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Copyright © 2013 N. G. Turan and O. Ozgonenel. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

An intensive study has beenmade of the removal efficiency of Cu(II) from industrial leachate by biosorption of montmorillonite. A
24 factorial design and cascade forward neural network (CFNN)were used to display the significant levels of the analyzed factors on
the removal efficiency. The obtained model based on 24 factorial design was statistically tested using the well-known methods. The
statistical analysis proves that the main effects of analyzed parameters were significant by an obtained linear model within a 95%
confidence interval.The proposedCFNNmodel requires less experimental data andminimum calculations.Moreover, it is found to
be cost-effective due to inherent advantages of its network structure. Optimization of the levels of the analyzed factors was achieved
by minimizing adsorbent dosage and contact time, which were costly, and maximizing Cu(II) removal efficiency. The suggested
optimum conditions are initial pH at 6, adsorbent dosage at 10mg/L, and contact time at 10min using raw montmorillonite with
the Cu(II) removal of 80.7%. At the optimum values, removal efficiency was increased to 88.91% if the modified montmorillonite
was used.

1. Introduction

The high degree of industrialization worldwide has resulted
in environmental problems [1, 2]. Greater environmental
awareness in both the public and regulatory spheres in recent
years has necessitated greater treatment of industrial effluent
[3]. Unproductiveways to reduce heavymetal ions inwastew-
ater may bring long-term risks to the ecosystem and humans.
Harmful toxic heavy metals that are discharged by several
industries include cadmium, mercury, lead, chromium, cop-
per, nickel, and zinc [4].

Copper is one of the most important metals. It is fre-
quently found in effluents discharged from industries such as
mine drainage, galvanizing plants, natural ores, and munici-
pal wastewater treatment plants. Copper is not biodegradable
and travels through the food chain via bioaccumulation. The
increase of Cu(II) in human body causes somemajor diseases
such as brain, skin, pancreas, and heart diseases [5].

Some treatment technologies such as precipitation, ionic
exchange, and adsorption have been applied for heavy
metal removal in aqueous solution. Among them, adsorption
receives considerable interest in heavy metal removal due to
its high efficiency, easy handling, cost effectiveness, and the
availability of different adsorptive materials [6–11]. Although
many adsorbents are used in adsorption studies, activated
carbon is mainly used in wastewater treatment all over the
world. However, it is not cost-effective procedure and needs
chelating agents to enhance its performance [12]. Recently,
adsorption studies have been paid attention on using low-
cost, effective sorbents for heavy metal removal, and the
sorption behavior of several natural materials and waste
products has been examined [13–16].

Clay is a potentially good adsorptive material because of
its large surface area, high cation exchange capacity, chemical
and mechanical stability, and layered structure [17]. The
adsorption of heavy metal into natural clays has recently
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been studied by various researchers. Among natural clays,
montmorillonite acts as a potential ionic exchanger for
heavy metals due to its low-cost, high abundance, easy
manipulation, and harmlessness to the environment [18–24].
Therefore, clays have been used in many studies, mainly
montmorillonite, to show their effectiveness for removal
of metal ions from aqueous solutions. However, statistical
and optimization studies on heavy metal removal using
montmorillonite under various physicochemical parameters
are restricted and very rare.

In this work, 24 full factorial design and cascade for-
ward neural network (CFNN) were used to estimate the
removal of Cu(II) from industrial leachate by adsorption
process. Of the two approaches, CFNN was first applied to
adsorption studies. The inputs include initial pH, adsorbent
dosage (mg/L), contact time (min), and adsorbent type
(raw or modified montmorillonite). The sorption of Cu(II)
concentration is considered as output. 24 full factorial design
requires 16 experiments followed by ANOVA, F-test, and
residue analysis to model the batch experimental system.
However, CFNN does not require extensive experimental
studies due to its structural advantages and only 8 tests
need to train the network. Therefore, CFNN represents a
powerful tool for the classification of the relevant parameters
and their interactions. Furthermore, it was found to be more
economical and easier to implement.

2. Materials and Method

2.1. Materials

2.1.1. Montmorillonite. Samples of montmorillonite were ob-
tained from the Bensan Activated Bentonite Company. For
experimental studies, the mineral was washed with distilled
water to remove any nonadhesive impurities and small parti-
cles and then dried at 70∘C for 24 h to remove moisture. The
sampleswere sieved through a 0.6mmsieve and usedwithout
any treatments. Finally, obtained activated sawdust granules
were stored in separate vacuum desiccators for further use.
The chemical composition of the montmorillonite used in
this work is given in Table 1. As seen in Table 1, montmoril-
lonite contains significant levels of SiO

2
(64.11%) and Al

2
O
3

(18.04%), while the contents of other metal oxides are less
than 10%. Scanning electron microscopy (SEM) technique
was used to monitor the surface physical morphology of
the waste and montmorillonite. Figure 1 shows the SEM
photograph of the montmorillonite.

2.1.2. Industrial Waste. The copper flotation waste was ob-
tained from the Elektrosan Elektrocopper Industry (Samsun,
Turkey). The chemical composition of the waste was given in
Table 1.

2.2. Leaching Procedure. The toxicity characteristic leaching
procedure (TCLP), as given in the EPA’s SW846, was applied
for analyzing pollution potentials of the industrial waste.
The TCLP consists of extracting contaminants from a waste
with an appropriate extraction fluid. The extraction fluid

Table 1: Chemical compositions of the materials.

Components w/w (%)
Montmorillonite Industrial waste

Na2O 1.71 2.04
MgO 3.96 1.85
Al2O3 18.64 3.01
SiO2 64.11 23.18
CaO 2.37 11.21
K2O 0.50 0.37
Fe2O3 3.01 39.17
ZnO — 14.15
CuO — 0.71
SO3 — 7.09

depends on the alkalinity of the waste. After extraction, metal
concentration is analyzed [25, 26].

2.3. Batch Mode Adsorption Studies. The batch studies were
performed to study the removal of Cu(II) from aqueous
leachate of industrial waste. A leaching solution containing
1 g of adsorbent was mixed by stirring the mixture at 200 rpm
with a 100mL aqueous leachate of waste in a flask placed in
a shaking incubator, keeping constant working temperature.
An aliquot of the solution was withdrawn at predetermined
time intervals and was filtered to remove adsorbent particles.
The Cu(II) concentration in the filtrate was subsequently
determined using a UNICAM929Model Atomic Absorption
Spectrophotometer. The adsorption tests were continued
until the equilibrium concentration was reached. The effects
of initial pH, adsorbent dosage, and contact time on the
amount of Cu(II) adsorbed were examined.

The parameters, sorption capacity of the substrateand
sorption efficiency of the system, were used to test the system
at equilibrium. Sorption capacity of the substrate (𝑞

𝑒
) is

expressed in terms of metal amount sorbed on the unitary
natural sorbent mass (mg g−1), and sorption efficiency of the
system (𝑅em%) is indicated from the percentage of removed
metal ions relative to the initial amount. These parameters
have been calculated as in (1).

𝑞
𝑒
=
𝐶
𝑖
− 𝐶
𝑒

𝑊
𝑉,

𝑅em% =
𝐶
𝑖
− 𝐶
𝑒

𝐶
𝑖

× 100,

(1)

where 𝐶
𝑖
is the initial concentration of metal ions in solution

(mg L−1), 𝐶
𝑒
is the final concentration of metal ions in

solution (mg L−1), 𝑉 is the volume of the solution (𝐿), and
𝑊 is mass of adsorbate (𝑔).

All experiments were duplicated to increase the reliability
of the experimental procedure, and the average values of
𝑅em% were taken into account.

2.4. Apparatus. Adsorption studies were done by a shaking
incubator (Stuart SI500). Heavy metal concentration in the
leaching solution was carried out by an Atomic Absorption
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Figure 1: SEM micrographs of the montmorillonite (a) and industrial waste (b) samples.

Spectrophotometer (UNICAM 929 Model). The chemical
compositions of the materials were evaluated by XRF using
an X-ray fluorescence spectrophotometer (RIGAKUModel).
The powdered samples were sieved under 63𝜇m for homo-
geneous particle size. The samples were mixed with lithium
borate flux, heated in a platinum crucible to between 900 and
1300∘C, and then cast in a dish to produce a homogeneous
glass-like bead. The beads were placed in XRF to obtain
the experimental analysis of the samples. Microstructural
investigations of the materials were analyzed by using a scan-
ning electron microscopy (Zeiss EVO 50EP). The powdered
samples were attached to the stage surface using carbon
tape. All samples were coated with Au-Pd target metal under
argon atmosphere by sputter coater. The coated samples
were placed in SEM chamber at high vacuum. The surface
micromorphology of materials was investigated.The solution
pH was carefully adjusted using a pH meter (Mettler Toledo
MP220) [27].

2.5. Statistical Approaches. Classical methods, such as one-
factor-at-a-time experiments, do not characterize the com-
bined effect of all the factors involved [28, 29]. This method
is, of course, time-consuming and requiresmany experiments
to identify optimum levels. In this study, the combined effect
of initial pH, adsorbent dosage, contact time, and type of
adsorbent (raw and modified montmorillonite) has been
investigated by statistical experimental design such as 24 full-
factor experimental design (FFED).

FFED is based onmathematical and statistical techniques
to evaluate the relative significance of numerous effecting
factors even in the existence of complex interactions [30–32].
Design experiments, regression analysis through ANOVA
and F-test, and optimization are the steps of FFED.The most
important aim of FFED is to identify the optimum levels
of the analyzed factors [33, 34]. The application of FFED
in adsorption studies results in improved product efficiency,
reduced process versatility, closer verification of the output
reaction to nominal and objective necessities, and shortened
development time and overall costs [35, 36]. This method
is broadly used in chemical engineering, in particular to
optimize the adsorption process.

Table 2: Experimental range and levels of independent variables.

Factors Range and levels (actual)
Low High

𝐴 3 6
𝐵 5 25
𝐶 10 30
𝐷 0 1
For𝐷, 0 represents raw and 1 represents modified montmorillonite.

After FFED is conducted, the response variable can
be represented by linear, interaction, quadratic, and pure
quadratic. Regression equations, 𝑅, can be described as in

𝑅linear = 𝑋0 + 𝑋1𝐴 + 𝑋2𝐵 + 𝑋3𝐶 + 𝑋4𝐷, (2)

𝑅interaction = 𝑋0 + 𝑋1𝐴 + 𝑋2𝐵 + 𝑋3𝐶 + 𝑋4𝐷

+ 𝑋
12
𝐴𝐵 + 𝑋

13
𝐴𝐶 + 𝑋

14
𝐴𝐷

+ 𝑋
23
𝐵𝐶 + 𝑋

24
𝐵𝐷 + 𝑋

34
𝐶𝐷,

(3)

𝑅quadratic = 𝑋0 + 𝑋1𝐴 + 𝑋2𝐵 + 𝑋3𝐶 + 𝑋4𝐷 + 𝑋12𝐴𝐵

+ 𝑋
13
𝐴𝐶 + 𝑋

14
𝐴𝐷 + 𝑋

23
𝐵𝐶 + 𝑋

24
𝐵𝐷 + 𝑋

34
𝐶𝐷

+ 𝑋
11
𝐴
2
+ 𝑋
22
𝐵
2
+ 𝑋
33
𝐶
2
+ 𝑋
44
𝐷
2
,

(4)

𝑅pure-quadratic = 𝑋0 + 𝑋1𝐴 + 𝑋2𝐵 + 𝑋3𝐶 + 𝑋4𝐷 + 𝑋11𝐴
2

+ 𝑋
22
𝐵
2
+ 𝑋
33
𝐶
2
+ 𝑋
44
𝐷
2
,

(5)

where 𝑋
𝑠

represent constant, linear, interaction, and
quadratic coefficients, while 𝐴, 𝐵, 𝐶, and 𝐷 represent
initial pH, adsorbent dosage (mg/L), contact time (min),
and adsorbent type (raw and modified montmorillonite),
respectively.

Four factors were studied for Cu(II) removal bymontmo-
rillonite; their low and high levels are given in Table 2.
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Figure 2: Main effects plot for removal efficiency.
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Figure 5: Residual plots for removal efficiency.

A total of 16 experiments were conducted according to
the design in Table 3. Mean values were used, and maximum
deviation was found to be ±2.85%.

The outputs were examined using Minitab Software, and
the main and interaction effects were identified. The main
effects of related factors are the change in the 𝑅em% linked

to the levels of the analyzed factor. The effects, regression
coefficients, and the related probability (𝑃) values are given
in Table 4. According to the 𝑃 values, the batch experimental
system is represented by a regression analysis as in (2) to (5).

According to Table 4, main effects and 𝐵 ∗ 𝐷 interaction
effect are significant since𝑃 value is less than 0.05 (confidence
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Table 3: 24 full factorial experimental design with actual levels.

Runs 𝐴 𝐵 𝐶 𝐷 𝑅% actual 𝑅% predicted Residuals
1 6 25 10 1 98.4 98.21 0.187
2 6 5 10 0 77.7 78.11 −0.412
3 3 25 10 0 69.7 70.00 −0.298
4 6 5 10 1 85.8 85.81 −0.012
5 3 5 30 1 71.2 71.81 −0.613
6 6 25 30 0 91.2 90.79 0.412
7 3 25 10 1 80.1 80.24 −0.138
8 3 25 30 0 72.7 73.06 −0.363
9 6 5 30 1 89.4 88.74 0.663
10 3 5 30 0 64.2 64.01 0.187
11 3 5 10 1 68.1 68.14 −0.038
12 3 5 10 0 60.4 59.94 0.462
13 3 25 30 1 83.7 82.91 0.787
14 6 25 10 0 88.7 88.46 0.237
15 6 25 30 1 99.3 100.14 −0.838
16 6 5 30 0 81.2 81.44 −0.238
𝑅%: removal efficiency.

Table 4: Estimated effects and coefficients for 𝑅% (coded units).

Term Effect Coefficient SE 𝑡-test 𝑃 value Remark
Constant 80.1125 0.1971 406.48 0.000 Significant
𝐴 17.7000 8.8500 0.1971 44.90 0.000 Significant
𝐵 10.7250 5.3625 0.1971 27.21 0.000 Significant
𝐶 3.0000 1.5000 0.1971 7.61 0.001 Significant
𝐷 8.7750 4.3875 0.1971 22.26 0.000 Significant
𝐴 ∗ 𝐵 0.1500 0.0750 0.1971 0.38 0.719
𝐴 ∗ 𝐶 −0.3750 −0.1875 0.1971 −0.95 0.385
𝐴 ∗ 𝐷 −0.2500 −0.1250 0.1971 −0.63 0.554
𝐵 ∗ 𝐶 −0.5000 −0.2500 0.1971 −1.27 0.260
𝐵 ∗ 𝐷 1.0250 0.5125 0.1971 2.60 0.048 Significant
SE: standard errors, standard deviation = 0.78, PRESS = 31.82, 𝑅2 = 99.85%, 𝑅2 (predicted) = 98.46%, and 𝑅2 (adjusted) = 99.55%.

0 0.5 1
0

1

2

3

4

5

6

Residuals

G
au

ss
ia

n 
pr

ob
ab

ili
ty

 d
en

sit
y 

fu
nc

tio
n

−1 −0.5

Figure 6: Gaussian probability density function of the residuals.
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of interval). Analysis of variance (ANOVA) test also proves
that main effects are mostly significant. Identification of the
major main and interaction effects of the factors affecting
𝑅em% was achieved by ANOVA (Table 5) [37–39].

In Table 4, 𝐷𝐹 is the degrees of freedom, 𝑆𝑆 is the sum
of squares,𝑀𝑆 is the mean squares, F value is calculated by
dividing the factor𝑀𝑆 by the error𝑀𝑆, and probability (𝑃)
value is used to verify whether a factor is significant.

The simplified regression equation for Cu(II) removal
efficiency by montmorillonite is in

𝑅em% = 80.11 + 8.85𝐴 + 5.36𝐵 + 1.5𝐶 + 4.38𝐷 + 0.51𝐵𝐷.
(6)

Since 𝑃 value of 𝐵𝐷 interaction effect (0.048) is almost
0.05, this effect can be excluded from the regression equation.
Then (5) simplifies to (7). Note that all main and interaction
effects have positive influence on removal efficiency. Con-
sider

𝑅em% = 80.11 + 8.85𝐴 + 5.36𝐵 + 1.5𝐶 + 4.38𝐷. (7)

The main effects (𝐴, 𝐵, 𝐶, and 𝐷) symbolize deviations
of the average 𝑅em% between the selected levels for each one
(Figure 2).

Upon changing the levels of 𝐴, 𝐵, 𝐶, and 𝐷 factors
from min to max, the 𝑅em% is amplified by 19.89%, 12.54%,

3.67%, and 10.39%, respectively. Consequently, their effects
are considered positive.

The interaction effects plots present the mean response of
two factors at all feasible combinations of their settings
(Figure 3).

The interaction plots demonstrate that only 𝐵 and 𝐷
interaction effects are almost as significant with a value of
0.048, which is regarded as aweak interaction effect. Removal
efficiency is increased by 9.85% if 𝐵 is in low value and 𝐷 is
changed from 0 to 1. Similarly, removal efficiency is increased
by 10.84% if 𝐵 is in high value and 𝐷 is changed from 0 to
1. Student’s t-test was used to see if calculated effects were
notably different fromzero. For a 95% confidence interval and
10 degrees of freedom, the t-value is equal to 2.57. Figure 4
presents this estimation as a Pareto chart. The vertical line
indicates minimum statistically significant effect magnitude.
Values shown in the horizontal columns are Student’s t-test
values of each effect.

Column values are calculated as 44.90 for 𝐴, 27.2 for 𝐵,
22.26 for 𝐷, and 2.6 for 𝐶. Based on F-value and Student’s t-
test value, the interaction effects can be eliminated, and 8 can
describe the batch experimental system by montmorillonite.

It is noteworthy that (7) is based on some assumptions
(Table 2) [40, 41]. Therefore, residual plots must be analyzed
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Table 5: Analysis of variance for 𝑅% (coded units).

Source DF Seq. SS Adj. SS Adj. MS 𝐹 value 𝑃 value
Main Effects 4 2057.26 2057.26 514.316 827.54 0.000
Two-Way interactions 6 6.26 6.26 1.044 1.68 0.293
Residual error 5 3.11 3.11 0.622
Total 15 2066.64

)

Initial pH
Adsorbent dosage (mg/L)
Contact time (min)
Adsorbent type

Material preparation
Industrial leachate

ANOVA

Regression equations

Optimization algorithm

Laboratory works

Determine the factors

Design the matrix experiments

Conduct defined experiments
(16 experiments, dublicated)

Analyze the data

Predict the performance of
optimum levels

Identify test conditions

F-test

Figure 9: Cu(II) removal system based on statistical approach by
montmorillonite.

to make sure of the model adequacy and check whether this
hypothesis of regression has been fulfilled.

The residuals are the differences between experimental
and predicted values of 𝑅em%. Figure 5 shows the normal
probability plot, variation of the fitted values, and histogram
of the residuals for Cu(II) removal system.

It is obvious that experimental runs present a normal
distribution. The residuals are not linked to the estimated
response. This is easily checked by plotting the residuals
versus estimated values (Figure 5). Note that no pattern
should be seen in residual plot (Figure 5).

The histogram distribution of residual 𝑅em% for Cu(II)
indicated that the data points larger than 2 are considered an
outlier (Figure 5).The corresponding data points, which have
values larger than 2, are between −0.75 to −0.25 and 0.25 to
0.75 in histogram plot (Figure 5).

Gaussian probability density function was applied to
the residuals to check the normality and prove the above
statement. Figure 6 shows the Gaussian probability density
function of the residuals.

Two important criteria also calculated the probability
density function. The skewness value was found to be −0.57,
which means that the value is between ∓1.96 (for 95%
confidence interval), and the curve presents aGaussian shape.

Table 6: Optimization of the analyzed factors.

Runs Optimized factors
Predicted

removal efficiency
%

1 𝐴 = 5, 𝐵 = 5, 𝐶 = 10,𝐷 = 0 (1) 72.05 (79.92)
2 𝐴 = 5, 𝐵 = 10, 𝐶 = 10,𝐷 = 0 (1) 74.61 (82.99)
3 𝐴 = 6, 𝐵 = 5, 𝐶 = 10,𝐷 = 0 (1) 78.11 (85.81)
4 𝐴 = 6, 𝐵 = 10, 𝐶 = 10,𝐷 = 0 (1) 80.70 (88.91)
5 𝐴 = 6, 𝐵 = 15, 𝐶 = 10,𝐷 = 0 (1) 83.28 (92.01)
6 𝐴 = 6, 𝐵 = 20, 𝐶 = 10,𝐷 = 0 (1) 85.87 (95.11)

Moreover, the kurtosis value was found to be 1.97, which
means that the value is almost near to 3, presenting aGaussian
shape.

Figure 7 shows that the estimated values of 𝑅em%
obtained from the regression equation and the actual 𝑅em%
were almost acceptable with adjusted 𝑅2 = 99.55% value.

Optimizing the operational conditions is an important
step for batch experimental studies. Different combinations
of the analyzed factors were tried to maximize the removal
efficiency. Both adsorbent dosage and contact time options
were costly, so these factors were chosen as minimums
in optimization steps. Optimization begins at a random
starting point with the weight and importance values of
1, and different combinations were tried to maximize the
output response. Weight number is used for shaping of the
desirability function, while importance value is used for
specifying the comparative importance of the response. The
lower removal efficiency was chosen at between 80% and
99% during the optimization process. Table 6 gives the local
solutions and predicted Cu(II) removal efficiency. Adsorbent
type (𝐷) is switched from 0 to 1 during optimization process.

Since it is preferable to work at the lowest adsorbent
dosage, contact time, and unmodified material type due to
economic aspects, the fourth local solution can be accept-
able (Table 6). A multivari chart also proves the results of
optimization solution on Cu(II) removal (Figure 8), and
optimum levels can easily be selected.

In Figure 8, initial pH and adsorbent dosage are selected
as main variables, while adsorbent type and contact time are
selected as panel variables. Moreover, the quality characteris-
tic of Cu(II) removal is measured at two extremes (initial pH
and adsorbent dosage), and these measurements are plotted
as vertical lines connecting the minimum and maximum
values over the panel variables. Figure 9 shows the general
flowchart of the suggested batch experimental design.
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2.6. Cascade Forward Neural Network (CFNN). This paper
presents an effective way to modeling batch adsorption
system for Cu(II) removal. Nowadays, considerable achieve-
ments in artificial intelligence techniques can be used to
model and predict the responses in complex systems. These
techniques can enhance the predicting ability of the model
such as adsorption systems if the mathematical or statistical
methods fail to formulate with desired accuracy.

Many researchers present ANN techniques for mod-
eling batch experimental systems. Generally, feed-forward
backpropagation (FFBP) ANNs were successfully used in
adsorption studies [42–48].Details aboutANNs can be found
in the literature. All these techniques use more or less the
same network architecture. The optimum network type is
found by trial and error, and training procedures for these
suggested ANNs need long computer runs.

FFBP consists of one input layer, one or several hidden
layers, and one output layer. Backpropagation (BP) learning
algorithm is usually used for learning procedure. The mathe-
matical background of BP algorithm can be found in [49, 50].

The proposed modeling approach is different from the
previous studies and is based on cascade forward neural
network (CFNN) with 4 neurons in input layer, 8 neurons
in hidden layer, and 1 neuron in output layer. The proposed
CFNN is trained such that a particular input leads to a
specific target output. CFNN is similar to FFBP network in
using the BP algorithm for weights updating, but the main
characteristic of this network is that neurons in each layer
relate to neurons in all previous layer and avoid the drawbacks
that occur with FFBP.
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Figure 12: Gaussian probability density function of the residuals
obtained from CFNN.

The input and target data were selected from Table 2. The
odd numbers of analyzed factors and removal efficiencies
were used for training procedures, while the even ones were
used for testing purposes. Training process consists of four
steps: (a) assemble the training data, (b) decide the network
type, (c) train the network, and (d) calculate the output for
test data. Unlike the 24 full factorial experimental design,
the proposed CFNN uses only 8 inputs and responses out of
16. Therefore, it is easy to implement and cost-effective. The
proposed network type is given in Figure 10.

Input and hidden layers consist of tangent sigmoid
functions and output layer consists of linear function. The
network type of 4-8-1 neurons in each layer was found to be
optimum,with the lowestmean squared error and the highest
determination of coefficient in training step. The actual and
predicted experimental values for testing data are shown in
Figure 11.

The determination of coefficient (𝑅2) was calculated as
0.9384 after 219 iterations. The network parameters such as
weights and biases were updated according to the resilient
backpropagation algorithm, which was found to be more
effective than the other training algorithms. Figure 12 shows
the Gaussian probability density values of the residuals. It
can be assumed that the errors are normally distributed and
the CFNN model can be used for prediction purpose with
reasonabe accuracy.

Figure 13 shows the proposed adsorption modeling sys-
tem by using CFNN, which is easy to implement and presents
an effective way to model the biosorption procedure by
montmorillonite.

3. Conclusion

The idea of the study was to examine the feasibility of using
montmorillonite as a possible adsorbent from industrial
leachate for the removal of Cu(II). The following outcomes
can be derived from this ongoing research work.

(i) FFED is definitely an acceptable method for studying
the influence of all analyzed factors on response
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Predict the performance of
optimum levels

Identify test conditions

Determination of coefficient, R2

Figure 13: Cu(II) removal system based on CFNN by montmoril-
lonite.

variable by considerably reducing the experimental
runs.

(ii) However, the proposed CFNN approach is easy to
implement and is adopted to predict the response
of the process. The model can be further extended
to include more variables and experimental data to
increase reliability.

(iii) The optimum conditions for maximum removal of
Cu (II) from industrial leachate of 80.7% and 88.91%
depend on the adsorbent type.

(iv) It can be concluded that montmorillonite can be
regarded a low-cost alternative for removal of toxic
metal ions from aqueous solutions.
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