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We introduce the sequence space E;\ (B) of none absolute type which is a p-normed space and BK space in the cases 0 < p < 1 and
1 < p < 00, respectively, and prove that E;(B) and ¢, are linearly isomorphic for 0 < p < co. Furthermore, we give some inclusion
relations concerning the space L’;(B) and we construct the basis for the space €;(B), where 1 < p < co. Furthermore, we determine

A . . . . . .
the alpha-, beta- and gamma-duals of the space £, (B) for 1 < p < co. Finally, we investigate some geometric properties concerning

Banach-Saks type p and give Gurarii’s modulus of convexity for the normed space {?2 (B).

1. Introduction

From the summability theory perspective, the role played by
the algebraical, geometrical, and topological properties of the
new Banach spaces which are defined by the matrix domain
of triangle matrices in sequence spaces is well-known.

By w, we denote the space of all real or complex valued
sequences. Any vector subspace of w is called a sequence
space.

A sequence space y with a linear topology is called a K-
space provided that each of the maps p; : ¢ — C defined
by p;(x) = x; is continuous for all i € N, where C denotes
the complex field and N = {0,1,2,...}. A K-space is called
an FK-space provided y is a complete linear metric space.
An FK-space whose topology is normable is called a BK-
space (see [1]) which contains ¢, the set of all finitely nonzero
sequences.

We write €., f, ¢, and ¢, for the spaces of all
bounded, almost convergent, convergent, and null sequences,

respectively, which are BK-spaces with the usual supnorm
defined by

Il = sup AR )

Also, by ¢, and ¢;, we denote the spaces all p-absolutely
and absolutely convergent series, respectively, which are BK-
spaces with the usual norm defined by

1/p
||x||p=<Z|xk|”> . (1sp<o). 2)

k

Here, and in what follows, the summation without limits runs
from 0 to co. Further, we write bs and cs for the spaces of all
bounded and convergent series, respectively, which are BK-
spaces with their natural norm [2].

Let p and y be two sequence spaces and A = (a,;) be an
infinite matrix of real or complex numbers a,,;, where n, k €
N. Then, we say that A defines a matrix transformation from



p into y and we denote it by writing A : y — y, if for every
sequence x = (x;) € u the sequence Ax = {(Ax),}, the A-
transform of x is in y, where

(Ax), = Zankxk Vn e N. 3)
k

The notation (¢ : ) denotes the class of all matrices A
such that A : 4 — . Thus, A € (4 : ) if and only if the
series on the right hand side of (3) converges for each n € N
and every x € p, and we have Ax = {(Ax),},n € y for all
x € p. The matrix domain y, of an infinite matrix A in a
sequence space 4 is defined by

pa=1{x=(x) €ew: Ax € y}. (4)

An infinite matrix A = (a,,) is said to be a triangle if a,,, # 0
forallm € Nand g, = 0for k > n. The study of matrix
domains of triangles has a special importance due to the
various properties which they have. For example, if A is a
triangle and y is a BK-space, then y is also a BK-space with
the norm given by "x”m = ||Ax||M forall x € py.
Throughout the paper, we denote the collection of all
finite subsets of N by . Also, we write e for the sequence
whose only nonzero termis a 1in the kth place for each k € N.
The approach constructing a new sequence space by
means of the matrix domain of a particular triangle has
recently been employed by several authors in many research
papers. For example, they introduced the sequence spaces
(foo)Nq and o, in [3], (¢,)c, = X, and (bos)c, = Xoo in [4],

()c, = G and (c)¢, = Cin [5], (€,)p = e; and (€,)p = €l
in [6], (€,) 4 = a; and (8y,) o = ay, in [7], (€,)5 = bv, and

(boo)r = by in [8], g = Z(u, v; ) in [9], (¢y)p = cé andc, =
¢! in [10], and (€,)ym = £,(A™) in [11], where N, C,, R,

E", A", A, and A" denote Norlund, arithmetic, Riesz, Euler
means, A” matrix, lambda matrix, and generalized difference
matrix, respectively, where 1 < p < co.

Recently, there has been a lot of interest in investigating
geometric properties of sequence spaces besides topological
and some other usual properties. In the literature, there
are many papers concerning the geometric properties of
different sequence spaces. For example, in [12], Mursaleen
et al. studied some geometric properties of a normed Euler
sequence space. Recently, Simsek and Karakaya [13] have
investigated the geometric properties of the sequence space
€(u, v, p) equipped with Luxemburg norm. Later, Demiriz
and Cakan [14] have studied some geometric properties of the
sequence space a;(A). For further information on geometric
properties of sequence spaces the reader can refer to [15, 16].

The main purpose of the present paper is to introduce
the difference sequence spaces E;(B) of nonabsolute type and
derive some related results. We also establish some inclusion
relations, where 0 < p < co. Furthermore, we determine the
alpha-, beta- and gamma-duals of those spaces and construct
their bases. We characterize some classes of infinite matrices
concerning the spaces E;}(B) and €§O(B) for1 < p < oo
Finally, we investigate some geometric properties concerning
Banach-Saks type p and give Gurarii’s modulus of convexity

for the normed space Eg(B).
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2. The Sequence Spaces Eg (B) and €§O(B) of
Nonabsolute Type

This section is devoted to the examination of the basic topo-
logical properties of the sets (3;,\ (B) and ZQO(B). Let throughout
that (A;) be strictly increasing sequence of positive reals
tending to co; that is

0<A <A, <o,y lim A = oo. (5)

k— oo

Let us define the lambda matrix A = (A,;) by

M= A
—, 0<k<n,

n

0, k > n.

Recently, Mursaleen and Noman [17, 18] have studied the
sequence spaces Ego and E; of nonabsolute type as follows:

) oA A |
e, = x:(xk)Ew:ZZTxk <oop;
n k=0 n
(0<p<0), ()
A - A
e = {x:(xk)ew:sup zka <oo]>.
neN k=0 An

With the notation of (4), we can redefine the spaces 8:)\0 and
{,’2 by €;‘ = (€,), and 820 = (€y,) > Where 0 < p < 00.

Let r and s be non-zero real numbers, and define the
generalized difference matrix B(r, s) = {b,(r, s)} by

r, k=n,
by (r,s)=1s, k=n-1, (8)
0, otherwise,

for all n, k € N. The B(r, s)-transform of a sequence x = (x;)
is {B(r, s)x}, = rx; + sx;_, for all k € N. We note that the
matrix B(r, s) can be reduced to the difference matrix A in the
caser = 1 and s = —1. So, the results related to the domain of
the matrix B(r, s) are more general and comprehensive than
those of the matrix domain of A and include them.

Now, we introduce the new sequence spaces E; (B) and

620 (B) as follows:

€;\(B) = {x: (x4) €@

Z—Ak ~ Mt (rxg + sx,_y)
ar S

2

n

p
<o}

(0<p<o0), (9

n

¢! (B) = <[x: (x;) € w:

i/\k — Mt

7 (rxg + sx;_1)

sup
neN

<ol

k=0 n
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By the notation of (4), we can redefine the spaces L’éo (B) and
€£(B) as follows:
A A
¢, (B) = (fp) (0< p< o),

5 e, (B) = (£,),, (10)

where B denotes the generalized difference matrix B(r,s) =
{b,(r,5)} defined by (8). Now, we may define the triangle

matrix A = (ink) by
(Mg = Agr) +5 (Aggr = Ag)

i n , k<n,
Ank =17 (An B An—l) , k= n, (11)
A
0, k> n.
Define the sequence y = (y;) as the A-transform of a

sequence x = (x;); that is,

-~ k_lr(Ai_Ai—)"'s(Ai - 1)
)’k:(Ax)kz Z IA = X;
i=0 k
r(Ag = Aer)

+ kAk k-1 %

(12)

Vk € N.
Now, we can redefine the spaces EQO(B) and E; (B) with the
notation of (4) as
A A
6B =(¢,): (0<p<oo), €, (B)=(by)z (13)

Also, we derive from the equality (12) that

Vk € N. (14)

Then, since the sequence spaces f;(B) and ¢, are linearly
isomorphic; that is, EQ(B) = Ep; it is trivial that the two-sided
implication “x € 52(3) if and only if y € €,” holds, where

0<p<oo.
We have the following result which is essential in the text.
Theorem 1. The following statements hold.
(a) If0 < p < 1, then EQ(B) isa cAomplete p-normed space
with the p-norm ||x||e1);(B) = IIA(x)IIP; that is,
I p
||x||e;}(3) = ZKAX)J s (0<p<1). (15)

b)If1<p< 0o, then E";(B) is BK-space with the norm
Ixler ) = IACOI s that is,

1/p
||x||e;<3)=[2|(ﬂx)n|"] ; (1sp<o), (16

Il = sup|(Ax), | 17)

Proof. (a)Let0 < p < 1.Itisimmediate by the fact €£(B) =¢,
that EQ(B) is a complete p-normed linear space with the p-
norm [lxleye) = X, |(Ax),I".

(b) Since the sets £, and £, endowed with the norms || - ||
and || - ||, are BK-spaces (see [2, Example 7.3.2 (b), (c)]) and
the matrix A is triangle, Theorem 4.3.2 of Wilansky [19, page
61] gives the fact that the spaces 82 (B) and L’é\o(B) are BK-
spaces with the norms in (16) and (17), respectively. O

One can easily check that the absolute property does not
hold on the space €2(B); that is, IIxII,_;éO(B) + |||x|||,_,éo(B) for at
least one sequence in the space 62 (B), and this tells us that
E;(B) is nonabsolute type, where |x| = (|x;]) and 0 < p < co.

Now, one may expect the similar result for the space €2(B)
as was observed for the space ¢, and ask the natural question:

Is not the space E";(B) a Hilbert space with p # 22 The answer
is positive and is given by the following theorem.

Theorem 2. Except the case p = 2, the space K;; (B) is not an
inner product space and hence it is not a Hilbert space, where
1< p<oo.

Proof. We have to prove that the space (ZQ(B) is the only
Hilbert space among the L’; (B) spaces for 1 < p < oo. Since
the space EQ(B) is a BK-space with the norm ||x||€;(3) = ||Kx||2
by Part (b) of Theorem 1 and its norm can be obtained from
an inner product; that is,

— -~ 1/2
Ixllea gy = (%) = (Ax, Ax) (18)

holds for every x € E;\ (B), the space E; (B) is a Hilbert space.
Let us define the sequences z = (z;) and t = (¢;) by

E k=0,
-
r—s
7"2 > k:l,
Zp =9
(3 HE)E - (20)
— p— — + — 5
r r r r A, - A
k;z»
1 k=0,
-
1</\1+/\0 s) -1
r 1=Ay T ’ v

Then, we have

Az =(1,1,0,0,...), At =(1,-1,0,0,...).  (20)



Thus, it can easily be seen that

2 2 _ 2/p
z+t +llz -t =8+4(2
" ”g;\(B) " "é’;‘(B) * ( )

(p+2),
(21)

2 2
= 212y gs) + s )

that is, the norm of the space EQ(B) with p+#2 does not

satisty the parallelogram equality which means that this norm
cannot be obtained from an inner product. Hence, the space

€2(B) with p#2 is a Banach space which is not a Hilbert
space. This completes the proof. O

3. The Inclusion Relations

In this section, we give some inclusion relations between the
spaces £, and ¢, and the spaces BQ(B) and EQO(B), where 0 <
C €§O(B) holds and
characterize the case in which the inclusion ¢, C Z;(B) holds
for1 < p < co.

p < 0o0. We essentially prove that £

Theorem 3. Let 0 < p < s < 0. Then, the inclusions E;(B) C
6;\ (B) strictly holds.

Proof. Let 0 < p < s < coand x = (x;) € ZQ(B). This
implies that Ax € ¢,. Since £, C £, Ax € €. So, we have
€,(B) C €}(B).

Let us consider the sequence z = (z;) with the aid of the
sequence x = (x;) = {(k + 1) “*'"P}° € £, \ £, defined by

k-j J A
= ] i 1
Z( ) :]Z (=1) ( _/\j—l) (i + 1)—(S+1—P)’

] 0 i 1

Vk € N.
(22)

Then, since Az = x € e\ ¢y z € Es)‘(B) \ €;;(B) which shows
that the inclusion fg (B) E:\(B) is strict. O

Theorem 4. The inclusions K;(B) C c(;\(B) C c"(B) C E(’}O(B)
strictly hold.

Proof. The inclusion cg\ (B) & (B) strictly holds by Theorem
3.10f[20]. So, it is enough to show that the inclusions EQ(B) C
cé(B) and *(B) ¢ fé‘o(B) are strict, where 0 < p < oo.
Assume that x = (x;) € €"(B) This means that Ax € e,

Since £, C ¢, Ax € ¢, which implies that x € ¢} *(B). Hence,
the 1nclus1on 4 p(B) Cq A(B) holds for 0 < p < 00. Now, we
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show that this inclusion is strict. Let 0 < p < co and define
the sequence x = (x;) as follows:

) G X

i=j—1 AJ—l)(i'" 1)1/17 (23)

for each k € N.

Then, we have for every n € N that

(A ):%Z = M) (

X + SXp_;)

(24)

—

- (n+ 1)1/"’

which shows that Ax ¢ ¢, but Ax € ¢,. Thus, the sequence x
isin cé(B) but not in ZQ(B). Hence, €£(B) C cé(B) is strict.
Since ¢ ¢ €., holds, we have the inclusion & (B) c €2O(B).

Let us define the sequence y = (y;) by
i ! Z]:
Vi = < > -1y
1"] =0 i=j—1 ] /\1_1 (25)

for each k € N.

Then, one can easily see for every n € N that
1 n

( ) = A_ Z Ak 1

which shows that Ay € € \ c. Thus, y is in EQO(B) but not

in ¢*(B); that is, y € €3o(B) \ cM(B). That is to say that the
inclusion ¢*(B) ¢ Eé‘O(B) is strict. This completes the proof.

(rxg + sxy) = (-1)",  (26)

O
Theorem 5. The inclusion €., C Eéo(B) strictly holds.
Proof. Let x = (x;) € €.,. Then, we have
lxller gy = sup |(Kx)n|
neN
1 n
= sup /\—Z (M = Ageer) (g + s344)
neN 1 fe=0
< SupA Z (Ak Ak 1 |5xk 1 + T’Xk|
neN 1 =0
1
< sup—— Z (A = Agor) (Isl e | + Il e ])
neN 7 k=0
< (Irl+ Ish Ixloosup- LS (A
neN 2n k=g
= (Il + 1sD) 1%l o
(27)
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which means that x = (x;) € 820(3). So, the inclusion £, ¢

€éo(B) holds. Furthermore, consider the sequence v = (v;)
defined by

k k—
1 —s
Vei=—=) | —
k T;( r >

vk € N with ‘—5| > 1. (28)
r

Clearly, v ¢ €. Then, we obtain by (12) that

( ):z_Z(Ak M) = 1,

”kO

Vn e N, (29)

which shows that Av = e € £, This implies that v €
Eéo(B) \ €., Hence, the inclusion €., ¢ EéO(B) is strict and
this completes the proof. O

Theorem 6. If the inclusion ¢, C E;(B) holds, then (1/A,,) €
€, where 0 < p < co.

Proof. Assume that the inclusion ¢, ¢ EQ(B) holds and
consider sequence e® = (1,0,0,...) € €. So, by this
hypothesis, e® = (1,0,0,...) € E;(B). Hence, Ae® ¢ e,

Therefore,

n

1 1
/\_Z — M) (rg + s2) = 3 —Aot (30)

n k=0 n

and we obtain that

YI(@”), )

n

1 P
= |A0r|PZ<A—> < 00, (31)

which shows that (1/1,) € £,,. This completes the proof. [

Lemma?7 (see [17, Lemma 4.11, page, 43]). If(1/A,,) € ¢,, then

)L
_ supz Ak = Ay . (32)

neN,

Theorem 8. If (1/A,) € ¢, the inclusion £, C EQ(B) strictly
holds for 1 < p < co.

Proof. Let x = (x;) € €, for 1 < p < 00. Then, by applying
Holder’s inequality, we cferlve from (12) that

(3= |7

z (M = M) (rxge + s3004)

1/p (33)

M- A \ 72 !
<%) |5xk1+rxk|] }

|(Rx) |
55252
' - (34)
By (34) and Lemma 7, we have
;|(Kx)n|p < ;Ainé(xk ) Isxis +
_ Z|sxk e ZAk W= (35)

n=k n
< MZ|sxk_1 + 1|’
k

Therefore, combining the inequality (35) with Minkowski’s
inequality, we derive that

_ P 1/p
Icllexcey = (Zl(Ax),, )
n
1/p 1/p
< MYP || (leklp> + M7 || (lek_ll”>

k k

< MYP (Ir| + 1)) Il < co.
(36)



This shows that x € E;\(B). So, the inclusion ¢, C L’;(B) holds.
Now, let us consider the sequence v = (v;) defined by

1
) k = 0)
Vg = rl Ao s s\ k-1 (37)
_—< +_><__> ) k;l)
r\A —Ay 1 r
with | = s| > |r|. Then, since Av = @ ¢ ¢,, one can

immediately observe that v is in E;(B) but not in ¢, That
is, v € E; (B) \ e Thus, we have showed that the inclusion
¢, C EQ(B) is strict. Similarly, the inclusion ¢, C ZQ(B) also

strictly holds in the case p = 1, so we omit the details. This
completes the proof. O

Theorem 9. The sequence spaces €, and ZQ(B) do not include
each other.

Proof. 1t is clear by Theorem 8 that the sequence spaces £,
and 62 (B) are not disjointed. Let us consider the sequence v =
(v,) defined by (37). Then, visin E; (B) but notin £,,. Now, let
us define the sequence x = (x;) = {(1/r) Zf:o (-s /r)k_i}keN
with | — s/r| < 1. Then, since Ax = e ¢ ¢, xisin £, but not
in EI’}(B). This completes the proof. O

4. The Basis for the Space €;(B)

In this section, we begin with defining the concept of the
Schauder basis for a normed sequence space and then give the

basis of the sequence space E;‘ (B), where 1 < p < co. Now,

we define the Schauder basis of a normed space. If a normed
sequence space ¢ contains a sequence (b,) with the property
that for every x € y there is a unique sequence of scalars («,,)
such that

Jim o — (oby + by +-- + b)) =0, (38)

then (b,) is called a Schauder basis (or briefly basis) for p. The
series Y, oy b which has the sum x is called the expansion of
x with respect to (b,), and written as x = Y, o by.

Theorem 10. The following statements hold.

(i) The space Eéo(B) has no Schauder basis.

(ii) Define the sequence b™® = {by(,k)}neN of elements of the
space €2(B) by

n-k
—S> )tk Ak
— + , k<mn,
0 ( r [ (A =Aer) s (e = Ag)
n = —fl 5 k = n:
r (/\n - An—l)
0, k>mn,
(39)
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foralln, k € N. Then, the sequence {by(lk)} is a basis for the space
A ) . .

pr(B) and every x € €,(B) has a unique representation of the
orm

X = ;(Kx)kb(k). (40)

Proof. (i) It is known that the matrix domain p4 of a normed
sequence space ¢ has a basis if and only if y has a basis
whenever A = (a,,) is a triangle [21, Remark 2.4]. Since the

space €, has no Schauder basis, €£O(B) has no Schauder basis.
(ii) Let 1 < p < oo. It is clear that b® = {b,(,k)} C E;(B),
since Ab® = ¢® ¢ ¢, for all k € N. Furthermore, let x €
E;}(B) be given. For every nonnegative integer m, we put
= Z(Kx)kb(k). (41)
k=0

Then, by applying A to (41), we get that

A = Y () B = 3 (Rx) e, (a2)
k=0 k=0
and therefore, we have
—~ m 0, 0sn<m,
A=, o @
n

for all n,m € N. Now, for any given € > 0, there is a
nonnegative integer m, such that
[ee]
—_ p € P
> @), <(5) (44)

n=my+1

Thus, we have for every m > my,, that

“x B x[m] ”e},(g)
0 _ » 1/p o R ) 1/p .
) (n_;ﬂ'(AX)rJ ) ) (n—%):ﬂ'(Ax)n ) s 5 <6

(45)

for all m > m,, which proves that x € EQ(B) is represented as
in (40).

Let us show that the uniqueness of representation for
x € €;(B) is given by (40). Suppose, on the contrary, that
there exists a representation x = Y, u(x)b®. Since the
transformation T' defined from E;(B) to €, by Tx = Ax =y
is continuous, we have

(Kx)k = Z‘un{ﬁb(k)}n = Z/’l" (%) 8 = (x); keN,
(46)
which contradicts the assumption that (jA\x)k # g (x) for all

k € N. That is to say that the representation (40) of x € EQ(B)
is unique. O
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5. The Alpha-, Beta- and Gamma-Duals of
the Space EQ(B) and EQO(B)

In this section, we give some theorems determining the
alpha-, beta- and gamma-duals of the spaces E;(B) and
E(’)\O(B). We start with the definition of the alpha-, beta- and
gamma-duals of a sequence space.

If x and y are sequences and X and Y are subsets of w,
then we write X+ y = (X, Y )eop ¥ *Y ={acw:a-x €Y},
and

00 -1
xy=" iy X *Y={acw:a-xeY},

MX.Y)=()x"*Y=l{a:a-xeY Vxe X}, “47)

xeX

for the multiplier space of X and Y. One can easily observe for
asequence space Z withY ¢ Zand Z c X that the inclusions
M(X,Y) ¢ M(X,Z) and M(X,Y) ¢ M(Z,Y) hold. The
alpha-, beta- and gamma-duals of a sequence space, which
are, respectively, denoted by X*, X, and X" are defined by

xP=M (X, cs),

X*=M(X,¢,), X¥=M (X,bs).

(48)

It is obvious that X* ¢ X* c X". Also, it can be easily
seen that the inclusions X* ¢ Y%, X* ¢ Y#, and X? c Y”
hold, whenever Y ¢ X. Now, we may begin with quoting
the following lemmas [22] which are needed in proving
Theorems 14-16.

Lemmall. A = (ay) € (¢, : &) if and only if
(i) For1 < p< oo

supz

FeF

q
< 00. (49)

Z Ay

neF

(ii) Forp=1

supz || < 0. (50)
keN n

Lemma 12. Let A = (a,) be an infinite matrix. Then, the
following statements hold.

(i) Let 1 < p < co. Then, A € (€, : ¢) if and only if

nleréo a,. exists for each fixed k € N, (51)

q
< .
i‘;g;%d oo (52)

(ii) A € (¢ : c) if and only if (51) holds and

:Eg\l |a,| < o0. (53)

(iii) A € (€., : c) if and only if (51) holds and

supz |ank| < 00,
neN

(54)

lim =0.
n—oo

a, — lima
nk 00k

Lemma 13. Let A = (a,) be an infinite matrix. Then, the
following statements hold.

(i) Let1 < p < 00. Then, A € (EP : €y,) if and only if (52)
holds

(ii) A € (¢, : €.) if and only if (53) holds.

q
<oof.

th = {a =(a) cw: supz |tik| < oo} .
keN ' n

Theorem 14. Define the sets t;\ and t();o by

Z tﬁk

neF

t;= {a=(ak) ew:supz

FeF

(55)

Then, [£}(B)]* = t%, and [€,(B)]* =t} for 1 < p < 0o, where

the matrix T = (tik) is defined via the sequence a = (a,) € w

<__S>n_k [ M + Ar ] a
r (A= Ae) s (Aegn — ) "
A 0<k<sn-1,
tnk = A

[ [ , k=mn,

r(An _An—l)an "

0, k > n,

(56)

foralln,k € N.

Proof. Leta = (a,) € wand 1 < p < oco. Then, by using (12),
we immediately derive for every n € N that

1/ -s
ax, = - —
nen rlg(:)(r)

n-k

k i A
D" 8, = (Ty),.
:;1 )‘k - ’\k—l

1

(57)

Thus, we observe by (57) that ax = (a,x,) € ¢, whenever x =
(x) € E;‘(B) ifand only if Ty € €, whenever y = (y,) € e,
This means that a = (@) € [£,(B)]* if and only if T € (¢, :
£,). Therefore, we get by Lemma 11 with T instead of A that
a = (a) € [€3(B)]* if and only if

supz Z tf‘lk

FeF ko |neF

q
< 00, (58)

which leads us to the consequence that [82(3)]“ = t; ,forl <
p < oo. Similarly, we get from (57) thata = (a;) € [f?(B)]“



ifand only if T € (¢,
Lemma 11 that

nk < 00. (59)

supz £t
keN'n
O

Theorem 15. Define the sets d, dy, d?, d}, and eg as follows:

dl = <|a:(ak)ew:

N
Z (7) a; exists for each k e N ¢,

n-1
a=(a)cw: supZ|a,< )| < oo}

neNg_o

(60)

2 sup |@ (n)| < oo},
k,neN

dy= ja=(a)cw:sup
keN

{
d = {a = (@) cw: nllngog |a, ()| = % |ak|} ,
{

Joo}

M
Y(Ak A 1)

where

- _ ay
B () = A { T(Ak - /\k—l)

i [r()‘k—l/‘k—l) i S(Ak+11_Ak):|

x Z( ) a]} fork<n,

j=k+1

a, = nli_)rr&) a, (n).

(61)
Then,
, e}ndynd}, p= oo,
[ B)] ={endind}, 1 <p< oo, (62)
dindindl, p= 1.

: ¢;) which is equivalent to (50) of
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Proof. Let us consider the equality

S D E N pans—

i :Z;A" [ (r(Ak —IAH) i —m)

A

} N r(An - An—l)yn

= Zak (1) y + m)’n

= (Dy)n Vn e N,

(63)

where the matrix D = (dflk) is defined for all n, k € N by

A
d\=1—"—a, k=n 64
nk T(A nl) ( )
0, k>n.

Then, we deduce from (63) with Lemma 12 thatax = (a,x,,) €
cs whenever x = (x;) € L’;}(B) if and only if Dy € ¢ whenever

y =0 € £, This means that a = (a;) € [EQ(B)]ﬁ if and

onlyif D € (€, : c), where 1 < p < co. Therefore, we derive
from (51) and (52) that
0, o\k-j
Z <—> a; exists for each k € N,
Jj=k+1 r
n—1
sup Y |a (m)]" < oo, (65)
neN g
sup L <00
keN 7'(/\ Ak 1) ’

which shows that [Z;‘(B)]ﬂ = eg n cl’l1 n di forl < p < oo.
Since beta-dual of the space E;\ (B) for the cases p = 1 and
p = 00 can be similarly computed, we omit the details. This

completes the proof. O
2 y_ [ dnd} p=1,
Theorem 16. Let 1 < p < co. Then, [EP(B)] = { o ndh po1

Proof. This may be obtained in the similar way used in the
proof of Theorem 15 with Lemma 13 instead of Lemma 12. So,
we omit the details. O
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6. Certain Matrix Mapping Related to
the Spaces Eg (B) and EQO(B)

In this section, we characterize the matrix classes (f;} (B) :
€oo)s (€5(B) 1 ), (€5(B) : ©), (£,(B) : &), (£}(B) : ¢,),
(fé‘O(B) €y, where 1 < p < 00. Also, by means of a given
basic lemma, we derive the characterizations of certain other
classes. Since the characterization of matrix mapping on the
space 82 (B) can be proved in a similar way, we omit the proof
for the cases p = 1 and p = co and consider only the case
1 < p < oo in the proofs of theorems given in this section.
For an infinite matrix A = (a,;), we write for brevity that

ank (m)

2 A . [ 1 . 1 ]
“1r (/\k ~Akr) r (/\k “ M) s — M)

—s\k-i
) ] en

[T(Ak —1 Mer) ' S(Akﬂl_ /\k)]
. i (—;)’“J%}’

1
ank,m)=—>a, .. VYnkmeN.
( ) m+1j;)"”’k

a
=2 nk +
g {T(Ak - /\k—l)

(66)

Now, we may begin with quoting the following lemmas (see
[22]) which are needed for proving our main results.

Lemma 17. Let A = (a,) be an infinite matrix. Then, the
following statements hold.

(i) A € (¢, : q) if and only if sup, ; nlal| < 0o and

nlLr%oa”k =0 for each fixed k € N. (67)

(ii) Let 1 < p < 00. Then, A € (€, : ) if and only if (67)
holds and sup,..y Y., la,]? < co.
(ili) A € (by : ) if and only if (67) holds and Y |a,;| is
uniformly convergent.
Lemmal8. Let1 < p < co. Then, A = (a,;) € (¢, : ¢,) ifand
Ol’lly lfsupneN Zk |ank|q <.

Lemmal19. Let 1 < p < co. Then, A = (a,) € (by, : €,) if

and only if supgeg Y| Ykex ank|p < 0.

Theorem 20. Let A = (a,;) be an infinite matrix. Then, the
following statements hold.

(i) Let 1 < p < 00. Then, A € (EQ(B) : £,,) if and only if

[ee) _ k_]
z <TS> a; exists for each fixed k €N,  (68)
j=k+1

M
—_ 14 N, 69
{r o Akl)ank} €l foreverymne (69)

-
= 1

sup [" < co. (70)

(At ) eny € 62 nd nd} for eachneN. (71)

(i) A € (Ef‘(B) : €y,) if and only if (68) and (69) hold and

sup |a .| < oo.
mk&' nk| (72)

(iii) A € (E(’}O(B) : €y) if and only if (68) and (69) hold and
supz |ﬁnk| < 00, (73)

keN n
Tim 3 [ )] = Y [a (74)

Proof. (i) Assume that the conditions (68)-(71) hold and take
any x € EQ(B), where 1 < p < oo. Then, we have by

Theorem 16 that (a,,)ien € [€5(B))F for all n € N and this
implies the existence of Ax. Also, it is clear that the associated
sequence y = (y;) is in the space £, C .

Let us now consider the following equality derived by
using relation (12) from mth partial sum of the series ;. a,;.x;

as follows:

m m—1~ /\m
Z‘,ank'xk= Zank(m)yk-'—r(A Y )anmym
m m—1

k=0 k=0 (75)

Vn,m € N.

Therefore, by using (68)-(70), we obtain from (75) as m —
0o that

Zankxk = Zankyk Vn € N. (76)
k k

Furthermore, since the matrix A = (G,) is in the class
(€, : €,) by Lemma 13, we have Ay € ¢,,. Now, by passing
to supremum over # in (76), we derive by applying Hélder’s
inequality that

|Ax| o, = sup
neN

Zankxk
k
1/q 1/p
< SUP<Z|5nk|q> <Z|J’k|P> < 0o,
neN k k

which shows that Ax € €., and hence A ¢ (€£(B) 1)

(77)
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Conversely, assume that A = (a,;) € (EQ(B) 2 )

where 1 < p < oo. Then, since (a,;)ren € [E;‘(B)]ﬁ for all
n € N by the hypothesis, the necessity of (71) is obvious. Since
() ken € [E;(B)]ﬁ, (76) holds for all sequences x € €£(B)
and y € ¢, which are connected by relation (12). Let us now

consider the continuous linear functionals f,, on 82(3) by
o (x) = Zankxk Vn e N. (78)
k

Then, since E;}(B) and ¢, are norm isomorphic, it should
follow with (76) that

1701 =4,

1/q
c(par)

for all n € N. This shows that the functionals defined by
the rows of A on E;}(B) are pointwise bounded. Thus, we
deduce by Banach-Steinhaus theorem that these functionals
are uniformly bounded, which yields that there exists a
constant K > 0 such that || f,,|| < K for all n € N. This shows
the necessity of the condition (70) which completes the proof
of part (i). O

Theorem 21. Let A = (a,;) be an infinite matrix. Then, the
following statements hold.

(i) Ae (EIA(B) : ¢) if and only if (68) and (69) hold and

lim @, = o

n— oo

for each k € N. (80)

(ii) Let 1 < p < oo. Then, A € (E;(B) : ¢) if and only if
(68)—(71) hold and (80) also holds.

(iii) A € (EéO(B) : ¢) ifand only if (68), (69), and (74) hold,
and

nhj%o; |G — o] = 0. (81)

Proof. We consider only part (ii). Assume that A satisfies the
conditions (68)—(71) and (80), and x € EQ(B), where 1 < p <
00. Then, Ax exists and by using (80), we have for every k € N
that |3, |7 — || asn — oo which leads us with (70) to
the following inequality:

a|"=M < oo, (82)

which holds for every k € N. This shows that (a;) € €,. Since

X € 82‘ (B), we have y € ¢,. Therefore, we derive by applying
Holder’s inequality that (o yy) € ¢, for each y € €,,.
Now, for any given € > 0, choose a fixed k,, € N such that

. 1p
P €
<ka+1| Vel > < (83)
—Ro
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Then, it follows (80) that there is 1, € N such that

ko
Z (e = k) Vi
k=0

€
S ) 84
5 (84)

for every m > my,. Thus, by using (76), we get that

Zankxk - Z“k)’k
k k

; (e — ) Vi

ko

Z (@i — ) Vi

k=0

[e9)

z (i — ) Y

k=ky+1

< +

o 1/q o 1/p
< g + [ Z (|| + |“k|)q] [ Z |)’k|p:|

k=k, k=k,

0 1/q [} 1/p
€ €
< =+ —F E (ﬁ )q + g o P
2 4M1/q |:<k_k0 | nkl > (k_k()' kl > ]

€ €
< -+
2 4Mla

oMY = ¢,
(85)

for all sufficiently large m > m,. Hence, (Ax), — Y &V
asn — oo which means that Ax € ¢; thatis, A = (a,;) €
()(B) : c).

Conversely, suppose that A € (E;}(B) :¢),wherel < p <
00. Then, sincec C £, A € (82 (B) : €.,). Thus, the necessity
of (68)-(71) is immediately obtained from Theorem 20 which
together imply that (76) holds for all sequences x € Zg (B).
Since Ax € ¢ by our assumption, we derive by (76) that Ay €
¢ which means that A = (@) € (fp : ¢). Thus the necessity

of (80) is immediate by (51) of Lemma 12. This completes the
proof of part (ii). O

Now, we can mention the sequence space f of almost
convergent sequences. The shift operator P is defined on w
by (Px), = x,,,, for all n € N. A Banach limit L is defined on
., such that

(i) L(x) = 0 for x = (x;), where x;, > 0 forall k € N,
(ii) L(Px) = L(x),
(iii) L(e) = 1, wheree = (1, 1, 1, etc.).
A sequence x = (x;) € € is said to be almost convergent
to the generalized limit « if all Banach limits of x is « [23],

and denoted by f — limx, = a. Let P/ be the composition
of P with itself for j times and define ¢,,,(x) for a sequence

x = (x) by

m

b () = —— 3 (Px),

j=0

Vm,n € N. (86)
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Lorentz [23] proved that f — limx, = « if and only if
lim,, , o t,,(x) = a, uniformly in #n. It is well-known that
a convergent sequence is almost convergent such that its
ordinary and generalized limits are equal. By f and fs, we
denote the space of all almost convergent sequences and
series, respectively, that is,

f={x=(xk)ew:

m= 00y +

Zox
Ja e C> lim Z”—Jrkl = « uniformly in n} ,
k=0

fs:{x:(xk)ew:

m n+k X
Jx € C> lim ZZ—J=ocunif0rmlyinn .
" =Mt

(87)

Theorem 22. Let A = (a,;) be an infinite matrix. Then, the
following statements hold.

(i) Ae ({ff(B) : f) if and only if (68) and (69) hold, and

f- nli—»néoa”k =oy forevery k e N. (88)

(ii) Let 1 < p < co. Then, A € (€,(B) : f) if and only if
(68)-(71) and (88) hold.

(iii) A € (Ego(B) : f) if and only if (68) and (69) hold, and

mlgan | (n,k,m) —og| =0 uniformly n. (89)

Proof. Theorem 22 can be similarly proved by the same
technique used in the proof of Theorem 21. O

Theorem 23. Let A = (a,;) be an infinite matrix. Then, the
following statements hold.

(i) A = (ay) € (E{\(B) : ) if and only if (68) and (69)
hold, and

nleréoﬁnk =0 forevery keN. (90)
(ii) Let 1 < p < co. Then, A = (a) € (€3(B) : ) if and
only if (68)-(71) and (90) hold.

(iii) A = (a) € (€X(B) : ) if and only if (68), (69), and
(74) hold and

JE&% @] = 0. 1)

Proof. Itisnatural that Theorem 23 can be proved by the same
technique used in the proof of Theorem 21 with Lemma 12
instead of Lemma 17 and so we omit the proof. O

1

Theorem 24. Let A = (a,;) be an infinite matrix. Then, the
following statements hold.

(i) A € (6}(B) : £,) ifand only if (68), (69), and (72) hold
and

supz || < 0.

keN n (92)

(ii) Let 1 < p < co. Then, A € (€5(B) : €,) if and only if
(68)-(71) hold and

supz

FeF

q
Y au| <oo. (93)

neF

(iii) A € (E(’)\O(B) : &) if and only if (68), (69), and (74)
hold and

supz < 00.

FeF |

Z alvnk

neF

(94)

Proof. Since Parts (i) and (iii) can be proved in a similar way,
to avoid the repetition of the similar statements, we consider
only part (ii).

Suppose that A satisfies the conditions (68)-(71), (93) and
take any x € €2(B), where 1 < p < 00, then y € €,. We have
by Theorem 16 that (a,;)ien € [€2(B)]ﬁ for allm € N and
this implies that Ax exists. Besides, it follows by combining
(93) and Lemma 11 that the matrix A € (EP : ¢;) and so we

have A y € ¢,. Additionally, we derive from (68)—(71) that the
relation (76) holds which yields that Ax € ¢, and so we have
Ae(e)B): L)

Conversely, assume that A € ({?;}(B) :€)), where 1 < p <
0. Since ¢, C €., A € (82(3) : €). Thus, Theorem 20
implies the necessity of (68)-(71) which imply the relation
(76). Since Ax € ¢, by the hypothesis, we deduce by (76) that
Ay € ¢, which means that A € (€, : €). Now, the necessity
of (93) is immediate by the condition (49) of Lemma 11. This
completes the proof of part (ii). O

Theorem 25. Let 1 < p < co. Then, A = (a) € (€{(B) : €,)
if and only if (68) and (69) hold, and

supZ|ﬁnk|P < 0. (95)
keN'n
Proof. Suppose that the conditions (68), (69), and (95) hold

and take x ¢ EIA (B). Then, y € ¢,. We have by Theorem 16

that (4, )ren € [Ef“(B)]ﬁ for each n € N and this implies that
Ax exists. Furthermore, by (95), one can obtain that

1/p
sup || < sup(ZIﬁnk|p> < oo for every neN. (96)
keN keN \ n

Hence, the series ), |G, | absolutely converges for each fixed
n € N. Therefore; since (68) and (69) hold, if we let to limit
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in (75) asm — 00, the relation (76) holds. Thus, by applying
Minkowski’s inequality and using (76) and (95), we obtain

(o) (2l )
()<

which means that Ax € ¢, andso A € (EIA(B) : EP).
Conversely, assume that A € (€{\(B) ), where 1 <
p < oo.Since €, C £, then A € (E{\(B) : €). Thus,
Theorem 20 implies that the necessity of (68) and (69) is clear
by the relation (76). Since Ax € €, by our assumption, we

deduce by (76) that Zy € £, which means that Ae(t: £,).
Now, the necessity of (95) is immediate by Lemma 18. This
completes the proof. O

Zankxk
k

Zankyk
k

(97)

Theorem 26. Let 1 < p < c0. Then, A = (a,) € (EQO(B) : Ep)
if and only if (68) and (69) hold and

Z |fink| converges for every n € N,
k

(98)

p
supz Zfink < 00.

KeF n |keK

Proof. Theorem 26 can be proved by the same technique
used in the proof of Theorem 25 with Lemma 19 instead of
Lemma 18 and so we omit the details. O

Lemma 27 (see [8, Lemma 5.3]). Let A and u be any two
sequence spaces, let A be an infinite matrix and B a triangle
matrix. Then, A € (A : ug) if and only if BA € (A : p).

It is trivial that Lemma 27 has several consequences.
Indeed, combining Lemma 27 with Theorems 20-26, one can
derive the following results.

Corollary 28. Let A = (a,;) be an infinite matrix and u =
(u,) andv = (v,) be sequences of non-zero numbers, and define
the matrix C = (¢y) by ¢, = u, Z?:o v;a; for alln,k € N.
Then, the necessary and sufficient conditions in order A belongs
to any of the classes (é’;‘(B) (U, 7)), (EQ(B) €, (u,v)), and
(El)jL (B) : c(u,v)) are obtained from respective ones in Theorems
20-26 by replacing the entries of the matrix A by those of the
matrix C. The spaces €., (u, v), Ep(u, v), and c(u, v) are defined
in [9] as the spaces of all sequences whose generalized weighted
means are in the spaces €, ¢, and €,,. Since the spaces €., (1, v),
c(u,v), and fp(u, v) can be reduce in the cases vi = 1y, u, =
1/R, and v = 1, u, = 1/n to the Riesz sequence spaces .,
rt, and r;, and to the Cesdro sequence spaces X, ¢, and X,
respectively, Corollary 28 also includes the characterizations of
classes (e;(B) 1), (eg(B) D7), (e;(B) . r') and (e;(B) :

Xoo), (€3(B) : X)) and (€)(B) : €), where 1 < p < co.
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Corollary 29. Let A = (a,;) be an infinite matrix and define
the matrix C = (c,;) by

n

Gk = Z <1]1> (1= V)n_jr_jajk Vn, k € N. (99)

=0
Then, the necessary and sufficient conditions in order A which
belongs to any of the classes (ZQ(B) Doen) (Z;(B) :oep)s
(€;(B) : e;), and (E;,\(B) : €]) are obtained from respective ones
in Theorems 20-26 by replacing the entries of the matrix A by
those of the matrix C; where e, €, and e, and e denote the

Euler spaces of all sequences whose E'-transforms are in the
spaces €y, £, and ¢, and ¢, which were introduced in [6, 12],
where 1 < p < co.

7. Some Geometric Properties of
the Space Eg (B)

In the present section, we investigate some geometric prop-
erties of the space EI’}(B). First, we define some geometric
properties of the spaces. Let (X, | - [|) be a normed space
and let S(x) and B(x) be the unit sphere and unit ball of
X, respectively. Consider Clarkson’s modulus of convexity (see
[24, 25]) defined by

(SX(s):inf{l—"xz;y"; x,y€S(x), ||x—y|| Zs},

(100)

where 0 < ¢ < 2. The inequality dx(¢) > 0 for all € € [0, 2]
characterizes the uniformly convex spaces. In [26], Gurarii’s
modulus of convexity is defined by

>

Bx (¢) = inf {1 — inf ||(xx +(1-a) yl
ae0,1]
(101)
xy€S(x), [|x-y =£]>,

where 0 < & < 2. It is easily shown that 6y(e) < Bx(e) <
20x(¢e) for any 0 < € < 2. Further, if 0 < Sx(e) < 1, then X is
uniformly convex, and if Sy (¢) < 1, then X is strictly convex.

A Banach space X is said to have the Banach-Saks property
if every bounded sequence (x,,) in X admits a sequence (z,,)
such that the sequence {t;(z)} is convergent in the norm in X
[27], where

(zg+2,+--+2,) VkeN. (102)

1

k+1

A Banach space X is said to have the weak Banach-Saks
property whenever given any weakly null sequence (x,) in
X and there exists a subsequence (z,,) of (x,) such that the
sequence {t;(z)} is strongly convergent to zero.

In [28], Garcia-Falset introduced the following coefhi-
cient:

te(2) =

R(X) = sup {liminf |x, + x| (x,) € B(x),x, —> 0} .
(103)
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Remark 30 (see [29]). A Banach space X with R(X) < 2 has
a weak fixed point property.

Theorem 31. The space E;(B) has Banach-Saks type p.

Proof. Let (¢,) be a sequence of positive numbers for which
Yo €, < 1/2.Let (x,,) be a weakly null sequence in B(E;(B)).
Setuy = xyand u; = x,, = x;. Then, there exists t; € N such
that

00

Z u, (i) e?

i=t;+1

< é&. (104)
)

The assumption “(x,,) is a weakly null sequence” implies that
x,, — 0 with respect to the coordinatewise, there exists n, €
N such that

<e, (105)

t, .
an (i) e?
i=0

e®)

where n > n,. Set u, = x, . Then, there exists £, > ¢; such
that

(o]

z u, (i) e

i=t,+1

<& (106)
e®)

By using the fact that x, — 0 with respect to the
coordinatewise, there exists n1; > n, such that

< 82 > (107)

t, .
an (i) e?
i=0

£3(B)

where n > n;. If we continue this process, we can find two
increasing sequences (¢;) and (n;) of natural numbers such
that

£
¥ x, (i) e <ej, (108)
i=0

A
e\(B)
foreachn > n;,, and

N o)
. i
Z uj(i)e <gj

i=t;+1
Jj A
€:(B)

(109)

13

where u =X, Hence,
J

n [ti-1
Z(wa”
j=0 \ i=0

£,(B)

t:

J o o] -
+ Z u; (i) e 4 Z u; (i) e(’)>
a eA®)

i=t; 1 l=tj+1

£j

Z u; (1) e

A j=0i=t;-1
B i eAB)

+ i i uj(i)e(i)

j=0i=t;+1

M=

nti-1
2, 2 uj(ie”

j=0i=0

IN

+

)

n t; ) n
Z < Z u; (i) e(l)> + ZZsj.
am 7

j=0 \\i=t;_;+1

IN

(110)

On the other hand, one can see that | x| am < 1. Thus,

P
"x"é},(B) < 1, and we have
n tj b
2 X e
j=0i=t;  +1 @;,‘(B)
i — P
$ 3 o w4 20
= alkxj xl
=0 i=t~1|k=0 (A =Ai) (111)
n ool i p
5232 R E—
j=0i=0]k=0 r(Ai = Ai)
<(n+1).
Therefore, we obtain
n t; )
Z Z u; (i) e <+ 1)YP. (112)
J=0i=t, 41 o

By using that fact that 1 < (n+1)"/? foralln € Nand 1 < p <
00, we have

n

Z”j

j=0

<m+DYP+1<2m+ 1)V (113)

e(®)

Therefore, the space 82 (B) has Banach-Saks type p. O

Remark 32. Note that R(t’;(B)) =R(¢,) = 2Y/P since E;‘(B) is
linearly isomorphic to £,,.
Thus, by Remarks 30 and 32, we have the following.
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Corollary 33. Let 1 < p < 00. Then, the sequence space ZQ(B)
has the weak fixed point property.

Theorem 34. Gurarii’s modulus of convexity for the normed
space E;‘ (B) is

P 1/p
Bo (&) < 1- [1 -(%) ] , (114)
where 0 < € < 2.

Proof. Let x € E;,\(B). Then, we have

1/p
Mg = [, = [SIE), ] @)

Let 0 < & < 2 and consider the following sequences:

=G ={m - (8T ] A () 0o |
t=(t,) = «[K‘l Hl - (E)P]I/P] A <—§),0,o,...}.

(116)

Since u,, = (Az), and v, = (At),, one can see that

u=(u,)= “1 - (g)p]l/P,g,o,o,...},
v=(v,) = Hl - <§>P]1/P,—§,0,0,..}.

By using the sequences z = (z,) and t = (¢,), we obtain the
following equalities:

(117)

12155, = [42],
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Il

—

1415, sy = 4]
-1
- 2 2 (118)
() -
- 2 2/ 7
Iz - t||§; ® = [Rz -2
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ForO0<a<1

inf |laz + (1 - a)t
ae[o,l]" ( ) ||e£(3)

inf ”ocKz +(1-a) Kt“p

a€[0,1]
-G o) ]

P
inf {
agl0,1]

Il
5
-

1l
| e |
—
|
~/ —
NS
N~
bS]
.
= Mo
)

(119)
Therefore, for 1 < p < co, we have
PV 1/p
Bow © < 1- [1_(5) ] . (120)
This step concludes the proof. O

Corollary 35. The following statements hold.
(i) Fore > 2, ﬁeg(B)(S) = 1. Thus, E;‘(B) is strictly convex.

(ii) For 0 < & < 2, Bpp(e) < 1. Thus, K;(B) is uniformly
convex. g

Corollary 36. For o = 1/2, ﬁ@;}(B)(s) = 5%\(3)(8).

8. Conclusion

The domain of Euler means E" of order r, the method A’,
and the generalized difference matrix B(r, s) in the sequence
spaces £, and £, investigated by Altay et al. [6], Aydin and
Basar [7], and Kirisci and Bagar [30], respectively. Since A is
the composition of A and B(r, s), our corresponding results
are much more general than the results given by Kirisci and
Bagar [30]. Additionally, we emphasize on some geometric
properties of the new space E;,\ (B).Itis obvious that the matrix
A is not comparable with the matrices E", A", or B(r,s). So,
the present results are new. As a natural continuation of this
paper, one can study the domain of the matrix A in Maddox’s

spaces €., (p), c(p), ¢y(p), and €(p).
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