem, with an objective of minimizing
the total makespan [16]. Balin proposed a GA approach,
which minimized maximum completion time (makespan)
and considered nonidentical parallel machine scheduling
problem with fuzzy processing times [17]. In order to adapt
GA to nonidentical parallel machine scheduling problem, he
proposed a new crossover operator and a new optimality
criterion. Alcan and Balişgil presented a kind of genetic algo-
rithm based on machine code for minimizing the processing
times in nonidentical machine scheduling problem [18]. Also
triangular fuzzy processing times were used in order to adapt
the GA to nonidentical parallel machine scheduling problem
in that paper. Besides the above mentioned papers, there
are a few others that have investigated the unrelated-parallel
machine scheduling problems with different approach (Liaw
et al. [19], Rocha et al. [20], Mehravaran and Logendran
[21], Arnaout et al. [22], Charalambous and Fleszar [23]).
However, even though there are some papers considered
nonidentical parallel-machine scheduling, few of them deal
with nonidentical parallel machine with process constraints.

Taken together, how to assign cutting patterns to different
cutting machines (i.e., the sheet cutting scheduling problem)
is a key point for the whole sheet cutting process, but this
issue are not involved in the previous papers. Considering
the practical requirement, some further work on the sheet
cutting problem needs to be done. To solving this problem,
a mathematical model which takes into account the weighted
completed time is presented. Furthermore, an improved hier-
archical genetic algorithm (ant colony—hierarchical genetic
algorithm) is developed to solve this mathematical model.
Based on the characteristics of the problem, a hierarchical
coding method is used in this algorithm. In addition, to
speed up convergence rates and resolve local convergence
issues, a kind of adaptive crossover probability and mutation
probability is used in this algorithm.

The rest of the paper is organized as follows. In Section 2,
a detailed description of the sheet cutting scheduling problem
is illustrated. A mathematic model for the sheet cutting
problem is presented in Section 3. In Section 4, a process for
solving the sheet cutting problem with a hierarchical genetic
algorithm is demonstrated.Then the results of computational
experiment are described in Section 5. Finally, conclusions
and directions are given in Section 6.

2. Statement of the Problem

The process of sheet cutting is as follows. First, a variety of
cutting patterns with the combination of different parts are
generated by special nesting software. Second, those cutting
patterns are assigned to different cutting machines. Thirdly,
those cutting patterns are cut by different cutting machines.
The process of sheet cutting can be showed by Figure 1. As the
processing capacity of different types of cutting machines is
different, a cutting pattern can be cut on some special cutting
machines under different cutting speed.The capacity of some
different cutting machines is shown in Table 1.

For example, a cutting pattern, material Q235 and thick-
ness 20mm, can be cut on plasma cutting machine B, flame
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Figure 1: The production process of sheet cutting.

Table 1: The capacity of different cutting machines.

Machine no. Cutting machine type The range of sheet thickness can be processed Cutting speed
𝑀

1
Laser cutting machine 0.15mm∼6mm carbon steel 10000mm/min

𝑀

2
Plasma cutting machine A 1mm∼15mm carbon steel 1000mm/min

𝑀

3
Plasma cutting machine B 1mm∼25mm carbon steel 800mm/min

𝑀

4
Flame cutting machine A 6mm∼200mm carbon steel 350mm/min

𝑀

5
Flame cutting machine B 6mm∼200mm carbon steel 450mm/min

𝑀

6
Flame cutting machine C 6mm∼200mm carbon steel 500mm/min

cutting machine A, flame cutting machine B and flame
cutting machine C. The cutting speed is 800mm/min on the
plasma cutting machine B, but it is 500mm/min on the flame
cutting machine C. Therefore, how to assign cutting patterns
to different cutting machines is needed to be solved by some
method.

3. Mathematical Modeling

We consider the cutting scheduling problem of 𝑛 cutting
patterns for 𝑚 nonidentical parallel machines with process
constraints in detail, where 𝑚 < 𝑛. 𝑇𝑝

𝑖𝑗
represents the

processing time of cutting patterns, where 𝑖 = 1, 2, . . . , 𝑛,
𝑗 = 1, 2, . . . , 𝑚. It means the processing time of cutting
pattern 𝑃

𝑖
on the cutting machine 𝑀

𝑗
. Each cutting pattern

has a corresponding weight coefficient 𝜔
𝑖
. We need to make

an optimal scheduling to minimize the weighted completion
time.

The problem considered can be summarized by the
following points.

(1) 𝑛 different cutting patterns 𝑃

1
, 𝑃

2
, . . . , 𝑃

𝑛
need to be

cut.

(2) Each cutting pattern includes some information such
as number of parts, cutting length, number of punch,
and so forth.

(3) m different cutting machines 𝑀
1
,𝑀

2
, . . . ,𝑀

𝑛
can be

used. Each cuttingmachine can cut a variety of sheets
of different material and thickness.

(4) The process time of a cutting pattern on different
cutting machine may be different.

(5) The products pass rate is 100%, in other words, there
is no reprocessing.

(6) Once starting cutting, it is not allowed to interrupt.

(7) Each cutting pattern is independent.

(8) Only one working procedure (i.e., cutting procedure)
is included in this sheet cutting process.

(9) The cutting process includes special process con-
straint, which the cutting machine set C𝑃

𝑖
means

cutting patterns 𝑃
𝑖
can be used, CP

𝑖
∈ 𝑀, CP

𝑖
̸= Φ.

(10) Setup time includes punch time, collection time (the
time of collect parts after completing cut) and the time
using to adjust steel on the cutting machine.

(11) Empty travel time is ignored, in other words, the
processing time is the actual cutting time.

Definition. Consider the following:

𝑛 is the number of cutting patterns,

𝑚 is the number of cutting machines,

𝑖 is cutting pattern index, 𝑖 = 1, . . . , 𝑛,

𝑗 is cutting machine index, 𝑗 = 1, . . . , 𝑚,

𝑝𝑛

𝑖
is number of parts in cutting pattern 𝑃

𝑖
,

𝑝ℎ

𝑖
is number of punch in cutting pattern 𝑃

𝑖
,
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𝑡𝑝

𝑖𝑗

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

cutting time of cutting pattern 𝑖 on machine 𝑗

if cutting pattern 𝑃

𝑖
can be

processed on machine 𝑗

∞ if cutting pattern 𝑃

𝑖
cannot be

processed on machine 𝑗,

(1)

𝑉𝑝𝑚

𝑖𝑗
is cutting speed of cutting pattern 𝑃

𝑖
on cutting

machine𝑀
𝑗
,

𝑠𝑡𝑝

𝑖𝑗
is setup time of cutting pattern 𝑃

𝑖
on cutting

machine𝑀
𝑗
,

𝜔

𝑖
is process weight of cutting pattern 𝑃

𝑖
,

𝑐

𝑖𝑗
is completed time of cutting pattern 𝑃

𝑖
on machine

𝑀

𝑗
.

Decision Variables. Consider the following:

𝑧

𝑖𝑗

{

{

{

{

{

{

{

{

{

{

{

1 if cutting pattern 𝑃

𝑖

can be cut on cutting machine 𝑀

𝑗

0 otherwise

(2)

Objective Function. Consider the following:

𝑓 = min
𝑛

∑

𝑖=1

∑

𝑗,𝑗∈CP𝑖

𝜔

𝑖
𝑐

𝑖𝑗
𝑧

𝑖𝑗 (3)

subject to

∑

𝑗,𝑗∈CP𝑖

𝑧

𝑖𝑗
= 1, 𝑖 = 1, 2, . . . , 𝑛 (4)

𝑛

∑

𝑖=1

∑

𝑗,𝑗∈CP𝑖

𝑧

𝑖𝑗
= 𝑛, 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 1, 2, . . . 𝑚 (5)

𝑐

𝑖𝑗
= (𝑐

𝑥𝑗
+ 𝑡𝑝

𝑖𝑗
+ 𝑠𝑡𝑝

𝑖𝑗
) × 𝑧

𝑖𝑗
, (6)

𝑠𝑡𝑝

𝑖𝑗
= 𝑝ℎ

𝑖
× 1 + 𝑝𝑛

𝑖
× 0.5 + 5, (7)

𝑡𝑝

𝑖𝑘
× 𝑉𝑚𝑝

𝑖𝑘
= 𝑡

𝑖𝑙
× 𝑉𝑚𝑝

𝑖𝑙
𝑘, 𝑙 = 1, 2, . . . , 𝑚, (8)

CP
𝑖
∈ 𝑀, CP

𝑖
∉ Φ. (9)

The minimizing weighted completed time can be got
by objective function (3). Equation (4) considers a cutting
pattern can be cut only on one cuttingmachine. All of cutting
patterns are sure to be cut by (5). Equation (6) represents
the completed time of cutting pattern 𝑃

𝑖
on machine 𝑀

𝑗
. It

consists of three components which involve 𝑐
𝑥𝑗
, 𝑡
𝑝𝑗
and 𝑠𝑡𝑝

𝑖𝑗
,

where 𝑐
𝑥𝑗
represents the completed time of cutting pattern 𝑃

𝑥

which is cut on the cuttingmachine𝑀
𝑗
before cutting pattern

𝑃

𝑖
. There are three components for (7). The first component

represents punch time (punch time of each drilling is 1
minute). The second component represents collection time
(the time of collect each part which a cutting pattern includes
cut is 0.5 minute). The last component relates to the time
using to adjust steel on the cutting machine. Processing time
of a cutting pattern 𝑃

𝑖
on different machines can be expressed

by (8). Formula (9) considers the cutting process contains a
special process constraint. In other words, a cutting pattern
is assigned which cutting machine depends on the sheet
characteristics.

With the increase of the problem size, the solution of the
problem becomes very complicated, or it is even impossible
to be solved with conventional optimization methods. And
it has been proved it is a NP-problem. In this paper, an
ant colony—hierarchical genetic algorithm is considered to
solve this problem. A set of optimized initial solution is
generated by ant colony algorithm which has some merits,
such as simple and universal, robustness. However, it is easy
to fall into local optimum. Then, the hierarchical genetic
algorithm which has strongly global search capability is used
to further optimize the initial solution. Fast and efficient
global optimizing can come true by using the ant colony—
hierarchical genetic algorithm.

4. Ant Colony—Hierarchical
Genetic Algorithm

A set of optimized initial solution is generated by using
the ant colony algorithm for its simple and universal [24].
Then the solution is furthermore optimized by hierarchical
genetic algorithm for its strongly global search capability.
A hierarchical structure, which is consisted of parameter
genes and control genes, is used by the hierarchical genetic
algorithm [25]. The parameter genes are the lowest level,
and control genes are in the higher levels of the parameter
genes. The parameter genes are controlled by the control
genes. In addition, to speed up convergence rates and
resolve local convergence issues, a kind of adaptive crossover
probability and mutation probability is used in this algo-
rithm.

4.1. Code. If the binary encoding is used for solving the
cutting scheduling problem, the chromosome will be very
complex and difficult for the crossover operator and decod-
ing. So, to overcome these difficulties, the natural number
encoding couple with binary encoding is used.

For example, six cutting patterns are assigned to three
different cutting machines. The cutting sequence is showed
by control genes and the cutting machine of select is showed
by parameter genes. The value of parameter gene is 1
means the selected cutting machine is 𝑀

1
. As is shown in

Figure 2, the sequence of cutting patterns is 𝑃
4
, 𝑃

5
, 𝑃

1
, 𝑃

6
, 𝑃

2
,

and 𝑃

3
and the cutting pattern 𝑃

1
, 𝑃

2
, 𝑃

3
, 𝑃

4
, 𝑃

5
, and 𝑃

6
are,

respectively, assigned to 𝑀

1
,𝑀

2
,𝑀

1
,𝑀

1
,𝑀

3
, and 𝑀

2
. Each

parameter gene can be further expressed by 0-1 variables
𝑧

𝑖𝑗
.
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Figure 2: The process of natural number encoding.

4.2. Initial Population. The initial population is generated by
ant colony algorithm.The following gives the concrete solving
process of ant colony algorithm.

Selecting the Ants’ Path. It supposes that the ants movement
between nodes which represent cutting patterns on different
cutting machines and different amount of pheromone left on
the nodes at the same time.Then the pheromone impacts the
path of the next lot size ants moving [26]. 𝜏

𝑧𝑖𝑗
(𝑡) represents

the pheromone values at 𝑡 (𝑡 = 0, 1, 2, . . .) moment on
the different nodes. The initial of the pheromone value
𝜏

𝑧𝑖𝑗
(0) = 𝜀 (the 𝜀 is a minimal number). There are 𝑁ant ants

distributed on the different nodes. Then each ant according
to the pheromone value of next node and the heuristic factor
independently chooses the next node. 𝑝𝑘

𝑧𝑖𝑗𝑧(𝑖+1)𝑥
(𝑡) represents

that the transition probability of ant 𝑘 (𝑘 = 1, 2, . . . , 𝑁ant)
moves from the node 𝑧

𝑖𝑗
to the next node 𝑧

(𝑖+1)𝑥
at time t.

The formulation of 𝑝𝑘
𝑧𝑖𝑗𝑧(𝑖+1)𝑥

(𝑡) can be described as follows:

𝑝

𝑘

𝑧𝑖𝑗𝑧(𝑖+1)𝑥
(𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

[𝜏

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡)]

𝛼

[𝜂

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡)]

𝛽

∑

𝑥,𝑥∈CP(𝑖+1) [𝜏(𝑖+1)𝑥 (𝑡)]
𝛼

[𝜂

(𝑖+1)𝑥
(𝑡)]

𝛽

𝑧

(𝑖+1)𝑥
∉ tabu

𝑘
, 𝑥 ∈ CP

(𝑖+1)

0 otherwise,

(10)

where tabu
𝑘
represents the next node set which ant 𝑘 cannot

go to. 𝛼 is a positive parameter, whose value represents the
relative influence of pheromone trail. It shows the relative
importance of ant track. The bigger the value of 𝛼 is, the ant
more inclines to choose the path which others have passed.
𝛽 is a positive parameter, whose value represents the relative
influence of heuristic information. The value of 𝛽 is bigger,
the state transition probability will be close to the greed rules.
𝜂

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡) is a heuristic function, whose value represents

the expected next node (𝑧
(𝑖+1)𝑥

) what the ant expects to
choose.The value of 𝜂

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡) can be gained by (11), where

𝑐

(𝑖+1)𝑥
represents the completion time of next node:

𝜂

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡) = 1 −

𝑐

(𝑖+1)𝑥

∑

𝑥,𝑥∈CP(𝑖+1) 𝑐(𝑖+1)𝑥
. (11)

Pheromone Updating. Pheromone evaporation is inevitable;
meanwhile, the ants deposit pheromone in each iteration.
So the pheromone value 𝜏

𝑧𝑖𝑗
(𝑡) is changing in each iteration.

The pheromone value 𝜏

𝑧𝑖𝑗
(𝑡) can be updated as following

equations:

𝜏

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡 + 1)

= (1 − 𝜌) 𝜏

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡) + Δ𝜏

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
, (𝑡)

(12)

Δ𝜏

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
(𝑡) =

𝑁ant

∑

𝑘=1

Δ𝜏

𝑘

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
, (13)

Δ𝜏

𝑘

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]

=

{

{

{

𝑄

𝑍

𝑘

if ant 𝑘 travels on edge (𝑧

𝑖𝑗
, 𝑧

(𝑖+1)𝑥
)

0 otherwise,

(14)

where 𝜌 (0 < 𝜌 < 1) is the rate of pheromone evaporation,
and 1 − 𝜌 is the rate of pheromone retention. Reducing the
pheromone values enables the algorithm to forget bad deci-
sions made in previous iterations [27]. Thus, the pheromone
updating can help ants to explore new area in the search
space. Δ𝜏𝑘

[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]
represents the pheromone value deposited

on edge (𝑧
𝑖𝑗
, 𝑧
(𝑖+1)𝑥

) by ant k at t iteration; Δ𝜏
[𝑧𝑖𝑗][𝑧(𝑖+1)𝑥]

is the
sum of the pheromone value deposited on edge (𝑧

𝑖𝑗
, 𝑧
(𝑖+1)𝑥

)
by all of ants; 𝑄 represents pheromone strength that affects
the convergence speed of the algorithm. 𝑍

𝑘
represents the

objective function value of ant k in this iteration.
The step by step details are given as shown inAlgorithm 1.

4.3. Fit Function. Minimizing weighted completion time is
objective function, and the fitness function can be obtained
by the exponential transform of objective function:

𝑓 = 𝑎 exp(−𝑏

𝑛

∑

𝑖=1

𝑤

𝑖𝑗
𝑐

𝑖𝑗
𝑧

𝑖𝑗
) , (15)
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Step1. Initialization
Set ACO parameters 𝛼, 𝛽, 𝜌, 𝜏

𝑦𝑗𝑚
(0),𝑁𝐶max (Maximum iterations), 𝑄,𝑁ant (number of ant);

Step2. Generate𝑁ant ants, and place it on different nodes
Step3. for𝑁𝐶 = 1:𝑁𝐶max

for 𝑘 = 1:𝑁ant
for 𝑖 = 2: 𝑛
Cumulating the transition probability of each ant will go to according (11), ants select the next node of max

transition probability
End;

End;
Step4. Cumulating the best solution for the objective function (3) in this iteration. If the current solution is better than the

former best solution, then update the former best solution.
Step5. updating the pheromone value according to (12), (13) and (14).
Step6. if𝑁𝐶 < 𝑁𝐶max

𝑁𝐶 = 𝑁𝐶 + 1;
Go to Step 2;

Else
Output the optimal solution;
End;

End;

Algorithm 1

where 𝑎 is a positive real number, 𝑏 is obtained by formula
(18)

𝑏 =

{

{

{

{

{

{

{

𝑁 × 𝑀 ×

𝑓min
𝑓min + 𝑓max

𝑓 ≥ 𝑓avg

𝑁 × 𝑀 ×

𝑓max
𝑓min + 𝑓max

𝑓 ≤ 𝑓avg,
(16)

where 𝑁 is evolution generation, 𝑀 is the number of
individuals in the population, 𝑓ave is the average fitness, 𝑓min
is theminimumfitness of the individual,𝑓max is themaximum
fitness of the individual, and 𝑓 is the individual fitness.

4.4. Selection. The hierarchical genetic algorithm allows the
population to progress fromone generation into the next.The
selection process is based on the fitness of the individuals,
higher fitness results in more frequent selection. There are
different selection rules such as the roulette wheel imple-
mentation, tournament selection, and elitism. Roulette wheel
selection method is used.

Firstly, the fitness of individual 𝑖(𝑓

𝑖
) is calculated by

formula (15), then the selected probability of individual 𝑖 can
be calculated by the following formula:

𝑃

𝑖
=

𝑓

𝑖

∑

𝑛

𝑘=1
𝑓

𝑘

. (17)

Secondly, the cumulative probability of each chromosome
is calculated by formula (20):

𝑞

𝑖
=

𝑙

∑

𝑖=1

𝑃

𝑖
, (18)

where 𝑙 represents the iteration times.

Final, using roulette selectionmethod selects the individ-
ual.

4.5. Crossover. Some of the genetic material of two indi-
viduals are swapped (i.e., crossover operator), creating new
individuals (children), who are possibly better than their
parents. There are different crossover operator such as
mapping crossover, different location crossover, same loca-
tion crossover and leading crossover. For control gene of
chromosome, partially mapping crossover method is used.
The process of partially mapping crossover is that firstly,
selecting two crossover points from parents’ chromosome;
secondly, the fragment of parents chromosome between the
two crossover points is exchanged; thirdly, for the other
genes, if the genes do not belong to the exchanged fragment
of parents chromosome, the genes retain their value, oth-
erwise, the value of those genes can be got using partially
mapping method. For example, two parent individuals is
𝑝

1
= [6 5 3 1 2 4] and 𝑝

2
= [5 1 2 6 4 3], if the

crossover point is 2 and 4, the offspring of individuals is
𝑞

1
= [5 1 2 6 3 4] and 𝑞

2
= [2 5 3 1 6 4]. The

process of crossover operator is shown by Figure 3.The illegal
individuals can be avoided with this method.

As the cutting scheduling problem involves process
constraints, the crossover operator cannot be used for the
parameter genes of chromosome. For example, the cutting
pattern 𝑃

1
and 𝑃

2
are respectively assigned to the cutting

machine 𝑀

5
and 𝑀

1
, after some crossover operator, the

cutting pattern 𝑃

1
and 𝑃

2
may be, respectively, assigned to

the cutting machine 𝑀

1
and 𝑀

5
, but the cutting pattern

𝑃

1
cannot be cut on cutting machine 𝑀

1
. So some illegal

individuals can be generated by using crossover operator for
the parameter genes of chromosome.
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6

6

5

55 3 1 2
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1

1
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P1: P2:

q1: q2:

Figure 3: The process of crossover operator for control gene.

An adaptive process dynamically adjusts the operator’s
probabilities during the process of evolving a solution [28].
In order to accelerate evolutional speed and enlarge searching
scope, an adaptive crossover probability 𝑝cross is designed:

𝑝cross =
{

{

{

𝑝cross ×
1

1 − 𝑓min/𝑓max
if

𝑓min
𝑓max

> 𝑒

𝑝cross others,
(19)

where 𝑓ave is the individual’s average fitness of each gen-
eration, 𝑓min is the individual’s minimum fitness of each
generation, 𝑓max is the individual’s maximum fitness of each
generation. 𝑓min/𝑓max is a positive parameter, whose value
reflects the concentration of the whole generation.The bigger
the value of 𝑓min/𝑓max is, this algorithm is more likely to
fall into local optimal solution. If the the value of 𝑓min/𝑓max
exceed a previously set threshold value 𝑒 (0 < 𝑒 < 1), the
individuals tend to concentration.

4.6. Mutation. In order to explore new areas of the search
space, the mutation with introducing a variation in the
population and avoid premature convergence is needed.
There are two types of mutation operators: control genes
mutation and parameter genes mutation. For control genes
of chromosome, changing sequence variation is used. In
other words, randomly two points of parent chromosome
is selected, then the value of the selected point of parents
chromosome is exchanged each other. For example, the
parent chromosome is 𝑝 = [6 5 3 1 2 4], selected the
variation point is 2 and 5, the offspring chromosome is
𝑝 = [6 2 3 1 5 4] after variation operator. For parameter
genes of chromosome, the integer variation is used, that is, the
parent parameter gene is replaced by an integer 𝑘 (𝑘 ∈ CP

𝑖
)

with a certain probability.
An adaptive mutation probability 𝑝muta is designed as

follows:

𝑝muta =
{

{

{

𝑝muta ×
1

1 − 𝑓min/𝑓max
if

𝑓min
𝑓max

> 𝑟

𝑝muta others.
(20)

4.7. Stop Criteria. In this paper, setting a maximum iteration
number has been used, and the algorithm will stop when the
iteration reaches the setting maximum iteration.
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Figure 4: Average curve evolution.

5. Computational Experiments

In this section, the proposed optimization approach is proven
to be available, and the performance of the solution strategy
is evaluated by describing an experiment. First of all, a real
set of cutting patterns, given by the metal forming factory,
is tested by this approach. Later, the test results are reported
and analyzed. The date of cutting patterns is given in Table 2,
and the cutting machine date has been given in Table 1 in
Section 2.

In this paper, the hierarchical genetic algorithm, ant
colony algorithm and ant colony—hierarchical genetic algo-
rithm are used for this experiment. Where, the initial popu-
lation size of hierarchical genetic algorithm is 100; the max-
imum iterations number of hierarchical genetic algorithm is
200; the threshold value 𝑒 is 0.7; the threshold value 𝑟 is 0.8;
the initial probability of control genes crossover 𝑝cross is 0.7,
the initial probability of control genes mutation 𝑝muta is 0.6,
the initial probability of parameter genes mutation is 𝑝muta
0.4; the information heuristic factor𝛼 of ant colony algorithm
is 0.9; the expect heuristic factor 𝛽 of ant colony algorithm
is 6; the pheromone evaporation rate 𝜌 is 0.3, the maximum
iterations number of ant colony algorithm is 200, the initial
population size of of ant colony algorithm is 30; the intensity
of pheromone 𝑄 is 1000.

The result of the example cutting scheduling problem
with process constraints used different algorithms is given
by Table 3. The evolution curve of different algorithms is
also shown in Figure 4. Learned from Table 3, the result
of using ant colony—hierarchical genetic algorithm is best.
The minimizing weighted completion time is 30510min. The
Gantt chart of each cutting machine is shown in Figure 5.

6. Conclusion and Deductions

This paper discusses the scheduling problem of integrated
cutting stock with process constraints. The objective of mini-
mizing weighted completion time of 𝑛 cutting patterns for𝑚
nonidentical parallel machines is considered. There are three
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Table 2: The data of cutting patterns.

Cutting pattern Weight Cutting length Number of parts Number of punch Material Thickness Available cutting
machine

𝑃

1
5 43256 29 34 𝑄235 8

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

2
2 16656 13 16 𝑄235 8

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

3
4 12533 26 36 𝑄235 8

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

4
3 28768 22 22 𝑄235 10

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

5
5 11465 17 20 𝑄235 10

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

6
4 11909 22 29 𝑄235 10

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

7
3 118920 37 44 𝑄235 10

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

8
1 3763 5 8 𝑄235 10

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

9
5 32729 34 38 𝑄235 12

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

10
3 17464 21 29 𝑄235 12

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

11
4 18671 27 35 𝑄235 12

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

12
4 72579 33 39 𝑄345 15

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

13
5 58832 38 48 𝑄345 15

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

14
4 218320 31 43 𝑄345 15

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

15
1 13640 11 19 𝑄345 15

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

16
3 11393 19 27 𝑄345 15

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

17
5 106680 38 50 𝑄345 15

𝑀

2
,𝑀
3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

18
5 5928 8 15 𝑄345 20

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

19
3 9564 9 13 𝑄345 20

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

20
5 83235 17 23 𝑄345 20

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

21
1 29441 7 17 𝑄345 20

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

22
2 133620 27 36 𝑄345 20

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

23
5 71432 14 18 𝑄345 24

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

24
1 162360 35 42 𝑄345 24

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

25
1 69178 10 16 𝑄345 24

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

26
2 85800 12 16 𝑄345 24

𝑀

3
,𝑀
4
,𝑀
5
,𝑀
6

𝑃

27
1 125400 32 39 𝑄345 30

𝑀

4
,𝑀
5
,𝑀
6

𝑃

28
4 159370 26 34 𝑄345 30

𝑀

4
,𝑀
5
,𝑀
6

𝑃

29
2 144100 34 46 𝑄345 32

𝑀

4
,𝑀
5
,𝑀
6

𝑃

30
1 57115 12 19 𝑄345 32

𝑀

4
,𝑀
5
,𝑀
6

Table 3: The comparison of different algorithms.

Optimization method Optimum solution Average value (20) Iterative times
ACO 38063 38063 200
HGA 31063 31078 200
AC-HGA 30510 30537 200
ZHOU-HGA [25] 31198 32007 200

tasks contributing to solving the cutting scheduling problem.
Firstly, a mathematical model for the cutting scheduling
problem with process constraints is proposed. Secondly, an
ant colony—hierarchical genetic algorithm is designed to
solve the mathematical model. In the proposed technique, a
set of initial solution is generated by ant colony algorithm,
and then an optimum solution is obtained by using selection,
crossover, andmutation of the hierarchical genetic algorithm.
Where, the control genes are used to determine the sequence
of the cutting pattern, and the parameter genes are employed

to identify the cutting pattern assigned on cutting machine.
Finally, computational experiment is performed to evaluate
the performance of the proposed algorithm. It is verified
that the proposed method on cutting scheduling problem
with process constraints is effective. In addition, as Figure 4
shown, there reaches a conclusion that the proposed method
overweighs other methods. The result of cutting scheduling
problem is given by using Gantt chart.

The cutting scheduling plays an important role in sheet
cutting process. The existing literatures give a deep research
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Figure 5: The Gantt chart of each cutting machine.

on cutting-stock problem and the combined cutting-stock
and lot-sizing problem, but the study of the cutting schedul-
ing problem has been ignored. To the best of our knowl-
edge, the present paper is an effort to consider the cutting
scheduling problem with process constraints for the first
time, which involve 𝑛 cutting patterns for 𝑚 nonidentical
parallel machines with process constraints. It belongs to
scheduling problem for nonidentical parallel machines with
process constraint and sequence-independent setups.

To solve this problem better, an improving hierarchical
genetic algorithm is applied. A new encoding mode, that is,
the natural number encoding couple with binary encoding,
is adopted in this algorithm. In addition, to speed up
convergence rates and resolve local convergence issues, a kind
of adaptive crossover probability and mutation probability
is used in this algorithm. Our approach for solving cutting
scheduling problem has been applied in practical production
process and has been accepted by sheet cuttingmanufacturers
of china.This approach is novel and gives a different perspec-
tive for the manufacturing management of sheet cutting.

In this paper, the goal is focus on the minimizing
weighted completion time. To achieve the target for solving
the cutting scheduling problem, the minimum tardiness or
other objectives can be considered. However, some products
which needs sheet cutting do not merely includes cutting
process (such as structural parts, after cutting process, its
need to be bended, or other machined). In the future work,
we will focus on the cutting scheduling problem with multi-
processes.

Acknowledgments

This research work is supported by the Science and Technol-
ogy Major Project of China [Grant no. 2011ZX04015-011-07].

References
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