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This paper investigates pricing and ordering aswell as advertising coordination issues in a single-manufacturer single-retailer supply
chain, where the manufacturer sells a newsvendor-type product through the retailer who faces a stochastic demand depending
on both retail price and advertising expenditure. Under the assumption that the market demand has a multiplicative functional
form, the Stackelberg and cooperative game models are developed, and the closed form solution to each model is provided as well.
Comparisons and insights are presented.We show that a properly designed revenue-cost-sharing contract can achieve supply chain
coordination and lead to a Pareto improving win-win situation for channel members. We also discuss the allocation of the extra
joint profit according to individual supply chain members’ risk preferences and negotiating powers.

1. Introduction

1.1. Motivation. Advertising is one of the important promo-
tional tools of modern marketing management, by which
themanufacturer can influence potential customers and raise
brand awareness and the retailer can stimulate the customers’
buying behavior [1]. According to the Statistical Abstracts of
the United States, the total advertising expenditure in the
US had grown from 130 billion dollars in 1990 to about
236 billion dollars in 2000. Even at the individual level
of the firm, it is found that in 2002 the largest advertiser
(General Motors Corp.) spent more than three billion dollars
on advertising ($3,652,000,000 to be exact), while the 100th
largest advertiser in the US spent $312,000,000 [2]. Most of
the models studying two-tier advertising issue concentrate
on the deterministic advertising response function (i.e., the
demand function). Little attention has been given to the
scenario where the market demand is a stochastic variable
depending on advertising expenditure. However, with the
rapid improvement of technology, the lifecycles of products
nowadays have become shorter and shorter so that more

and more products have the attributes of fashion or seasonal
goods [3].These products have common characteristics, such
as rapid product substitution, uncertain market demand, and
rapid price change.

This paper investigates pricing and ordering as well
as advertising expenditure coordination issues for a
newsvendor-type product in a single-manufacturer single-
retailer supply chain. The manufacturer sells a single-period
product through the retailer, who faces a stochastic demand
depending on both retail price and advertising expenditure.
Before the start of the selling period, the retailer needs to
determine the retail price, expenditure on local advertising,
and order batch size from the manufacturer, while the
manufacturer needs to determine the expenditure on
national advertising. Under the assumption that the market
demand has a multiplicative functional form, this paper aims
to characterize the optimal decisions that each party should
adopt and to provide an appropriate incentive scheme to
coordinate the whole supply chain.

Coordination among manufacturers (suppliers) and
retailers is a very important strategic issue in supply chain
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management. With supply chain coordination, the upstream
supply chain member—the manufacturer (supplier) offers a
set of appropriate contract parameters to the retailer such that
the retailer’s self-profit maximizing objective when making
decisions is aligned with the objective of the whole supply
chain. Revenue-sharing contract is a widely used effective
coordination mechanism proposed by Cachon [4]. Under
a revenue-sharing contract, a retailer pays a supplier a
wholesale price for each unit purchased, plus a percentage
of the revenue the retailer generates. Such contracts have
become more prevalent in the videocassette rental industry
[5]. However, Cachon [4] demonstrated that revenue-sharing
contract fails to coordinate a supply chain with effort-
dependent demand. Based on widely-used royalty payments,
Kunter [6] designed a cost and revenue-sharing contract to
establish efficiency in a manufacturer-retailer channel with
deterministic advertising response function. Based on the
analysis of the underlying vertical externalities, he showed
that channel coordination required cost and revenue-sharing
via a revenue-sharing rate and marketing effort participation
rates on both manufacturer and retailer level. In this study,
we will verify whether a properly designed revenue-cost-
sharing contract can coordinate the supply chain with price
and advertisement dependent stochastic demand, and has the
opportunity to achieve a win-win outcomearisen and under
what conditions.

1.2. Literature Review. Cooperative (co-op) advertising is a
coordinated effort by all members in a distribution channel
to increase the customer demand and the overall profits.
Some of the early works in this research stream focused on
the joint profit maximization problem by determining the
optimal brand name investment, local advertising effort, and
the participation rate, that is, the percentage of the retailer’s
local advertising expenditures that the manufacturer agrees
to pay (see, e.g., Berger [7]; Somers et al. [8]; Dant and
Berger [9]; and Bergen and John [10]). In order to reflect
this new market phenomenon, many studies have recently
used the game theoretical models to analyze the role of co-
op advertising in supply chain coordination. Motivated by
observing the power shift from manufacturers to retailers
in recent years, represented by the rise of Wal-Mart, Huang
and Li [1] and Huang et al. [11] developed and compared
two models to reflect different power structure and the
correspondingways of coordinating advertisement spending.
The work of Huang et al. [11] was extended by Yue et al.
[12], who considered a price-sensitive demand and studied
the impact direct price discount from the manufacturer to
customers on the channel coordination. Szmerekovsky and
Zhang [13] considered pricing and advertising in a two-
member supply chain, where customer demand depends on
both retail price and advertisement. They obtained both the
manufacturer and the retailer’s optimal decisions by solving
the Stackelberg-manufacturer game. Xie and Neyret [14], Xie
and Wei [15], and Seyedesfahani et al. [16] followed a similar
approach. They compared the cooperative game optimal
results with those of noncooperative. Xie and Neyret [14]
and Seyedesfahani et al. [16] investigated four game models,

three of whichwere noncooperative and onewas cooperative;
whereas Xie and Wei [15] only considered two game models
including Stackelberg-manufacturer and cooperative game.
Other differences among these papers are to use different
demand-price functions.

All the above mentioned models, which studied adver-
tising issue, concentrated on the deterministic advertising
response function and studied supply chain coordination
problems from cooperative advertising angle. There are
some researchers considering the scenario where the market
demand is a stochastic variable depending on advertising
expenditure. Gerchak and Parlar [17] incorporated the adver-
tising effect (or sales effort) into the newsvendor problem.
Under the assumption that the practical market demand is
the product of the potential market size and the “dimin-
ishing returns on effort” term, they developed a model for
simultaneously determining the optimal order quantity and
advertising expenditure. Khouja and Robbins [18] extended
the single-period problem to a case in which advertising
expenditure led to the increase in sales. They dealt with two
objectives: maximizing the expected profit and maximizing
the probability of achieving a target profit. The above two
papers concentrated on finding the optimal policies from
the buyer’s perspective. Recently, Chen [19] investigated the
combined effects of the cooperative advertising mechanism,
the return policy, and the channel coordination for a single-
period commodity in a two-level supply chain. In his study,
the market demand was independent of retail price and a
profit-sharingmechanism based on achieving awin-win rela-
tionship of the channel members was proposed to coordinate
the supply chain.This is different from themodel we consider
in this paper, where the pricing, ordering, and advertising
decisions in the supply chain coordination are simultaneously
considered. In our study, the market demand is stochastic
and influenced by both retail price and advertising efforts
by channel members. In addition, a revenue-cost-sharing
contract is used to coordinate the whole supply chain.

The remainder of the paper is organized as follows.
Section 2 introduces notations and assumptions needed to
develop the model. In Section 3, the optimal policies of
cooperative game model are provided and the impact of
demand uncertainty on the optimal policies is discussed.
In Section 4, the optimal policies of Stackelberg game are
presented, and the optimal strategies and system’s expected
profits in the two game equilibriums are compared. Section 5
presents a revenue-cost-sharing contract that can realize
coordination of the channel and discusses the allocation of
the extra joint profit between channel members. Section 6
presents the numerical examples to illustrate the models.
Finally, conclusions are given in Section 7.

2. Notations and Assumptions

We study a single-period supply chain consisting of a
manufacturer and a retailer where the manufacturer sells a
single-period product through the retailer. The retailer faces
a stochastic demand depending on both retail price and
advertising efforts by the manufacturer and the retailer.

The following notations and assumptions are used.
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2.1. Notations.

𝑝: The retailer’s unit retail price (decision variable).
𝑛: The national advertising expenditure of the manu-
facturer (decision variable).
𝑒: The local advertising expenditure of the retailer
(decision variable).
𝑞: The retailer’s order quantity (decision variable).
𝑤: The unit wholesale price of the manufacturer.
𝑐
𝑟
: The unit retail cost of the retailer.

𝑐
𝑚
: The unit production cost of the manufacturer.

𝑐: The unit total channel cost, 𝑐 = 𝑐
𝑟
+ 𝑐
𝑚
.

𝐷(𝑝, 𝑛, 𝑒): The expected value of demand for the
product.
𝑑(𝑝), 𝑔(𝑛, 𝑒): The deterministic functions which
reflect the influences of the retail price and advertising
expenditure on the expected demand, respectively.
𝜀: The positive stochastic variable with mean equal to
one, and CDF 𝐹(𝑥) and PDF 𝑓(𝑥).
𝜃: The retailer’s share of the national advertising
expenditure, 0 < 𝜃 < 1.
𝜑: The manufacturer’s share of the local advertising
expenditure, 0 < 𝜑 < 1.
𝜆: The manufacturer’s share of revenue generated
from each unit, 0 < 𝜆 < 1.

2.2. Assumptions. (1) The practical demand for the product,
denoted by 𝑥, is defined as the product of 𝐷(𝑝, 𝑛, 𝑒) and 𝜀,
where 𝜀 is a positive stochastic variable with mean equal to
one, that is, 𝑥 = 𝐷(𝑝, 𝑛, 𝑒) ⋅ 𝜀. Assume that the probability
distribution has support on [𝐴, 𝐵] with 𝐵 > 𝐴 ≥ 0. Let
ℎ(𝑥) ≡ 𝑥𝑓(𝑥)/(1 − 𝐹(𝑥)) denote the generalized failure rate
of the demand distribution. We assume that 𝑑ℎ(𝑥)/𝑑𝑥 > 0;
that is, the stochastic variable 𝜀 has an increasing generalized
failure rate.This property is known to be satisfied by common
distributions like normal, uniform, the gamma, and Weibull
families [20]. Similar to many models studying advertis-
ing issue, the expected demand 𝐷(𝑝, 𝑛, 𝑒) is modeled in a
multiplicative form (see, e.g., Yue et al. [12]; Szmerekovsky
and Zhang [13]; Xie and Neyret [14]; Xie and Wei [15]; and
Seyedesfahani et al. [16]); that is,

𝐷(𝑝, 𝑛, 𝑒) = 𝑑 (𝑝) 𝑔 (𝑛, 𝑒) . (1)

We let 𝑑(𝑝) take the form of

𝑑 (𝑝) = 𝑎𝑝
−𝑏

, (2)

where 𝑎 is a measurement of market scale (𝑎 > 0) and 𝑏

represents the price elasticity of market demand. We focus
on price-elastic products by assuming 𝑏 > 1, which has been
used by many researchers, such as Wang et al. [21] and Li et
al. [22]. The advertising effect 𝑔(𝑛, 𝑒) is taken in the similar

form as mentioned by Xie and Wei [15] and Seyedesfahani et
al. [16]. Consider

𝑔 (𝑛, 𝑒) = 𝑘
1
√𝑒 + 𝑘

2
√𝑛, (3)

where 𝑘
1
and 𝑘

2
are positive constants that, respectively,

reflect the efficacy of each type of advertising in generating
sales. It can be found from (3) that 𝑔(𝑛, 𝑒) is an increasing
concave function of both 𝑛 and 𝑒.

(2) For simplicity, we assume that unsold product at the
end of the season bears no salvage value or disposal cost. In
addition, in the case of shortages, unsatisfied demand carries
no additional penalty.

(3) We assume that all the information (e.g., market
demand and cost structure) is common knowledge to both
parties.

3. Cooperative Game Model

In this section, we focus on a cooperative game structure.
That is to say, both the manufacturer and the retailer agree to
make decisions tomaximize the whole channel’s profit.These
decisions include the optimal national and local advertising
expenditure, the optimal order quantity, and the optimal
retail price; and they have to be made before the start of the
selling period. LetΠ

𝑇
(𝑞, 𝑝, 𝑛, 𝑒) denote the expected profit of

the integrated system; then we have

Π
𝑇
(𝑞, 𝑝, 𝑛, 𝑒) = 𝑝𝐸 [min (𝐷 (𝑝, 𝑛, 𝑒) ⋅ 𝜀, 𝑞)] − 𝑐𝑞 − 𝑛 − 𝑒

= 𝑝𝐸 [min (𝑎𝑝
−𝑏

𝑔 (𝑛, 𝑒) 𝜀, 𝑞)] − 𝑐𝑞 − 𝑛 − 𝑒,

(4)

where 𝑔(𝑛, 𝑒) is defined in (3).
Following Petruzzi and Dada [23], we define a “stocking

factor”: 𝑧 = 𝑞/[𝑎𝑝
−𝑏

𝑔(𝑛, 𝑒)], based on which, the decision
variable (𝑞, 𝑝, 𝑛, 𝑒) can be transformed to (𝑞, 𝑧, 𝑛, 𝑒). By
substituting 𝑝 = [𝑎𝑧𝑔(𝑛, 𝑒)/𝑞]

1/𝑏 into (4), the expected profit
of the integrated system can be written as

Π
𝑇
(𝑞, 𝑧, 𝑛, 𝑒) = (

𝑎𝑧𝑔 (𝑛, 𝑒)

𝑞
)

1/𝑏

𝑞𝐸 [min(
𝜀

𝑧
, 1)]

− 𝑐𝑞 − 𝑛 − 𝑒

= [𝑎𝑧𝑔 (𝑛, 𝑒)]
1/𝑏

𝑞
1−1/𝑏

× [1 − Γ (𝑧)] − 𝑐𝑞 − 𝑛 − 𝑒,

(5)

where

Γ (𝑧) = ∫

𝑧

𝐴

(1 −
𝑥

𝑧
)𝑓 (𝑥) 𝑑𝑥. (6)

Theorem 1. The cooperative game has the following optimal
solution. (1) The optimal stocking factor, 𝑧∗

𝑇
, is determined by

𝐹 (𝑧) =
𝑧 + (𝑏 − 1) Λ (𝑧)

𝑏𝑧
, (7)
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where

Λ (𝑧) = ∫

𝑧

𝐴

(𝑧 − 𝑥) 𝑓 (𝑥) 𝑑𝑥. (8)

If 𝑑ℎ(𝑥)/𝑑𝑥 > 0, then the optimal stocking factor 𝑧
∗

𝑇
is

unique.
(2)The unique optimal local advertising expenditure, 𝑒∗

𝑇
, is

given by

𝑒
∗

𝑇
= {

𝑎𝑘
1
𝑧
∗

𝑇
[1 − 𝐹 (𝑧

∗

𝑇
)]
𝑏

2 (𝑏 − 1) 𝑐𝑏−1
}

2

. (9)

(3) The unique optimal national advertising expenditure,
𝑛
∗

𝑇
, is given by

𝑛
∗

𝑇
= {

𝑎𝑘
2
𝑧
∗

𝑇
[1 − 𝐹 (𝑧

∗

𝑇
)]
𝑏

2 (𝑏 − 1) 𝑐𝑏−1
}

2

. (10)

(4) The unique optimal order quantity, 𝑞∗
𝑇
, is given by

𝑞
∗

𝑇
=

(𝑘
2

1
+ 𝑘
2

2
) [𝑎𝑧
∗

𝑇
(1 − 𝐹 (𝑧

∗

𝑇
))
𝑏

]
2

2 (𝑏 − 1) 𝑐2𝑏−1
.

(11)

Proof. See Appendix A.

From Theorem 1, we find that in the cooperative game,
the optimal stocking factor 𝑧

∗

𝑇
is only determined by the

price elasticity 𝑏 and the distribution of stochastic variable 𝜀

and is not related to other parameters. This greatly simplifies
the process of our model. The optimal national and local
advertising expenditures are dependent on the corresponding
efficacy coefficient 𝑘

1
and 𝑘

2
. The optimal order quantity is

simultaneously dependent on the efficacy coefficient of each
type of advertising.The ways by which 𝑒

∗

𝑇
, 𝑛∗
𝑇
, and 𝑞

∗

𝑇
depend

on 𝑏 are more complex and will be characterized through the
numerical studies. Additionally, we find that the ratio of the
optimal national and local advertising expenditures is 𝑘

2

2
/𝑘
2

1
.

Once (𝑞
∗

𝑇
, 𝑛
∗

𝑇
, 𝑒
∗

𝑇
) is determined, it is not difficult to

find the optimal retail price. Substituting (9)–(11) into 𝑝 =

[𝑎𝑧𝑔(𝑛, 𝑒)/𝑞]
1/𝑏, the optimal retail price is expressed by

𝑝
∗

𝑇
=

𝑐

1 − 𝐹 (𝑧∗
𝑇
)
. (12)

From (12), it is easy to find that in the cooperative game, the
optimal retail price is independent of the price elasticity and
efficacy coefficient of each type of advertising.

Substituting (9)–(11) into (5), we obtain the optimal
expected profit of the integrated system, Π∗

𝑇
, as follows:

Π
∗

𝑇
=

𝑐𝑞
∗

𝑇

𝑏 − 1
− 𝑛
∗

𝑇
− 𝑒
∗

𝑇
. (13)

3.1. The Impact of Demand Uncertainty on the Optimal
Policies. If demand is only influenced by retail price and
advertising expenditure and has no uncertainty, then the
demand faced by the retailer can be expressed as 𝐷(𝑝, 𝑛, 𝑒).

Under such a deterministic case, the order quantity of the
retailer is equal to the demand of the market; that is, 𝑞 =

𝐷(𝑝, 𝑛, 𝑒). Hence, the total profit of the integrated system,
denoted as Π

det
𝑇
, can be given by

Π
det
𝑇

= (𝑝 − 𝑐)𝐷 (𝑝, 𝑛, 𝑒) − 𝑛 − 𝑒

= 𝑎𝑝
−𝑏

(𝑝 − 𝑐) (𝑘
1
√𝑒 + 𝑘

2
√𝑛) − 𝑛 − 𝑒.

(14)

MaximizingΠ
det
𝑇

in (14), one can easily derive the optimal
policies under the deterministic setting as follows:

𝑒
det
𝑇

= {
𝑎𝑘
1
(𝑏 − 1)

𝑏−1

2𝑏𝑏𝑐𝑏−1
}

2

, (15)

𝑛
det
𝑇

= {
𝑎𝑘
2
(𝑏 − 1)

𝑏−1

2𝑏𝑏𝑐𝑏−1
}

2

, (16)

𝑝
det
𝑇

=
𝑏𝑐

𝑏 − 1
. (17)

By comparing the optimal policies obtained under the
deterministic and stochastic settings, we obtain the following
results.

Theorem 2. 𝑒
det
𝑇

> 𝑒
∗

𝑇
, 𝑛
𝑑𝑒𝑡

𝑇
> 𝑛
∗

𝑇
, 𝑝
𝑑𝑒𝑡

𝑇
< 𝑝
∗

𝑇
, and

𝐷(𝑝
∗

𝑇
, 𝑛
∗

𝑇
, 𝑒
∗

𝑇
) < 𝐷(𝑝

𝑑𝑒𝑡

𝑇
, 𝑛
𝑑𝑒𝑡

𝑇
, 𝑒
𝑑𝑒𝑡

𝑇
).

Proof. See Appendix B.

Theorem 2 indicates that, comparing with certainty envi-
ronment, the uncertainty of the demand will lead to the
decrease of advertising expenditure and the enhancement of
retail price, which ultimately reduce the expected sales of the
product.

4. Stackelberg Game Model

In this section, the relationship between the manufacturer
and the retailer is modeled as a sequential noncooperative
game, where the manufacturer is the leader and the retailer
is the follower. In this setting, the retailer would determine
simultaneously the local advertising expenditure, retail price,
and order quantity to maximize her own profit, and the man-
ufacturer would determine the national advertising expendi-
ture and wholesale price based on the retailer’s decision.

As in Section 3, we define the stocking factor of inventory
as 𝑧 = 𝑞/[𝑎𝑝

−𝑏

𝑔(𝑛, 𝑒)]. Then, choosing (𝑞, 𝑝, 𝑛, 𝑒) is equiva-
lent to choosing (𝑞, 𝑧, 𝑛, 𝑒). Denoting the retailer’s expected
profit function by Π

𝑟
(𝑞, 𝑝, 𝑒), we have

Π
𝑟
(𝑞, 𝑝, 𝑒) = 𝑝𝐸 [min (𝐷 (𝑝, 𝑛, 𝑒) ⋅ 𝜀, 𝑞)] − (𝑐

𝑟
+ 𝑤) 𝑞 − 𝑒

= [𝑎𝑧𝑔 (𝑛, 𝑒)]
1/𝑏

𝑞
1−1/𝑏

[1 − Γ (𝑧)] − (𝑐
𝑟
+ 𝑤) 𝑞 − 𝑒,

(18)

where 𝑔(𝑛, 𝑒) and Γ(𝑧) are defined in (3) and (6), respectively.
Similar to the induction of Theorem 1, we can show that

the unique optimal response for the retailer is as follows:
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(1) the optimal stocking factor 𝑧
∗

𝑑
is equal to that of the

cooperative game; that is, 𝑧∗
𝑑

= 𝑧
∗

𝑇
; (2) the local advertising,

ordering, and pricing strategies are given by

𝑒
𝑑
(𝑤) = {

𝑎𝑘
1
𝑧
∗

𝑑
[1 − 𝐹(𝑧

∗

𝑑
)]
𝑏

2(𝑏 − 1)(𝑤 + 𝑐
𝑟
)
𝑏−1

}

2

, (19)

𝑞
𝑑
(𝑤) = 𝑎𝑧

∗

𝑑
(𝑘
1
√𝑒
𝑑
(𝑤) + 𝑘

2
√𝑛)[

(1 − 𝐹 (𝑧
∗

𝑑
))

(𝑤 + 𝑐
𝑟
)

]

𝑏

, (20)

𝑝
𝑑
(𝑤) =

𝑤 + 𝑐
𝑟

1 − 𝐹 (𝑧∗
𝑑
)
. (21)

From (19)–(21), it can be found that the retailer’s retail
price and local advertising expenditure are not affected by
themanufacturer’s national advertising expenditure 𝑛, but the
order quantity is increasing in 𝑛.

The manufacturer’s expected profit function, denoted by
Π
𝑚
(𝑤, 𝑛), can be given by

Π
𝑚

(𝑤, 𝑛) = (𝑤 − 𝑐
𝑚
) 𝑞 − 𝑛. (22)

Substituting (19) and (20) into (22), we obtain

Π
𝑚

(𝑤, 𝑛) = 𝑀(𝑤 − 𝑐
𝑚
) (𝑤 + 𝑐

𝑟
)
−𝑏

× [𝑘
1

√𝑁(𝑤 + 𝑐
𝑟
)
1−𝑏

+ 𝑘
2
√𝑛] − 𝑛,

(23)

where

𝑀 = 𝑎𝑧
∗

𝑑
[1 − 𝐹 (𝑧

∗

𝑑
)]
𝑏

, (24)

𝑁 = {
𝑎𝑘
1
𝑧
∗

𝑑
[1 − 𝐹(𝑧

∗

𝑑
)]
𝑏

2(𝑏 − 1)
}

2

. (25)

Solving the manufacturer’s decision problem (23) and
considering (19)–(21), we can obtain the Stackelberg game
equilibrium.

Theorem 3. The Stackelberg game has the following unique
equilibrium. (1) The optimal wholesale price, 𝑤∗, is given by

𝑤
∗

=
𝑐
𝑟
+ 𝑦𝑐
𝑚

𝑦 − 1
. (26)

(2) The optimal national advertising expenditure, 𝑛
∗

𝑑
, is

given by

𝑛
∗

𝑑
= {

𝑎𝑘
2
𝑧
∗

𝑑
(𝑦 − 1)

𝑏−1

[1 − 𝐹(𝑧
∗

𝑑
)]
𝑏

2𝑦𝑏𝑐𝑏−1
}

2

. (27)

(3) The optimal local advertising expenditure, 𝑒∗
𝑑
, is given

by

𝑒
∗

𝑑
= {

𝑎𝑘
1
𝑧
∗

𝑑
(𝑦 − 1)

𝑏−1

[1 − 𝐹(𝑧
∗

𝑑
)]
𝑏

2(𝑏 − 1)(𝑦𝑐)
𝑏−1

}

2

. (28)

(4) The optimal order quantity, 𝑞∗
𝑑
, is given by

𝑞
∗

𝑑
=

[𝑦𝑘
2

1
+ (𝑏 − 1) 𝑘

2

2
] [𝑎𝑧
∗

𝑑
(1 − 𝐹(𝑧

∗

𝑇
))
𝑏

]
2

(𝑦 − 1)
2𝑏−1

2 (𝑏 − 1) 𝑐2𝑏−1𝑦2𝑏
.

(29)

(5) The optimal retail price, 𝑝∗
𝑑
, is given by

𝑝
∗

𝑑
=

𝑦𝑐

(𝑦 − 1) [1 − 𝐹 (𝑧∗
𝑑
)]

, (30)

where

𝑦 = [ (1 − 𝑏) 𝑘
2

+ 2𝑏 − 1

+√𝑘4(𝑏 − 1)
2

+ 2𝑘2 (𝑏 − 1) + (2𝑏 − 1)
2

] × 2
−1

,

(31)

and 𝑘 = 𝑘
2
/𝑘
1
, which is called the advertising ratio in this

paper, reflecting the relative effectiveness of national versus local
advertising in generating sales.

Proof. See Appendix C.

Substituting (26)–(29) into (18) and (22), respectively, we
can show that in the Stackelberg game, the retailer’s and
manufacturer’s profits, denoted by Π

∗

𝑟
and Π

∗

𝑚
, are given by

Π
∗

𝑟
=

𝑦𝑐𝑞
∗

𝑑

[(𝑏 − 1) (𝑦 − 1)]
− 𝑒
∗

𝑑
, (32)

Π
∗

𝑚
=

𝑐𝑞
∗

𝑑

𝑦 − 1
− 𝑛
∗

𝑑
. (33)

To compare the optimal policies obtained in the Stack-
elberg and cooperative game settings, we first introduce the
following lemma.

Lemma 4. 𝑦 > 𝑏.

Proof. See Appendix D.

By comparing the optimal policies obtained in the Stack-
elberg and cooperative game settings, we derive the following
results.

Corollary 5. 𝑒
∗

𝑑
< 𝑒
∗

𝑇
, 𝑛∗
𝑑

< 𝑛
∗

𝑇
, 𝑝∗
𝑑

> 𝑝
∗

𝑇
, and 𝑞

∗

𝑑
< 𝑞
∗

𝑇
.

Proof. See Appendix E.

Corollary 5 shows that the retail price in the Stackelberg
game is always higher than that in the cooperative game; the
order quantity and national and local advertising expendi-
tures are always lower. As a consequence, the channel profit
in the Stackelberg game is always lower than that in the
cooperative game.

For the rest of this section we provide some properties
that characterize the optimal decisions in the two games.
From (9), (10), (27), (28), and Lemma 4, we can easily derive
the following Property 1.
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Property 1. 𝑛
∗

𝑑
/𝑒
∗

𝑑
< 𝑛
∗

𝑇
/𝑒
∗

𝑇
.

Property 1 shows that the ratio of the optimal national
and local advertising expenditures in the Stackelberg game
is lower than that in the cooperative game.

From (26) and (30), we can obtain the following
Property 2.

Property 2. 𝑑𝑤
∗

/𝑑𝑘 > 0 and 𝑑𝑝
∗

𝑑
/𝑑𝑘 > 0.

Proof. See Appendix F.

Property 2 shows that in the Stackelberg game, both the
optimal wholesale price and the retail price are increasing in
the advertising ratio 𝑘.

From (27)–(29), we can easily derive the following
Property 3.

Property 3. 𝑑𝑛
∗

𝑑
/𝑑𝑘
2

> 0, 𝑑𝑒∗
𝑑
/𝑑𝑘
1

> 0, 𝜕𝑞∗
𝑑
/𝜕𝑘
1

> 0, and
𝜕𝑞
∗

𝑑
/𝜕𝑘
2
> 0.

The proofs of Properties 1 and 3 can be easily obtained
and hence are omitted for simplicity.

Property 3 shows that in the Stackelberg game, the opti-
mal national advertising expenditure increases as the efficacy
of national advertising increases. The same monotonic pat-
tern can apply for the optimal local advertising expenditure.
Additionally, the optimal order quantity increases as the
efficacy of each type of advertising increases. Note that
Property 3 also holds for the optimal ordering and advertising
policies in the cooperative game.

5. Supply Chain Coordination

According to Corollary 5, the channel profit in the Stackel-
berg game is always lower than that in the cooperative game.
This phenomenon is well known as “double marginalization”
[4]. To encourage the retailer to order more and spend
more money on advertising, the manufacturer will offer
appropriate contract parameters to the retailer so that the
supply chain is coordinated.With supply chain coordination,
the retailer’s self-profit maximizing objective when making
decisions is aligned with the objective of the whole supply
chain.

In the following, we first discuss how a revenue-cost-
sharing contract coordinates the supply chain presented
in our model and then utilize the Eliashberg’s model to
determine the allocation of the cooperative profit.

5.1. Revenue-Cost SharingContract. Weassume that theman-
ufacturer and the retailer consider a revenue-cost-sharing
contract (𝜆, 𝑤, 𝜑, 𝜃), under which the manufacturer (retailer)
agrees to bear a fraction𝜑(𝜃) of advertising cost of the retailer
(manufacturer), and themanufacturer would share a fraction
𝜆 of the retailer’s sales revenue.

Under the revenue-cost-sharing contract, the expected
profit functions of the manufacturer and retailer, denoted

by Π
RC
𝑟

(𝑞, 𝑝, 𝑛, 𝑒) and Π
RC
𝑚

(𝑞, 𝑝, 𝑛, 𝑒), respectively, can be
expressed as

Π
RC
𝑟

(𝑞, 𝑝, 𝑛, 𝑒) = (1 − 𝜆) 𝑝𝐸 [min (𝐷 (𝑝, 𝑛, 𝑒) ⋅ 𝜀, 𝑞)]

− (𝑤 + 𝑐
𝑟
) 𝑞 − 𝜃𝑛 − (1 − 𝜑) 𝑒,

(34)

Π
RC
𝑚

(𝑞, 𝑝, 𝑛, 𝑒) = 𝜆𝑝𝐸 [min (𝐷 (𝑝, 𝑛, 𝑒) ⋅ 𝜀, 𝑞)]

+ (𝑤 − 𝑐
𝑚
) 𝑞 − (1 − 𝜃) 𝑛 − 𝜑𝑒.

(35)

Theorem 6. A revenue-cost-sharing contract can coordinate
the supply chain facing a stochastic demand depending on
both retail price and advertising expenditures, if the following
conditions hold:

𝑤 = 𝑐
𝑚

− 𝜆𝑐,

1 − 𝜃 = 𝜆 = 𝜑.
(36)

Proof. Substituting (36) into (34) and (35) and simplifying,
we have

Π
RC
𝑟

(𝑞, 𝑝, 𝑛, 𝑒) = (1 − 𝜆)Π
𝑇
(𝑞, 𝑝, 𝑛, 𝑒) ,

Π
RC
𝑚

(𝑞, 𝑝, 𝑛, 𝑒) = 𝜆Π
𝑇
(𝑞, 𝑝, 𝑛, 𝑒) .

(37)

From (37), it follows that, given 𝑛
∗

𝑇
, (𝑞∗
𝑇
, 𝑝
∗

𝑇
, 𝑒
∗

𝑇
) maximizes

the retailer’s profit when 𝜆 < 1, and given (𝑞
∗

𝑇
, 𝑝
∗

𝑇
, 𝑒
∗

𝑇
), 𝑛∗
𝑇

maximizes the manufacturer’s profit when 𝜆 > 0. Hence, the
proof of Theorem 6 is completed.

From (36) in Theorem 6, one can easily observe the
following.

(i) Under the revenue-cost-sharing contract, the man-
ufacturer’s wholesale price is lower than its corre-
sponding unit marginal cost 𝑐

𝑚
, which means that

the manufacturer earns profit from the retailer’s sales
revenue rather than his own sales income.

(ii) Under the revenue-cost-sharing contract, the manu-
facturer’s share of his own advertising cost equals the
share of the retailer’s advertising cost and the share of
the retailer’s revenue.

From (37), one can find that the manufacturer’s expected
profit is increasing in 𝜆 and the retailer’s expected profit is
decreasing in 𝜆. The manufacturer earns all the joint system
profit when 𝜆 = 1, and the retailer earns all the joint system
profit when 𝜆 = 0. Hence, revenue-cost-sharing contract can
arbitrarily allocate the joint systemprofit between twoparties.

Theorem 7. Under a revenue-cost-sharing contract with
parameters satisfying (36), the manufacturer and the retailer
get a profit larger than that in the Stackelberg game if the
following conditions hold:

𝜆min < 𝜆 < 𝜆max, (38)

where

𝜆min =
Π
∗

𝑚

Π∗
𝑇

, 𝜆max =
Π
∗

𝑇
− Π
∗

𝑟

Π∗
𝑇

. (39)
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Proof. From (37)–(39), we get Π
RC
𝑟

= (1 − 𝜆)Π
∗

𝑇
> Π
∗

𝑇
[1 −

(Π
∗

𝑇
− Π
∗

𝑟
)/Π
∗

𝑇
] = Π
∗

𝑟
, and Π

RC
𝑚

= 𝜆Π
∗

𝑇
> Π
∗

𝑇
(Π
∗

𝑚
/Π
∗

𝑇
) = Π
∗

𝑚
.

Hence, the proof of Theorem 7 is completed.

Theorem 7 shows that a revenue-cost-sharing contract
with parameters satisfying (36) and (38) can not only achieve
supply chain coordination, but can also lead to a Pareto
improving win-win situation for channel members.

5.2. Bargaining Problem. In this subsection, we discuss the
selection of the optimal revenue-cost-sharing contract which
realizes the allocation of the extra joint profit.

Economic literature on bargaining theory is based on the
seminal papers by Nash [24]. It is worth pointing out that
Nash’s bargaining model does not take individual members’
negotiating powers into account while predicting the imple-
mentation outcome of a contract, which is a severe deficiency
of the model, because the selection of a contract clearly
depends on channel members’ negotiating powers. In order
to overcome this deficiency, an alternative way is to apply
the approach introduced by Eliashberg [25]. Eliashberg’s
model is used to predict a revenue-cost-sharing contract
that maximizes the system utility function reflecting the
joint preferences of channel members. By Eliashberg’s model,
we can incorporate channel members’ negotiating powers
into the ultimate implementation outcome, with the use of
aggregation weights that measure the relative negotiating
powers of the supply chain members.

For ease of exposition, we denote

ΔΠ
𝑟
= Π

RC
𝑟

(𝜆) − Π
∗

𝑟
= (1 − 𝜆)Π

∗

𝑇
− Π
∗

𝑟
,

ΔΠ
𝑚

= Π
RC
𝑚

(𝜆) − Π
∗

𝑚
= 𝜆Π
∗

𝑇
− Π
∗

𝑚
,

(40)

where ΔΠ
𝑟
and ΔΠ

𝑚
correspond to the additional profits

split by the retailer and the manufacturer from ΔΠ, which
are the system’s increased profits from coordination with the
revenue-costs-sharing contract associated with parameters
satisfying (36) and (38). Clearly, ΔΠ

𝑟
+ ΔΠ

𝑚
= ΔΠ for all

𝜆.
Consider the following exponential utility functions for

the retailer and the manufacturer:
𝑈
𝑟
(ΔΠ
𝑟
) = − exp (−𝜙

𝑟
ΔΠ
𝑟
) ,

𝑈
𝑚

(ΔΠ
𝑚
) = − exp (−𝜙

𝑚
ΔΠ
𝑚
) ,

(41)

where 𝜙
𝑟
, 𝜙
𝑚

> 0. By the Pratt-Arrow risk aversion functions
[26], it is easy to know that a larger 𝜙

𝑟
or 𝜙
𝑚

indicates a
more risk-averse member. We suppose the retailer’s relative
bargaining power is measured by 𝜆

𝑟
and the manufacturer’s

by 𝜆
𝑚
. Without loss of generality, we assume 𝜆

𝑟
+ 𝜆
𝑚

= 1. To
obtain the Eliashberg’s solution, the following programming
problem needs to be solved:

max
𝜆

𝑈
𝑠
(ΔΠ
𝑚
, ΔΠ
𝑟
) = 𝜆
𝑚
𝑈
𝑚

(ΔΠ
𝑚
) + 𝜆
𝑟
𝑈
𝑟
(ΔΠ
𝑟
)

= −𝜆
𝑚
exp (−𝜙

𝑚
ΔΠ
𝑚
)

− 𝜆
𝑟
exp (−𝜙

𝑟
ΔΠ
𝑟
) ,

s.t. 𝜆 ∈ [𝜆min, 𝜆max] ,

(42)

where 𝑈
𝑠
(ΔΠ
𝑚
, ΔΠ
𝑟
) denotes the system’s utility function.

Solving the programming problem (42), we obtain the
optima revenue-cost-sharing contract parameter, 𝜆∗, as fol-
lows.

(i) If 𝜆
𝑚
/𝜆
𝑟
≤ 𝜙
𝑟
/[𝜙
𝑚
exp(𝜙

𝑟
ΔΠ)], then 𝜆

∗

= 𝜆min and
the retailer will obtain all the extra profit ΔΠ;

(ii) If 𝜆
𝑚
/𝜆
𝑟

≥ 𝜙
𝑟
exp(𝜙

𝑚
ΔΠ)/𝜙

𝑚
, then 𝜆

∗

= 𝜆max and
the manufacturer will gain all the extra profit ΔΠ;

(iii) If 𝜆
𝑚
/𝜆
𝑟

∈ [𝜙
𝑟
/(𝜙
𝑚
exp(𝜙

𝑟
ΔΠ)), 𝜙

𝑟
exp(𝜙

𝑚
ΔΠ)/𝜙

𝑚
],

then

𝜆
∗

=
𝜙
𝑟

𝜙
𝑟
+ 𝜙
𝑚

𝜆max +
𝜙
𝑚

𝜙
𝑟
+ 𝜙
𝑚

𝜆min

+
1

(𝜙
𝑟
+ 𝜙
𝑚
)Π∗
𝑇

ln
𝜆
𝑚
𝜙
𝑚

𝜆
𝑟
𝜙
𝑟

,

(43)

and the allocation of the extra profit ΔΠ is as follows:

ΔΠ
𝑚

=
𝜙
𝑟

𝜙
𝑟
+ 𝜙
𝑚

ΔΠ +
1

𝜙
𝑟
+ 𝜙
𝑚

ln
𝜆
𝑚
𝜙
𝑚

𝜆
𝑟
𝜙
𝑟

,

ΔΠ
𝑟
=

𝜙
𝑚

𝜙
𝑟
+ 𝜙
𝑚

ΔΠ −
1

𝜙
𝑟
+ 𝜙
𝑚

ln
𝜆
𝑚
𝜙
𝑚

𝜆
𝑟
𝜙
𝑟

.

(44)

From (44), we can find that for such a coordinated supply
chain, the retailer will obtain a share 𝜙

𝑚
/(𝜙
𝑟

+ 𝜙
𝑚
) from

the extra profit ΔΠ and the manufacturer will gain a share
𝜙
𝑟
/(𝜙
𝑟
+ 𝜙
𝑚
). A compensation fee between the retailer and

the manufacturer is [1/(𝜙
𝑟

+ 𝜙
𝑚
)] ln(𝜆

𝑚
𝜙
𝑚
/𝜆
𝑟
𝜙
𝑟
), which

represents a fee paid by the retailer to the manufacturer
if 𝜆
𝑚
/𝜆
𝑟

≥ 𝜙
𝑟
/𝜙
𝑚
; otherwise, from the manufacturer to

the retailer. From (44), we also see that the proportions
shared by the retailer and the manufacturer only depend
on their risk aversion measurements 𝜙

𝑟
and 𝜙

𝑚
and are

unrelated to their relative power measurements 𝜆
𝑟
and 𝜆

𝑚
.

The more risk averse a member is, the less of the share
it will obtain from the extra profit ΔΠ. Given 𝜙

𝑟
and 𝜙

𝑚
,

an increase in 𝜆
𝑚
or a decrease in 𝜆

𝑟
means an increasing

compensation fee from the retailer to the manufacturer if
𝜆
𝑚
/𝜆
𝑟

≥ 𝜙
𝑟
/𝜙
𝑚
. In other words, with an increase in the

relative power of themanufacturer with respect to the retailer,
it will receive a higher compensation fee from the retailer.
When the manufacturer’s relative power is high enough with
respect to the retailer (e.g., 𝜆

𝑚
/𝜆
𝑟
≥ 𝜙
𝑟
exp(𝜙

𝑚
ΔΠ)/𝜙

𝑚
), the

result of coordination will be that the manufacturer captures
all the extra profit, whereas the retailer receives nothing from
coordination. A similar analysis is applicable to the case
where 𝜆

𝑚
/𝜆
𝑟
< 𝜙
𝑟
/𝜙
𝑚
. Besides, it is worth noting that when

the retailer and the manufacturer are equally risk-averse,
that is, 𝜙

𝑟
= 𝜙
𝑚
, they will split the extra profit in equal

proportions, and their relative power measurements 𝜆
𝑚
and

𝜆
𝑟
will be the only factors that decide whether a member

receives a positive or negative compensation fee from the
other one.

6. Numerical Examples

In order to illustrate the model and gain more insights,
we implement a numerical study. First, we assume that
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Table 1: The ranges of parameters.

Parameters 𝑎 𝑏 𝑘
1

𝑘
2

𝑐
𝑟

𝑐
𝑚

Ranges [1000, 10000] [1.2, 2.5] [0.4, 2.5] [0.4, 2.5] [1, 10] [10, 50]

Table 2: Six groups of values of parameters considered.

Groups 𝑎 𝑏 𝑘
1

𝑘
2

𝑐
𝑟

𝑐
𝑚

Group 1 2000 1.5 1.2 1.0 1.0 40
Group 2 4000 1.8 1.0 0.6 5 20
Group 3 5000 2.0 0.8 1.2 4 30
Group 4 3000 1.6 0.6 0.5 8 45
Group 5 8000 2.2 2.0 1.2 6 25
Group 6 6000 1.9 1.0 1.5 3 15

stochastic variable 𝜀 with mean equal to one follows the
uniform distribution in [𝐴, 𝐵], where 𝐴 = 0 and 𝐵 =

2. For the rest of the parameters of the model, we extract
stochastically a value out of its given interval, which is shown
in Table 1. We then compute the equilibrium solution of the
problem in the two game settings based on this group of
extracted values of all parameters. We extract stochastically
more than 100 groups of values of the parameters in total
in the experiment. All these numerical experiments support
the similar conclusion. For brevity, we pick arbitrarily six
from all groups, in which the values of parameters are listed
in Table 2, to illustrate our observations intuitively. Table 3
shows their corresponding equilibrium solutions, where Π

𝑆

denotes the whole system’s expected profit. From Table 3, one
easily observes the similar insights with those observed from
Corollary 5. That is, coordination leads to lower retail price,
larger advertising expenditure, and larger order quantity. In
addition, we define the percentage, Δ, by which the system’s
expected profit in the cooperative game increases over the
system’s expected profit in the Stackelberg game as

Δ =
Π
∗

𝑇
− (Π
∗

𝑚
+ Π
∗

𝑟
)

Π∗
𝑚

+ Π∗
𝑟

. (45)

From Table 3, one can easily find that the maximum of Δ is
aroundΔ = 129.0%, suggesting that the value of coordination
can be significant.

In what follows, we investigate the influence of changes
of parameters 𝑘

1
, 𝑘
2
, and 𝑏 on the equilibrium solutions for

channel members in the two game settings. The results are
shown in Tables 4 and 5. The values of other parameters in
Tables 4 and 5 are kept the same as in Group 2.

FromTable 4, it can be noted that the regularity of impact
of changes of 𝑘

1
, 𝑘
2
, and 𝑘 = 𝑘

2
/𝑘
1
on the optimal policies in

two game settings is identical to that presented in Properties
1, 2, and 3, which further verifies Properties 1, 2, and 3
numerically. In addition, from Table 4 we can find that the
percentage increase of the system’s expected profit decreases
as 𝑘 decreases, which shows that the value of coordination
decreases as the ratio of the efficacy coefficient of national and
local advertising decreases.

From Table 5, it can be seen that in the two game
settings, the optimal retail price, order quantity, and national

and local advertising expenditures notably decrease as the
price elasticity of market demand increases. In addition, the
profits of the manufacturer, retailer, and supply chain system
notably decrease as the price elasticity increases, but the price
elasticity has little impact on the percentage increase of the
system’s profit.

Table 6 shows that given 𝜆
𝑟
and 𝜆

𝑚
, the more risk averse

a member is, the less he obtains from the extra profit.
Additionally, given 𝜙

𝑟
and 𝜙

𝑚
, the retailer (manufacturer)

receives more extra profit when his relative bargaining power
with respect to the manufacturer (retailer) increases. When
both the risk aversion measurements and the relative power
measurements of the retailer and the manufacturer are equal,
they will split the extra profit equally.

7. Conclusions

This paper investigates the coordination problem of pricing,
ordering, and advertising for a newsvendor-type product in
a supply chain consisting of a manufacturer and a retailer.
The consumer demand is influenced by both retail price
and advertising expenditures. For a specific demand function
with multiplicative functional form, we develop the decision
models of the cooperative and Stackelberg games, respec-
tively, and provide the closed form solution to each model.
By comparing the optimal policies in the two games, we
find that the retail price in the Stackelberg game is always
higher than that in the cooperative game, whereas the order
quantity and advertising expenditure are always lower. As
a consequence, the higher amount of profit for the whole
system is achieved in the case of cooperation. We also find
that the ratio of the optimal national and local advertising
expenditures in the Stackelberg game is lower than that in
the cooperative game. In the two games, both the optimal
advertising expenditure and the order quantity are dependent
on the advertising efficacy coefficients.

In addition, we show that the properly designed revenue-
cost-sharing contract can achieve supply chain coordination
and lead to a Pareto improving win-win situation for channel
members.Under the revenue-cost-sharing contract, theman-
ufacturer’s share of his own advertising expenditure equals
the share of the retailer’s advertising expenditure and the
share of the retailer’s revenue he gains. We believe the main
challenge for managers is to create acceptance of new types
of royalty payments such as a retailer’s participation rate in a
manufacturer’s national advertising expenditure. Both parties
should jointly elaborate and implement interorganisational
operations and processes that specifically incorporate such
payments to eliminate distortions from vertical externalities.
The existence of trust in an existing manufacturer-retailer
relationship may be helpful to overcome these acceptance
problems.



The Scientific World Journal 9

Table 3: The equilibrium solutions in the two game settings.

Game structures Groups 𝑝 𝑞 𝑒 𝑛 Π
𝑟

Π
𝑚

Π
𝑆

Δ (%)

Cooperative

Group 1 250.0 80.0 2359.3 1638.4 — — 3997.7 83.1
Group 2 87.5 70.8 813.5 292.8 — — 1106.3 60.8
Group 3 102.0 14.5 75.9 170.9 — — 246.8 126.7
Group 4 229.7 16.0 416.3 289.1 — — 705.4 81.8
Group 5 82.7 25.7 244.4 88.0 — — 332.4 59.8
Group 6 58.0 443.1 1363.3 3067.5 — — 4430.8 129.0

Stackelberg

Group 1 520.7 12.8 1132.8 53.2 1541.7 642.1 2183.8 —
Group 2 145.1 15.6 362.0 13.2 444.8 243.1 687.9 —
Group 3 168.7 1.9 27.8 9.8 77.2 31.7 108.9 —
Group 4 438.3 2.7 191.7 10.9 267.7 120.3 388.0 —
Group 5 119.3 6.2 101.4 4.9 128.3 79.6 207.9 —
Group 6 99.8 55.1 513.1 164.1 1383.6 551.1 1934.7 —

Table 4: The effect of variation of 𝑘
1
and 𝑘

2
on the equilibrium solutions in the two game settings.

Game structures 𝑘
1

𝑘
2

𝑘
2
/𝑘
1

𝑝 𝑞 𝑒 𝑛 𝑛/𝑒 Π
𝑟

Π
𝑚

Π
𝑆

Δ (%)

Cooperative
0.8 1.5 1.875 87.5 150.4 520.6 1830.3 3.516 — — 2350.9 153.7
1.0 1.0 1.000 87.5 104.1 813.4 813.4 1.000 — — 1626.9 93.8
1.2 0.5 0.417 87.5 88.0 1171.4 203.4 0.174 — — 1374.7 48.1

Stackelberg
0.8 1.5 1.875 163.8 15.1 190.8 93.2 0.488 691.0 235.5 926.5 —
1.0 1.0 1.000 150.0 17.1 343.4 38.1 0.111 572.3 267.1 839.4 —
1.2 0.5 0.417 143.6 21.8 530.0 9.0 0.017 587.6 340.4 928.0 —

𝑎 = 4000, 𝑏 = 1.8, 𝑐
𝑟
= 5, 𝑐
𝑚
= 20.

Finally, the Eliashberg’s model is used to solve the bar-
gaining problem. Eliashberg’s model cannot only consider
individual supply chain members’ risk preferences but also
incorporate supply chain members’ negotiating powers into
the ultimate implementation outcome. Through the numer-
ical studies, we further confirm that the joint decisions
improve the channel performance greatly.

There are several possible directions for the future studies.
First, one can involve more decision-makers to enrich the
results and add competitive characteristics to the model.
Second, one can adopt a different form of demand function.
Finally, other bargaining schemes may be applied in order to
achieve different results.

Appendices

A. Proof of Theorem 1

Proof. For given 𝑞, 𝑛, and 𝑒, from (5) the optimal stocking
factor satisfies the following first order condition:

𝜕Π
𝑇
(𝑞, 𝑧, 𝑛, 𝑒)

𝜕𝑧
=

(𝑎𝑔 (𝑛, 𝑒))
1/𝑏

𝑞
1−1/𝑏

𝑏𝑧1−1/𝑏

× (1 − ∫

𝑧

𝐴

[
(𝑏 − 1) 𝑥

𝑧 + 1
]𝑓 (𝑥) 𝑑𝑥) = 0.

(A.1)

Hence, 𝑧∗
𝑇
satisfies

∫

𝑧

𝐴

[
(𝑏 − 1) 𝑥

𝑧
+ 1]𝑓 (𝑥) 𝑑𝑥 = 1. (A.2)

Note that (A.2) is equivalent to (7). When 𝑑ℎ(𝑥)/𝑑𝑥 > 0,
we define

𝐺 (𝑧) := 𝑧 − ∫

𝑧

𝐴

[(𝑏 − 1) 𝑥 + 𝑧] 𝑓 (𝑥) 𝑑𝑥

= 𝑧 [1 − 𝐹 (𝑧)] − (𝑏 − 1) ∫

𝑧

𝐴

𝑥𝑓 (𝑥) 𝑑𝑥.

(A.3)

Thus, we have

𝐺


(𝑧) = [1 − 𝐹 (𝑧)] [1 − 𝑏ℎ (𝑧)] ,

𝐺


(𝑧) = −
ℎ (𝑧) 𝐺



(𝑧)

𝑧
− 𝑏 [1 − 𝐹 (𝑧)] ℎ



(𝑧) ,

(A.4)

where ℎ(𝑧) ≡ 𝑧𝑓(𝑧)/(1−𝐹(𝑧)). From (A.4) and 𝑑ℎ(𝑧)/𝑑𝑧 > 0,
we get 𝐺(𝑧) < 0 at 𝐺(𝑧) = 0, which implies 𝐺(𝑧) itself is a
unimodal function. This, in conjunction with

𝐺 (𝐴) = 𝐴 ≥ 0, 𝐺 (𝐵) = − (𝑏 − 1) ∫

𝐵

𝐴

𝑥𝑓 (𝑥) 𝑑𝑥 < 0,

(A.5)

guarantees the uniqueness of 𝑧∗
𝑇
and 𝐴 < 𝑧

∗

𝑇
< 𝐵. From (7),

we find that 𝑧∗
𝑇
is unrelated to 𝑞, 𝑛, and 𝑒.
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Table 5: The effect of variation of 𝑏 on the equilibrium solutions in the two game settings.

Game structures 𝑏 𝑝 𝑞 𝑒 𝑛 Π
𝑟

Π
𝑚

Π
𝑆

Δ (%)

Cooperative
1.4 150.0 1524.6 35031.8 12611.4 — — 47643.2 62.1
1.8 87.5 70.8 813.5 292.8 — — 1106.3 60.8
2.2 66.7 3.3 25.6 9.2 — — 34.8 59.8

Stackelberg
1.4 344.8 270.9 17999.1 331.0 20928.0 8466.6 29394.6 —
1.8 145.1 15.6 362.0 13.2 444.8 243.1 687.9 —
2.2 96.2 0.8 10.6 0.5 13.4 8.4 21.8 —

𝑎 = 4000, 𝑘
1
= 1.0, 𝑘

2
= 0.6, 𝑐

𝑟
= 5, 𝑐
𝑚
= 20.

Table 6: The allocation results of the extra joint profit.

Bargaining power 𝜙
𝑟

𝜙
𝑚

𝜆
∗

ΔΠ
𝑟

ΔΠ
𝑚

ΔΠ

𝜆
1
= 0.4 0.2 0.6 0.3160 311.9 106.5 418.4

𝜆
2
= 0.6 0.5 0.5 0.4093 208.8 209.6 418.4

0.6 0.2 0.5026 105.5 312.9 418.4
𝜆
1
= 0.5 0.2 0.6 0.3156 312.4 106.0 418.4

𝜆
2
= 0.5 0.5 0.5 0.4089 209.2 209.2 418.4

0.6 0.2 0.5022 106.0 312.4 418.4

For given 𝑛 and 𝑒, it is easy to verify that Π
𝑇
(𝑞, 𝑧
∗

𝑇
, 𝑛, 𝑒)

in (5) is concave with respect to 𝑞. As a result, the optimal
order quantity 𝑞

∗

𝑇
is uniquely determined by the following

first order condition:

𝜕∏
𝑇
(𝑞, 𝑧
∗

𝑇
, 𝑛, 𝑒)

𝜕𝑞
= [𝑎𝑧

∗

𝑇
𝑔 (𝑛, 𝑒)]

1/𝑏

𝑞
−1/𝑏

[1 − 𝐹 (𝑧
∗

𝑇
)] − 𝑐 = 0.

(A.6)

According to (A.6), we get

𝑞 (𝑛, 𝑒) = 𝑎𝑧
∗

𝑇
𝑔 (𝑛, 𝑒) [

1 − 𝐹 (𝑧
∗

𝑇
)

𝑐
]

𝑏

. (A.7)

Substitute (A.7) into (5), one can derive

Π
𝑇
(𝑞 (𝑛, 𝑒) , 𝑧

∗

𝑇
, 𝑛, 𝑒)

=
𝑎𝑧
∗

𝑇
𝑔 (𝑛, 𝑒) 𝑐

1−𝑏

[1 − 𝐹 (𝑧
∗

𝑇
)]
𝑏

𝑏 − 1
− 𝑛 − 𝑒

=
𝑎𝑧
∗

𝑇
𝑐
1−𝑏

(𝑘
1
√𝑒 + 𝑘

2
√𝐴) [1 − 𝐹 (𝑧

∗

𝑇
)]
𝑏

𝑏 − 1
− 𝑛 − 𝑒.

(A.8)

It is easy to verify that Π
𝑇
(𝑞(𝑛, 𝑒), 𝑧

∗

𝑇
, 𝑛, 𝑒) in (A.8) is

jointly concave with respect to 𝑛 and 𝑒, respectively. Setting
the first-order partial derivatives of Π

𝑇
(𝑞(𝑛, 𝑒), 𝑧

∗

𝑇
, 𝑛, 𝑒) with

respect to 𝑛 and 𝑒 equal to zero, respectively, we obtain

𝜕Π
𝑇
(𝑞 (𝑛, 𝑒) , 𝑧

∗

𝑇
, 𝑛, 𝑒)

𝜕𝑒
=

𝑎𝑘
1
𝑧
∗

𝑇
[1 − 𝐹 (𝑧

∗

𝑇
)]
𝑏

2√𝑒 (𝑏 − 1) 𝑐𝑏−1
− 1 = 0,

𝜕Π
𝑇
(𝑞 (𝑛, 𝑒) , 𝑧

∗

𝑇
, 𝑛, 𝑒)

𝜕𝑛
=

𝑎𝑘
2
𝑧
∗

𝑇
[1 − 𝐹(𝑧

∗

𝑇
)]
𝑏

2√𝑛 (𝑏 − 1) 𝑐𝑏−1
− 1 = 0.

(A.9)

From (A.9), one knows that (9) and (10) hold. Substitute (9)
and (10) into (A.7), one finds that (11) holds. Hence, the proof
of Theorem 1 is completed.

B. Proof of Theorem 2

Proof. From (7), one can get

1 − 𝐹 (𝑧
∗

𝑇
) =

(𝑏 − 1) [𝑧
∗

𝑇
− Λ (𝑧

∗

𝑇
)]

𝑏𝑧∗
𝑇

. (B.1)

Substituting (B.1) into (9), (10), and (12) and comparing them
with (15), (16), and (17), we have

𝑒
det
𝑇

> 𝑒
∗

𝑇
, 𝑛

det
𝑇

> 𝑛
∗

𝑇
, 𝑝

det
𝑇

< 𝑝
∗

𝑇
. (B.2)

Since 𝜕𝐷(𝑝, 𝑛, 𝑒)/𝜕𝑒 > 0, 𝜕𝐷(𝑝, 𝑛, 𝑒)/𝜕𝑛 > 0, and
𝜕𝐷(𝑝, 𝑛, 𝑒)/𝜕𝑝 < 0, from (B.2) one can obtain

𝐷(𝑝
∗

𝑇
, 𝑛
∗

𝑇
, 𝑒
∗

𝑇
) < 𝐷 (𝑝

det
𝑇

, 𝑛
det
𝑇

, 𝑒
det
𝑇

) . (B.3)

Hence, the proof of Theorem 2 is completed.

C. Proof of Theorem 3

Proof. Setting the first-order partial derivatives of Π
𝑚
(𝑤, 𝑛)

in (23) with respect to 𝑛 and 𝑤 equal to zero, respectively, we
have

𝜕Π
𝑚

(𝑤, 𝑛)

𝜕𝑛
= 𝑀(𝑤 − 𝑐

𝑚
) (𝑤 + 𝑐

𝑟
)
−𝑏 𝑘
2

2√𝑛
− 1 = 0, (C.1)

𝜕Π
𝑚

(𝑤, 𝑛)

𝜕𝑤
= 𝑀(𝑤 + 𝑐

𝑟
)
−𝑏

[𝑘
1

√𝑁(𝑤 + 𝑐
𝑟
)
1−𝑏

+ 𝑘
2
√𝑛]

− 𝑏𝑀(𝑤 − 𝑐
𝑚
) (𝑤 + 𝑐

𝑟
)
−𝑏−1

× [𝑘
1

√𝑁(𝑤 + 𝑐
𝑟
)
1−𝑏

+ 𝑘
2
√𝑛]

+ 𝑘
1
𝑀√𝑁(1 − 𝑏) (𝑤 − 𝑐

𝑚
) (𝑤 + 𝑐

𝑟
)
−2𝑏

= 0.

(C.2)

From (C.1), one can derive

𝑛
∗

𝑑
= [

𝑘
2
𝑀(𝑤 − 𝑐

𝑚
) (𝑤 + 𝑐

𝑟
)
−𝑏

2
]

2

. (C.3)
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Substitute (C.3), (24), and (25) into (C.2) and simplifying,
we obtain

[
𝑤 + 𝑐
𝑟

𝑤 − 𝑐
𝑚

]

2

+
[(𝑏 − 1) 𝑘

2

− 2𝑏 + 1] (𝑤 + 𝑐
𝑟
)

𝑤 − 𝑐
𝑚

− 𝑘
2

𝑏 (𝑏 − 1) = 0,

(C.4)

where 𝑘 = 𝑘
2
/𝑘
1
. Let 𝑦 = (𝑤 + 𝑐

𝑟
)/(𝑤 − 𝑐

𝑚
); then we get

(26). Substituting (24) and (26) into (C.3), one knows that
(27) holds. It follows from (C.4) that 𝑦 satisfies the following
equation:

𝑦
2

+ [(𝑏 − 1) 𝑘
2

− 2𝑏 + 1] 𝑦 − 𝑘
2

𝑏 (𝑏 − 1) = 0. (C.5)

Since 𝑦 is a positive variable, from (C.5) we can get the
express of 𝑦 given by (31). By substituting (26)-(27) into (19)–
(21), one can derive (28)–(30). Hence, the proof ofTheorem 3
is completed.

D. Proof of Lemma 4

Proof. From (31), we can write 𝑦 as

𝑦 =
[𝑘
2

(1 − 𝑏) + 2𝑏 − 1 + √𝐻]

2
, (D.1)

where 𝐻 = 𝑘
4

(𝑏 − 1)
2

+ 2𝑘
2

(𝑏 − 1) + (2𝑏 − 1)
2. To show that

𝑦 > 𝑏, we need only to verify that 2𝑦 − 2𝑏 > 0; that is, 𝑘2(1 −

𝑏) + 2𝑏 − 1 + √𝐻 − 2𝑏 = 𝑘
2

(1 − 𝑏) − 1 + √𝐻 > 0. Due to

𝐻 − [𝑘
2

(𝑏 − 1) + 1]
2

= 𝑘
4

(𝑏 − 1)
2

+ 2𝑘
2

(𝑏 − 1) + (2𝑏 − 1)
2

− [𝑘
2

(𝑏 − 1) + 1]
2

= 4𝑏 (𝑏 − 1) > 0,

(D.2)

then𝐻 > [𝑘
2

(𝑏−1)+1]
2.Thus, we have 𝑘

2

(1−𝑏)−1+√𝐻 > 0.
Hence, the proof of Lemma 4 is completed.

E. Proof of Corollary 5

Proof. From (28), (9), (30), and (12), one can easily derive that

𝑒
∗

𝑑
= [

𝑦 − 1

𝑦
]

2(𝑏−1)

𝑒
∗

𝑇
< 𝑒
∗

𝑇
, 𝑝

∗

𝑑
= [

𝑦

𝑦 − 1
]𝑝
∗

𝑇
> 𝑝
∗

𝑇
.

(E.1)

From (27), (10), (29), (11), and Lemma 4, we have

𝑛
∗

𝑑
= [

𝑦 − 1

𝑦
]

2𝑏

[
𝑏 − 1

𝑦 − 1
]

2

𝑛
∗

𝑇
< 𝑛
∗

𝑇
,

𝑞
∗

𝑑
= 𝑞
∗

𝑇
(𝑦 − 1)

2𝑏−1
[𝑦𝑘
2

1
+ (𝑏 − 1) 𝑘

2

2
]

[𝑦2𝑏 (𝑘2
1
+ 𝑘2
2
)]

< 𝑞
∗

𝑇
(𝑦 − 1)

2𝑏−1
𝑦 (𝑘
2

1
+ 𝑘
2

2
)

[𝑦2𝑏 (𝑘2
1
+ 𝑘2
2
)]

= 𝑞
∗

𝑇
[
𝑦 − 1

𝑦
]

2𝑏−1

< 𝑞
∗

𝑇
.

(E.2)

Hence, the proof of Corollary 5 is completed.

F. Proof of Property 2

Proof. By taking the first-order derivative of 𝑦 in (D.1) with
respect to 𝑘 results in

𝑑𝑦

𝑑𝑘
=

𝑘 (𝑏 − 1)

√𝐻
[𝑘
2

(𝑏 − 1) + 1 − √𝐻] . (F.1)

It is easy to verify that 𝑘2(𝑏−1)+1−√𝐻 < 0. Hence, we have
𝑑𝑦/𝑑𝑘 < 0.

By the chain rule, from (26) we have

𝑑𝑤
∗

𝑑𝑘
=

𝑑𝑤
∗

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑘
= −

𝑐

(𝑦 − 1)
2
⋅
𝑑𝑦

𝑑𝑘
> 0. (F.2)

From (30), we get

𝑑𝑝
∗

𝑑

𝑑𝑘
=

𝑑𝑝
∗

𝑑

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑘
= −

𝑐

(𝑦 − 1)
2

[1 − 𝐹 (𝑧∗
𝑑
)]

⋅
𝑑𝑦

𝑑𝑘
> 0. (F.3)

Hence, the proof of Property 2 is completed.
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