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We introduce the sequence space ℓ𝜆
𝑝
(𝐵) of none absolute type which is a 𝑝-normed space and 𝐵𝐾 space in the cases 0 < 𝑝 < 1 and

1 ⩽ 𝑝 ⩽ ∞, respectively, and prove that ℓ𝜆
𝑝
(𝐵) and ℓ𝑝 are linearly isomorphic for 0 < 𝑝 ⩽ ∞. Furthermore, we give some inclusion

relations concerning the space ℓ𝜆
𝑝
(𝐵) and we construct the basis for the space ℓ𝜆

𝑝
(𝐵), where 1 ⩽ 𝑝 < ∞. Furthermore, we determine

the alpha-, beta- and gamma-duals of the space ℓ𝜆
𝑝
(𝐵) for 1 ⩽ 𝑝 ⩽ ∞. Finally, we investigate some geometric properties concerning

Banach-Saks type 𝑝 and give Gurarii’s modulus of convexity for the normed space ℓ𝜆
𝑝
(𝐵).

1. Introduction

From the summability theory perspective, the role played by
the algebraical, geometrical, and topological properties of the
new Banach spaces which are defined by the matrix domain
of triangle matrices in sequence spaces is well-known.

By 𝑤, we denote the space of all real or complex valued
sequences. Any vector subspace of 𝑤 is called a sequence
space.

A sequence space 𝜇 with a linear topology is called a 𝐾-
space provided that each of the maps 𝑝𝑖 : 𝜇 → C defined
by 𝑝𝑖(𝑥) = 𝑥𝑖 is continuous for all 𝑖 ∈ N, where C denotes
the complex field and N = {0, 1, 2, . . .}. A 𝐾-space is called
an 𝐹𝐾-space provided 𝜇 is a complete linear metric space.
An 𝐹𝐾-space whose topology is normable is called a 𝐵𝐾-
space (see [1]) which contains 𝜙, the set of all finitely nonzero
sequences.

We write ℓ∞, 𝑓, 𝑐, and 𝑐0 for the spaces of all
bounded, almost convergent, convergent, and null sequences,

respectively, which are 𝐵𝐾-spaces with the usual supnorm
defined by

‖𝑥‖∞ = sup
𝑘∈N

𝑥𝑘
 . (1)

Also, by ℓ𝑝 and ℓ1, we denote the spaces all 𝑝-absolutely
and absolutely convergent series, respectively, which are 𝐵𝐾-
spaces with the usual norm defined by

‖𝑥‖𝑝 = (∑

𝑘

𝑥𝑘

𝑝
)

1/𝑝

, (1 ⩽ 𝑝 < ∞) . (2)

Here, and in what follows, the summationwithout limits runs
from 0 to∞. Further, we write bs and cs for the spaces of all
bounded and convergent series, respectively, which are 𝐵𝐾-
spaces with their natural norm [2].

Let 𝜇 and 𝛾 be two sequence spaces and 𝐴 = (𝑎𝑛𝑘) be an
infinite matrix of real or complex numbers 𝑎𝑛𝑘, where 𝑛, 𝑘 ∈
N. Then, we say that 𝐴 defines a matrix transformation from
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𝜇 into 𝛾 and we denote it by writing 𝐴 : 𝜇 → 𝛾, if for every
sequence 𝑥 = (𝑥𝑘) ∈ 𝜇 the sequence 𝐴𝑥 = {(𝐴𝑥)𝑛}, the 𝐴-
transform of 𝑥 is in 𝛾, where

(𝐴𝑥)𝑛 = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘 ∀𝑛 ∈ N. (3)

The notation (𝜇 : 𝛾) denotes the class of all matrices 𝐴
such that 𝐴 : 𝜇 → 𝛾. Thus, 𝐴 ∈ (𝜇 : 𝛾) if and only if the
series on the right hand side of (3) converges for each 𝑛 ∈ N

and every 𝑥 ∈ 𝜇, and we have 𝐴𝑥 = {(𝐴𝑥)𝑛}𝑛∈N ∈ 𝛾 for all
𝑥 ∈ 𝜇. The matrix domain 𝜇𝐴 of an infinite matrix 𝐴 in a
sequence space 𝜇 is defined by

𝜇𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝜔 : 𝐴𝑥 ∈ 𝜇} . (4)

An infinite matrix 𝐴 = (𝑎𝑛𝑘) is said to be a triangle if 𝑎𝑛𝑛 ̸= 0

for all 𝑛 ∈ N and 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛. The study of matrix
domains of triangles has a special importance due to the
various properties which they have. For example, if 𝐴 is a
triangle and 𝜇 is a 𝐵𝐾-space, then 𝜇𝐴 is also a 𝐵𝐾-space with
the norm given by ‖𝑥‖𝜇𝐴 = ‖𝐴𝑥‖𝜇 for all 𝑥 ∈ 𝜇𝐴.

Throughout the paper, we denote the collection of all
finite subsets of N by F. Also, we write 𝑒(𝑘) for the sequence
whose only nonzero term is a 1 in the 𝑘th place for each 𝑘 ∈ N.

The approach constructing a new sequence space by
means of the matrix domain of a particular triangle has
recently been employed by several authors in many research
papers. For example, they introduced the sequence spaces
(ℓ∞)𝑁𝑞

and 𝑐𝑁𝑞 in [3], (ℓ𝑝)𝐶1 = 𝑋𝑝 and (ℓ∞)𝐶1 = 𝑋∞ in [4],
(𝑐0)𝐶1

= 𝑐0 and (𝑐)𝐶1 = 𝑐 in [5], (ℓ𝑝)𝐸𝑟 = 𝑒
𝑟

𝑝
and (ℓ∞)𝐸𝑟 = 𝑒

𝑟

∞

in [6], (ℓ𝑝)𝐴𝑟 = 𝑎
𝑟

𝑝
and (ℓ∞)𝐴𝑟 = 𝑎

𝑟

∞
in [7], (ℓ𝑝)Δ = 𝑏V𝑝 and

(ℓ∞)Δ = 𝑏V∞ in [8], 𝜇𝐺 = 𝑍(𝑢, V; 𝜇) in [9], (𝑐0)Λ = 𝑐
𝜆

0
and 𝑐Λ =

𝑐
𝜆 in [10], and (ℓ𝑝)Δ(𝑚) = ℓ𝑝(Δ

(𝑚)
) in [11], where 𝑁𝑞, 𝐶1, 𝑅

𝑡,
𝐸
𝑟, 𝐴𝑟, Λ, and Δ(𝑚) denote Nörlund, arithmetic, Riesz, Euler

means,𝐴𝑟 matrix, lambda matrix, and generalized difference
matrix, respectively, where 1 ⩽ 𝑝 < ∞.

Recently, there has been a lot of interest in investigating
geometric properties of sequence spaces besides topological
and some other usual properties. In the literature, there
are many papers concerning the geometric properties of
different sequence spaces. For example, in [12], Mursaleen
et al. studied some geometric properties of a normed Euler
sequence space. Recently, Şimşek and Karakaya [13] have
investigated the geometric properties of the sequence space
ℓ(𝑢, V, 𝑝) equipped with Luxemburg norm. Later, Demiriz
and Çakan [14] have studied some geometric properties of the
sequence space 𝑎𝑟

𝑝
(Δ). For further information on geometric

properties of sequence spaces the reader can refer to [15, 16].
The main purpose of the present paper is to introduce

the difference sequence spaces ℓ𝜆
𝑝
(𝐵) of nonabsolute type and

derive some related results. We also establish some inclusion
relations, where 0 < 𝑝 ⩽ ∞. Furthermore, we determine the
alpha-, beta- and gamma-duals of those spaces and construct
their bases. We characterize some classes of infinite matrices
concerning the spaces ℓ𝜆

𝑝
(𝐵) and ℓ𝜆

∞
(𝐵) for 1 ⩽ 𝑝 < ∞.

Finally, we investigate some geometric properties concerning
Banach-Saks type 𝑝 and give Gurarii’s modulus of convexity
for the normed space ℓ𝜆

𝑝
(𝐵).

2. The Sequence Spaces ℓ𝜆
𝑝
(𝐵) and ℓ𝜆

∞
(𝐵) of

Nonabsolute Type

This section is devoted to the examination of the basic topo-
logical properties of the sets ℓ𝜆

𝑝
(𝐵) and ℓ𝜆

∞
(𝐵). Let throughout

that (𝜆𝑘) be strictly increasing sequence of positive reals
tending to∞; that is

0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ , lim
𝑘→∞

𝜆𝑘 = ∞. (5)

Let us define the lambda matrix Λ = (𝜆𝑛𝑘) by

𝜆𝑛𝑘 =
{

{

{

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
, 0 ⩽ 𝑘 ⩽ 𝑛,

0, 𝑘 > 𝑛.

(6)

Recently, Mursaleen and Noman [17, 18] have studied the
sequence spaces ℓ𝜆

∞
and ℓ𝜆

𝑝
of nonabsolute type as follows:

ℓ
𝜆

𝑝
:= {𝑥 = (𝑥𝑘) ∈ 𝜔 : ∑

𝑛



𝑛

∑

𝑘=0

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
𝑥𝑘



𝑝

< ∞} ;

(0 < 𝑝 < ∞) ,

ℓ
𝜆

∞
:= {𝑥 = (𝑥𝑘) ∈ 𝜔 : sup

𝑛∈N



𝑛

∑

𝑘=0

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
𝑥𝑘



< ∞} .

(7)

With the notation of (4), we can redefine the spaces ℓ𝜆
∞

and
ℓ
𝜆

𝑝
by ℓ𝜆

𝑝
= (ℓ𝑝)Λ and ℓ𝜆

∞
= (ℓ∞)Λ, where 0 < 𝑝 < ∞.

Let 𝑟 and 𝑠 be non-zero real numbers, and define the
generalized difference matrix 𝐵(𝑟, 𝑠) = {𝑏𝑛𝑘(𝑟, 𝑠)} by

𝑏𝑛𝑘 (𝑟, 𝑠) =

{{

{{

{

𝑟, 𝑘 = 𝑛,

𝑠, 𝑘 = 𝑛 − 1,

0, otherwise,
(8)

for all 𝑛, 𝑘 ∈ N. The 𝐵(𝑟, 𝑠)-transform of a sequence 𝑥 = (𝑥𝑘)
is {𝐵(𝑟, 𝑠)𝑥}𝑘 = 𝑟𝑥𝑘 + 𝑠𝑥𝑘−1 for all 𝑘 ∈ N. We note that the
matrix𝐵(𝑟, 𝑠) can be reduced to the differencematrixΔ in the
case 𝑟 = 1 and 𝑠 = −1. So, the results related to the domain of
the matrix 𝐵(𝑟, 𝑠) are more general and comprehensive than
those of the matrix domain of Δ and include them.

Now, we introduce the new sequence spaces ℓ𝜆
𝑝
(𝐵) and

ℓ
𝜆

∞
(𝐵) as follows:

ℓ
𝜆

𝑝
(𝐵) := {𝑥 = (𝑥𝑘) ∈ 𝜔 :

∑
𝑛



𝑛

∑

𝑘=0

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
(𝑟𝑥𝑘 + 𝑠𝑥𝑘−1)



𝑝

< ∞} ;

(0 < 𝑝 < ∞) ,

ℓ
𝜆

∞
(𝐵) := {𝑥 = (𝑥𝑘) ∈ 𝜔 :

sup
𝑛∈N



𝑛

∑

𝑘=0

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
(𝑟𝑥𝑘 + 𝑠𝑥𝑘−1)



< ∞ } .

(9)
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By the notation of (4), we can redefine the spaces ℓ𝜆
∞
(𝐵) and

ℓ
𝜆

𝑝
(𝐵) as follows:

ℓ
𝜆

𝑝
(𝐵) = (ℓ

𝜆

𝑝
)
𝐵

(0 < 𝑝 < ∞) , ℓ
𝜆

∞
(𝐵) = (ℓ

𝜆

∞
)
𝐵
, (10)

where 𝐵 denotes the generalized difference matrix 𝐵(𝑟, 𝑠) =
{𝑏𝑛𝑘(𝑟, 𝑠)} defined by (8). Now, we may define the triangle
matrix Λ̂ = (�̂�𝑛𝑘) by

�̂�𝑛𝑘 =

{{{{{{

{{{{{{

{

𝑟 (𝜆𝑘 − 𝜆𝑘−1) + 𝑠 (𝜆𝑘+1 − 𝜆𝑘)

𝜆𝑛
, 𝑘 < 𝑛,

𝑟 (𝜆𝑛 − 𝜆𝑛−1)

𝜆𝑛
, 𝑘 = 𝑛,

0, 𝑘 > 𝑛.

(11)

Define the sequence 𝑦 = (𝑦𝑘) as the Λ̂-transform of a
sequence 𝑥 = (𝑥𝑘); that is,

𝑦𝑘 = (Λ̂𝑥)𝑘
=

𝑘−1

∑

𝑖=0

𝑟 (𝜆𝑖 − 𝜆𝑖−1) + 𝑠 (𝜆𝑖+1 − 𝜆𝑖)

𝜆𝑘
𝑥𝑖

+
𝑟 (𝜆𝑘 − 𝜆𝑘−1)

𝜆𝑘
𝑥𝑘 ∀𝑘 ∈ N.

(12)

Now, we can redefine the spaces ℓ𝜆
∞
(𝐵) and ℓ𝜆

𝑝
(𝐵) with the

notation of (4) as

ℓ
𝜆

𝑝
(𝐵) = (ℓ𝑝)Λ̂

(0 < 𝑝 < ∞) , ℓ
𝜆

∞
(𝐵) = (ℓ∞)Λ̂. (13)

Also, we derive from the equality (12) that

𝑦𝑘 =

𝑘

∑

𝑖=0

(𝜆𝑖 − 𝜆𝑖−1) (𝑟𝑥𝑖 + 𝑠𝑥𝑖−1)

𝜆𝑘
∀𝑘 ∈ N. (14)

Then, since the sequence spaces ℓ𝜆
𝑝
(𝐵) and ℓ𝑝 are linearly

isomorphic; that is, ℓ𝜆
𝑝
(𝐵) ≅ ℓ𝑝; it is trivial that the two-sided

implication “𝑥 ∈ ℓ
𝜆

𝑝
(𝐵) if and only if 𝑦 ∈ ℓ𝑝” holds, where

0 < 𝑝 ⩽ ∞.
We have the following result which is essential in the text.

Theorem 1. The following statements hold.

(a) If 0 < 𝑝 < 1, then ℓ𝜆
𝑝
(𝐵) is a complete 𝑝-normed space

with the 𝑝-norm ‖𝑥‖ℓ𝜆
𝑝
(𝐵) = ‖Λ̂(𝑥)‖𝑝; that is,

‖𝑥‖ℓ𝜆
𝑝
(𝐵) = ∑

𝑛


(Λ̂𝑥)

𝑛



𝑝

; (0 < 𝑝 < 1) . (15)

(b) If 1 ⩽ 𝑝 ⩽ ∞, then ℓ𝜆
𝑝
(𝐵) is 𝐵𝐾-space with the norm

‖𝑥‖ℓ𝜆
𝑝
(𝐵) = ‖Λ̂(𝑥)‖𝑝; that is,

‖𝑥‖ℓ𝜆
𝑝
(𝐵) = [∑

𝑛


(Λ̂𝑥)

𝑛



𝑝

]

1/𝑝

; (1 ⩽ 𝑝 < ∞) , (16)

‖𝑥‖ℓ𝜆
∞
(𝐵) = sup

𝑛∈N


(Λ̂𝑥)

𝑛


. (17)

Proof. (a) Let 0 < 𝑝 < 1. It is immediate by the fact ℓ𝜆
𝑝
(𝐵) ≅ ℓ𝑝

that ℓ𝜆
𝑝
(𝐵) is a complete 𝑝-normed linear space with the 𝑝-

norm ‖𝑥‖ℓ𝜆
𝑝
(𝐵) = ∑𝑛

|(Λ̂𝑥)𝑛|
𝑝.

(b) Since the sets ℓ𝑝 and ℓ∞ endowedwith the norms ‖ ⋅ ‖𝑝
and ‖ ⋅ ‖∞ are 𝐵𝐾-spaces (see [2, Example 7.3.2 (b), (c)]) and
the matrix Λ̂ is triangle, Theorem 4.3.2 of Wilansky [19, page
61] gives the fact that the spaces ℓ𝜆

𝑝
(𝐵) and ℓ𝜆

∞
(𝐵) are 𝐵𝐾-

spaces with the norms in (16) and (17), respectively.

One can easily check that the absolute property does not
hold on the space ℓ𝜆

𝑝
(𝐵); that is, ‖𝑥‖ℓ𝜆

∞
(𝐵) ̸= ‖|𝑥|‖ℓ𝜆

∞
(𝐵) for at

least one sequence in the space ℓ𝜆
𝑝
(𝐵), and this tells us that

ℓ
𝜆

𝑝
(𝐵) is nonabsolute type, where |𝑥| = (|𝑥𝑘|) and 0 < 𝑝 ⩽ ∞.
Now, onemay expect the similar result for the space ℓ𝜆

𝑝
(𝐵)

as was observed for the space ℓ𝑝 and ask the natural question:
Is not the space ℓ𝜆

𝑝
(𝐵) a Hilbert space with 𝑝 ̸= 2?The answer

is positive and is given by the following theorem.

Theorem 2. Except the case 𝑝 = 2, the space ℓ𝜆
𝑝
(𝐵) is not an

inner product space and hence it is not a Hilbert space, where
1 ⩽ 𝑝 < ∞.

Proof. We have to prove that the space ℓ𝜆
2
(𝐵) is the only

Hilbert space among the ℓ𝜆
𝑝
(𝐵) spaces for 1 ⩽ 𝑝 < ∞. Since

the space ℓ𝜆
𝑝
(𝐵) is a𝐵𝐾-space with the norm ‖𝑥‖

ℓ𝜆
2
(𝐵)
= ‖Λ̂𝑥‖2

by Part (b) of Theorem 1 and its norm can be obtained from
an inner product; that is,

‖𝑥‖ℓ𝜆
2
(𝐵)
= ⟨𝑥, 𝑥⟩

1/2
= ⟨Λ̂𝑥, Λ̂𝑥⟩

1/2 (18)

holds for every 𝑥 ∈ ℓ𝜆
2
(𝐵), the space ℓ𝜆

2
(𝐵) is a Hilbert space.

Let us define the sequences 𝑧 = (𝑧𝑘) and 𝑡 = (𝑡𝑘) by

𝑧𝑘 :=

{{{{{{{{{{{

{{{{{{{{{{{

{

1

𝑟
, 𝑘 = 0,

𝑟 − 𝑠

𝑟2
, 𝑘 = 1,

(
−𝑠

𝑟
)

𝑘−2 1

𝑟
[(
−𝑠

𝑟
) + (

−𝑠

𝑟
)

2

− (
𝜆1

𝜆2 − 𝜆1
)] ,

𝑘 ⩾ 2,

𝑡𝑘 :=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

1

𝑟
, 𝑘 = 0,

−
1

𝑟
(
𝜆1 + 𝜆0

𝜆1 − 𝜆0
+
𝑠

𝑟
) , 𝑘 = 1,

(
−𝑠

𝑟
)

𝑘−2 1

𝑟
[

𝜆1

𝜆2 − 𝜆1
+ (

𝑠

𝑟
)

2

+
𝑠

𝑟
(
𝜆1 + 𝜆0

𝜆1 − 𝜆0
)] ,

𝑘 ⩾ 2.

(19)

Then, we have

Λ̂𝑧 = (1, 1, 0, 0, . . .) , Λ̂𝑡 = (1, −1, 0, 0, . . .) . (20)
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Thus, it can easily be seen that

‖𝑧 + 𝑡‖
2

ℓ𝜆
𝑝
(𝐵)
+ ‖𝑧 − 𝑡‖

2

ℓ𝜆
𝑝
(𝐵)
= 8 ̸= 4 (2

2/𝑝
)

= 2 (‖𝑧‖
2

ℓ𝜆
𝑝
(𝐵)
+ ‖𝑡‖

2

ℓ𝜆
𝑝
(𝐵)
) ; (𝑝 ̸= 2) ,

(21)

that is, the norm of the space ℓ𝜆
𝑝
(𝐵) with 𝑝 ̸= 2 does not

satisfy the parallelogram equalitywhichmeans that this norm
cannot be obtained from an inner product. Hence, the space
ℓ
𝜆

𝑝
(𝐵) with 𝑝 ̸= 2 is a Banach space which is not a Hilbert

space. This completes the proof.

3. The Inclusion Relations

In this section, we give some inclusion relations between the
spaces ℓ𝑝 and ℓ∞ and the spaces ℓ𝜆

𝑝
(𝐵) and ℓ𝜆

∞
(𝐵), where 0 <

𝑝 < ∞. We essentially prove that ℓ∞ ⊂ ℓ
𝜆

∞
(𝐵) holds and

characterize the case in which the inclusion ℓ𝑝 ⊂ ℓ
𝜆

𝑝
(𝐵) holds

for 1 ⩽ 𝑝 < ∞.

Theorem 3. Let 0 < 𝑝 < 𝑠 < ∞. Then, the inclusions ℓ𝜆
𝑝
(𝐵) ⊂

ℓ
𝜆

𝑠
(𝐵) strictly holds.

Proof. Let 0 < 𝑝 < 𝑠 < ∞ and 𝑥 = (𝑥𝑘) ∈ ℓ
𝜆

𝑝
(𝐵). This

implies that Λ̂𝑥 ∈ ℓ𝑝. Since ℓ𝑝 ⊂ ℓ𝑠, Λ̂𝑥 ∈ ℓ𝑠. So, we have
ℓ
𝜆

𝑝
(𝐵) ⊂ ℓ

𝜆

𝑠
(𝐵).

Let us consider the sequence 𝑧 = (𝑧𝑘) with the aid of the
sequence 𝑥 = (𝑥𝑘) = {(𝑘 + 1)

−(𝑠+1−𝑝)
}
∞

𝑘=0
∈ ℓ𝑠 \ ℓ𝑝 defined by

𝑧𝑘 :=
1

𝑟

𝑘

∑

𝑗=0

(
−𝑠

𝑟
)

𝑘−𝑗 𝑗

∑

𝑖=𝑗−1

(−1)
𝑗−𝑖 𝜆𝑖

(𝜆𝑗 − 𝜆𝑗−1) (𝑖 + 1)
−(𝑠+1−𝑝)

,

∀𝑘 ∈ N.

(22)

Then, since Λ̂𝑧 = 𝑥 ∈ ℓ𝑠 \ ℓ𝑝, 𝑧 ∈ ℓ
𝜆

𝑠
(𝐵) \ ℓ

𝜆

𝑝
(𝐵) which shows

that the inclusion ℓ𝜆
𝑝
(𝐵) ⊂ ℓ

𝜆

𝑠
(𝐵) is strict.

Theorem 4. The inclusions ℓ𝜆
𝑝
(𝐵) ⊂ 𝑐

𝜆

0
(𝐵) ⊂ 𝑐

𝜆
(𝐵) ⊂ ℓ

𝜆

∞
(𝐵)

strictly hold.

Proof. The inclusion 𝑐𝜆
0
(𝐵) ⊂ 𝑐

𝜆
(𝐵) strictly holds byTheorem

3.1 of [20]. So, it is enough to show that the inclusions ℓ𝜆
𝑝
(𝐵) ⊂

𝑐
𝜆

0
(𝐵) and 𝑐𝜆(𝐵) ⊂ ℓ

𝜆

∞
(𝐵) are strict, where 0 < 𝑝 < ∞.

Assume that 𝑥 = (𝑥𝑘) ∈ ℓ
𝜆

𝑝
(𝐵). This means that Λ̂𝑥 ∈ ℓ𝑝.

Since ℓ𝑝 ⊂ 𝑐0, Λ̂𝑥 ∈ 𝑐0 which implies that 𝑥 ∈ 𝑐𝜆
0
(𝐵). Hence,

the inclusion ℓ𝜆
𝑝
(𝐵) ⊂ 𝑐

𝜆

0
(𝐵) holds for 0 < 𝑝 < ∞. Now, we

show that this inclusion is strict. Let 0 < 𝑝 < ∞ and define
the sequence 𝑥 = (𝑥𝑘) as follows:

𝑥𝑘 :=
1

𝑟

𝑘

∑

𝑗=0

(
−𝑠

𝑟
)

𝑘−𝑗 𝑗

∑

𝑖=𝑗−1

(−1)
𝑗−𝑖 𝜆𝑖

(𝜆𝑗 − 𝜆𝑗−1) (𝑖 + 1)
1/𝑝

for each 𝑘 ∈ N.

(23)

Then, we have for every 𝑛 ∈ N that

(Λ̂𝑥)
𝑛
:=

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) (𝑟𝑥𝑘 + 𝑠𝑥𝑘−1)

=
1

(𝑛 + 1)
1/𝑝
,

(24)

which shows that Λ̂𝑥 ∉ ℓ𝑝 but Λ̂𝑥 ∈ 𝑐0. Thus, the sequence 𝑥
is in 𝑐𝜆

0
(𝐵) but not in ℓ𝜆

𝑝
(𝐵). Hence, ℓ𝜆

𝑝
(𝐵) ⊂ 𝑐

𝜆

0
(𝐵) is strict.

Since 𝑐 ⊂ ℓ∞ holds, we have the inclusion 𝑐𝜆(𝐵) ⊂ ℓ𝜆
∞
(𝐵).

Let us define the sequence 𝑦 = (𝑦𝑘) by

𝑦𝑘 :=
1

𝑟

𝑘

∑

𝑗=0

(
−𝑠

𝑟
)

𝑘−𝑗 𝑗

∑

𝑖=𝑗−1

(−1)
𝑗−𝑖 𝜆𝑖

𝜆𝑗 − 𝜆𝑗−1
(−1)

𝑖

for each 𝑘 ∈ N.

(25)

Then, one can easily see for every 𝑛 ∈ N that

(Λ̂𝑦)
𝑛
:=

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) (𝑟𝑥𝑘 + 𝑠𝑥𝑘−1) = (−1)
𝑛
, (26)

which shows that Λ̂𝑦 ∈ ℓ∞ \ 𝑐. Thus, 𝑦 is in ℓ𝜆
∞
(𝐵) but not

in 𝑐𝜆(𝐵); that is, 𝑦 ∈ ℓ
𝜆

∞
(𝐵) \ 𝑐

𝜆
(𝐵). That is to say that the

inclusion 𝑐𝜆(𝐵) ⊂ ℓ
𝜆

∞
(𝐵) is strict. This completes the proof.

Theorem 5. The inclusion ℓ∞ ⊂ ℓ
𝜆

∞
(𝐵) strictly holds.

Proof. Let 𝑥 = (𝑥𝑘) ∈ ℓ∞. Then, we have

‖𝑥‖ℓ𝜆
∞
(𝐵) = sup

𝑛∈N


(Λ̂𝑥)

𝑛



= sup
𝑛∈N



1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) (𝑟𝑥𝑘 + 𝑠𝑥𝑘−1)



⩽ sup
𝑛∈N

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)
𝑠𝑥𝑘−1 + 𝑟𝑥𝑘



⩽ sup
𝑛∈N

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) (|𝑠|
𝑥𝑘−1

 + |𝑟|
𝑥𝑘
)

⩽ (|𝑟| + |𝑠|) ‖𝑥‖∞sup
𝑛∈N

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)

= (|𝑟| + |𝑠|) ‖𝑥‖∞,

(27)
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which means that 𝑥 = (𝑥𝑘) ∈ ℓ
𝜆

∞
(𝐵). So, the inclusion ℓ∞ ⊂

ℓ
𝜆

∞
(𝐵) holds. Furthermore, consider the sequence V = (V𝑘)

defined by

V𝑘 :=
1

𝑟

𝑘

∑

𝑖=0

(
−𝑠

𝑟
)

𝑘−𝑖

∀𝑘 ∈ N with

−
𝑠

𝑟


> 1. (28)

Clearly, V ∉ ℓ∞. Then, we obtain by (12) that

(Λ̂V)
𝑛
:=

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) = 1, ∀𝑛 ∈ N, (29)

which shows that Λ̂V = 𝑒 ∈ ℓ∞. This implies that V ∈

ℓ
𝜆

∞
(𝐵) \ ℓ∞. Hence, the inclusion ℓ∞ ⊂ ℓ

𝜆

∞
(𝐵) is strict and

this completes the proof.

Theorem 6. If the inclusion ℓ𝑝 ⊂ ℓ
𝜆

𝑝
(𝐵) holds, then (1/𝜆𝑛) ∈

ℓ𝑝, where 0 < 𝑝 < ∞.

Proof. Assume that the inclusion ℓ𝑝 ⊂ ℓ
𝜆

𝑝
(𝐵) holds and

consider sequence 𝑒(0) = (1, 0, 0, . . .) ∈ ℓ𝑝. So, by this
hypothesis, 𝑒(0) = (1, 0, 0, . . .) ∈ ℓ

𝜆

𝑝
(𝐵). Hence, Λ̂𝑒(0) ∈ ℓ𝑝.

Therefore,

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) (𝑟𝑥𝑘 + 𝑠𝑥𝑘−1) =
1

𝜆𝑛
𝜆0𝑟, (30)

and we obtain that

∑
𝑛


(Λ̂𝑒

(0)
)
𝑛



𝑝

=
𝜆0𝑟


𝑝
∑
𝑛

(
1

𝜆𝑛
)

𝑝

< ∞, (31)

which shows that (1/𝜆𝑛) ∈ ℓ𝑝. This completes the proof.

Lemma7 (see [17, Lemma4.11, page, 43]). If (1/𝜆𝑛) ∈ ℓ1, then

𝑀 = sup
𝑛∈N

∞

∑

𝑛=𝑘

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
< ∞. (32)

Theorem 8. If (1/𝜆𝑛) ∈ ℓ1, the inclusion ℓ𝑝 ⊂ ℓ
𝜆

𝑝
(𝐵) strictly

holds for 1 ⩽ 𝑝 < ∞.

Proof. Let 𝑥 = (𝑥𝑘) ∈ ℓ𝑝 for 1 < 𝑝 < ∞. Then, by applying
Hölder’s inequality, we derive from (12) that


(Λ̂𝑥)

𝑛


=



1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) (𝑟𝑥𝑘 + 𝑠𝑥𝑘−1)



⩽

𝑛

∑

𝑘=0

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛

𝑠𝑥𝑘−1 + 𝑟𝑥𝑘


=

𝑛

∑

𝑘=0

(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)

1/𝑝

×(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)

𝑝−1/𝑝

𝑠𝑥𝑘−1 + 𝑟𝑥𝑘


⩽ {

𝑛

∑

𝑘=0

[(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)

1/𝑝

𝑠𝑥𝑘−1 + 𝑟𝑥𝑘
]

𝑝

}

1/𝑝

×{

𝑛

∑

𝑘=0

[(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)

𝑝−1/𝑝

]

𝑞

}

1/𝑞

= [

𝑛

∑

𝑘=0

(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)
𝑠𝑥𝑘−1 + 𝑟𝑥𝑘


𝑝
]

1/𝑝

× [

𝑛

∑

𝑘=0

(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)]

𝑝−1/𝑝

,

(33)

which gives that

(Λ̂𝑥)

𝑛



𝑝

⩽

𝑛

∑

𝑘=0

(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)
𝑠𝑥𝑘−1 + 𝑟𝑥𝑘


𝑝
[

𝑛

∑

𝑘=0

(
𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛
)]

𝑝−1

.

(34)
By (34) and Lemma 7, we have

∑
𝑛


(Λ̂𝑥)

𝑛



𝑝

⩽ ∑
𝑛

1

𝜆𝑛

𝑛

∑

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)
𝑠𝑥𝑘−1 + 𝑟𝑥𝑘


𝑝

= ∑

𝑘

𝑠𝑥𝑘−1 + 𝑟𝑥𝑘

𝑝
∞

∑

𝑛=𝑘

𝜆𝑘 − 𝜆𝑘−1

𝜆𝑛

⩽ 𝑀∑

𝑘

𝑠𝑥𝑘−1 + 𝑟𝑥𝑘

𝑝
.

(35)

Therefore, combining the inequality (35) with Minkowski’s
inequality, we derive that

‖𝑥‖ℓ𝜆
𝑝
(𝐵) = (∑

𝑛


(Λ̂𝑥)

𝑛



𝑝

)

1/𝑝

⩽ 𝑀
1/𝑝

|𝑟| (∑

𝑘

𝑥𝑘

𝑝
)

1/𝑝

+𝑀
1/𝑝
|𝑠| (∑

𝑘

𝑥𝑘−1

𝑝
)

1/𝑝

⩽ 𝑀
1/𝑝

(|𝑟| + |𝑠|) ‖𝑥‖𝑝 < ∞.

(36)
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This shows that 𝑥 ∈ ℓ𝜆
𝑝
(𝐵). So, the inclusion ℓ𝑝 ⊂ ℓ

𝜆

𝑝
(𝐵) holds.

Now, let us consider the sequence V = (V𝑘) defined by

V𝑘 :=

{{{

{{{

{

1

𝑟
, 𝑘 = 0,

−
1

𝑟
(

𝜆0

𝜆1 − 𝜆0
+
𝑠

𝑟
) (−

𝑠

𝑟
)

𝑘−1

, 𝑘 ⩾ 1,

(37)

with | − 𝑠| > |𝑟|. Then, since Λ̂V = 𝑒
(0)

∈ ℓ𝑝, one can
immediately observe that V is in ℓ𝜆

𝑝
(𝐵) but not in ℓ𝑝. That

is, V ∈ ℓ
𝜆

𝑝
(𝐵) \ ℓ𝑝. Thus, we have showed that the inclusion

ℓ𝑝 ⊂ ℓ
𝜆

𝑝
(𝐵) is strict. Similarly, the inclusion ℓ𝑝 ⊂ ℓ

𝜆

𝑝
(𝐵) also

strictly holds in the case 𝑝 = 1, so we omit the details. This
completes the proof.

Theorem 9. The sequence spaces ℓ∞ and ℓ𝜆
𝑝
(𝐵) do not include

each other.

Proof. It is clear by Theorem 8 that the sequence spaces ℓ∞
and ℓ𝜆

𝑝
(𝐵) are not disjointed. Let us consider the sequence V =

(V𝑘) defined by (37).Then, V is in ℓ𝜆
𝑝
(𝐵) but not in ℓ∞. Now, let

us define the sequence 𝑥 = (𝑥𝑘) := {(1/𝑟)∑
𝑘

𝑖=0
(−𝑠 /𝑟)

𝑘−𝑖
}
𝑘∈N

with | − 𝑠/𝑟| < 1. Then, since Λ̂𝑥 = 𝑒 ∉ ℓ𝑝, 𝑥 is in ℓ∞ but not
in ℓ𝜆

𝑝
(𝐵). This completes the proof.

4. The Basis for the Space ℓ𝜆
𝑝
(𝐵)

In this section, we begin with defining the concept of the
Schauder basis for a normed sequence space and then give the
basis of the sequence space ℓ𝜆

𝑝
(𝐵), where 1 ⩽ 𝑝 < ∞. Now,

we define the Schauder basis of a normed space. If a normed
sequence space 𝜇 contains a sequence (𝑏𝑛) with the property
that for every 𝑥 ∈ 𝜇 there is a unique sequence of scalars (𝛼𝑛)
such that

lim
𝑛→∞

𝑥 − (𝛼0𝑏0 + 𝛼1𝑏1 + ⋅ ⋅ ⋅ + 𝛼𝑛𝑏𝑛)
 = 0, (38)

then (𝑏𝑛) is called a Schauder basis (or briefly basis) for 𝜇. The
series∑

𝑘
𝛼𝑘𝑏𝑘 which has the sum 𝑥 is called the expansion of

𝑥 with respect to (𝑏𝑛), and written as 𝑥 = ∑
𝑘
𝛼𝑘𝑏𝑘.

Theorem 10. The following statements hold.

(i) The space ℓ𝜆
∞
(𝐵) has no Schauder basis.

(ii) Define the sequence 𝑏(𝑘) = {𝑏(𝑘)
𝑛
}𝑛∈N of elements of the

space ℓ𝜆
𝑝
(𝐵) by

𝑏
(𝑘)

𝑛
=

{{{{{{

{{{{{{

{

(
−𝑠

𝑟
)

𝑛−𝑘

[
𝜆𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+

𝜆𝑘

𝑠 (𝜆𝑘+1 − 𝜆𝑘)
] , 𝑘 < 𝑛,

𝜆𝑛

𝑟 (𝜆𝑛 − 𝜆𝑛−1)
, 𝑘 = 𝑛,

0, 𝑘 > 𝑛,

(39)

for all 𝑛, 𝑘 ∈ N. Then, the sequence {𝑏(𝑘)
𝑛
} is a basis for the space

ℓ
𝜆

𝑝
(𝐵) and every 𝑥 ∈ ℓ𝜆

𝑝
(𝐵) has a unique representation of the

form

𝑥 = ∑

𝑘

(Λ̂𝑥)
𝑘
𝑏
(𝑘)
. (40)

Proof. (i) It is known that the matrix domain 𝜇𝐴 of a normed
sequence space 𝜇 has a basis if and only if 𝜇 has a basis
whenever 𝐴 = (𝑎𝑛𝑘) is a triangle [21, Remark 2.4]. Since the
space ℓ∞ has no Schauder basis, ℓ𝜆

∞
(𝐵) has no Schauder basis.

(ii) Let 1 ⩽ 𝑝 < ∞. It is clear that 𝑏(𝑘) = {𝑏
(𝑘)

𝑛
} ⊂ ℓ

𝜆

𝑝
(𝐵),

since Λ̂𝑏(𝑘) = 𝑒
(𝑘)

∈ ℓ𝑝 for all 𝑘 ∈ N. Furthermore, let 𝑥 ∈

ℓ
𝜆

𝑝
(𝐵) be given. For every nonnegative integer𝑚, we put

𝑥
[𝑚]

=

𝑚

∑

𝑘=0

(Λ̂𝑥)
𝑘
𝑏
(𝑘)
. (41)

Then, by applying Λ̂ to (41), we get that

Λ̂𝑥
[𝑚]

=

𝑚

∑

𝑘=0

(Λ̂𝑥)
𝑘
Λ̂𝑏

(𝑘)
=

𝑚

∑

𝑘=0

(Λ̂𝑥)
𝑘
𝑒
(𝑘)
, (42)

and therefore, we have

{Λ̂ (𝑥 − 𝑥
[𝑚]
)}
𝑛
= {

0, 0 ⩽ 𝑛 ⩽ 𝑚,

(Λ̂𝑥)
𝑛
, 𝑛 > 𝑚,

(43)

for all 𝑛,𝑚 ∈ N. Now, for any given 𝜖 > 0, there is a
nonnegative integer𝑚0 such that

∞

∑

𝑛=𝑚0+1


(Λ̂𝑥)

𝑛



𝑝

< (
𝜖

2
)

𝑝

. (44)

Thus, we have for every𝑚 ⩾ 𝑚0 that

𝑥 − 𝑥

[𝑚]ℓ𝜆
𝑝
(𝐵)

= (

∞

∑

𝑛=𝑚+1


(Λ̂𝑥)

𝑛



𝑝

)

1/𝑝

⩽ (

∞

∑

𝑛=𝑚0+1


(Λ̂𝑥)

𝑛



𝑝

)

1/𝑝

⩽
𝜖

2
< 𝜖,

(45)

for all 𝑚 ⩾ 𝑚0 which proves that 𝑥 ∈ ℓ𝜆
𝑝
(𝐵) is represented as

in (40).
Let us show that the uniqueness of representation for

𝑥 ∈ ℓ
𝜆

𝑝
(𝐵) is given by (40). Suppose, on the contrary, that

there exists a representation 𝑥 = ∑
𝑘
𝜇𝑘(𝑥)𝑏

(𝑘). Since the
transformation 𝑇 defined from ℓ

𝜆

𝑝
(𝐵) to ℓ𝑝 by 𝑇𝑥 = Λ̂𝑥 = 𝑦

is continuous, we have

(Λ̂𝑥)
𝑘
=∑

𝑛

𝜇𝑛{Λ̂𝑏
(𝑘)
}
𝑛
=∑

𝑛

𝜇𝑛 (𝑥) 𝛿𝑛𝑘 = 𝛼𝑘 (𝑥) ; 𝑘 ∈ N,

(46)

which contradicts the assumption that (Λ̂𝑥)𝑘 ̸= 𝛼𝑘(𝑥) for all
𝑘 ∈ N. That is to say that the representation (40) of 𝑥 ∈ ℓ𝜆

𝑝
(𝐵)

is unique.
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5. The Alpha-, Beta- and Gamma-Duals of
the Space ℓ𝜆

𝑝
(𝐵) and ℓ𝜆

∞
(𝐵)

In this section, we give some theorems determining the
alpha-, beta- and gamma-duals of the spaces ℓ𝜆

𝑝
(𝐵) and

ℓ
𝜆

∞
(𝐵). We start with the definition of the alpha-, beta- and

gamma-duals of a sequence space.
If 𝑥 and 𝑦 are sequences and 𝑋 and 𝑌 are subsets of 𝜔,

then we write 𝑥 ⋅𝑦 = (𝑥𝑘𝑦𝑘)
∞

𝑘=0
, 𝑥

−1
∗𝑌 = {𝑎 ∈ 𝜔 : 𝑎 ⋅ 𝑥 ∈ 𝑌},

and

𝑥 ⋅ 𝑦 = (𝑥𝑘𝑦𝑘)
∞

𝑘=0
, 𝑥

−1
∗ 𝑌 = {𝑎 ∈ 𝜔 : 𝑎 ⋅ 𝑥 ∈ 𝑌} ,

𝑀 (𝑋, 𝑌) = ⋂

𝑥∈𝑋

𝑥
−1
∗ 𝑌 = {𝑎 : 𝑎 ⋅ 𝑥 ∈ 𝑌 ∀𝑥 ∈ 𝑋} ,

(47)

for themultiplier space of𝑋 and𝑌. One can easily observe for
a sequence space𝑍with𝑌 ⊂ 𝑍 and𝑍 ⊂ 𝑋 that the inclusions
𝑀(𝑋,𝑌) ⊂ 𝑀(𝑋,𝑍) and 𝑀(𝑋,𝑌) ⊂ 𝑀(𝑍, 𝑌) hold. The
alpha-, beta- and gamma-duals of a sequence space, which
are, respectively, denoted by𝑋𝛼,𝑋𝛽, and𝑋𝛾 are defined by

𝑋
𝛼
=𝑀(𝑋, ℓ1) , 𝑋

𝛽
=𝑀(𝑋, cs) , 𝑋

𝛾
=𝑀(𝑋, bs) .

(48)

It is obvious that 𝑋𝛼
⊂ 𝑋

𝛽
⊂ 𝑋

𝛾. Also, it can be easily
seen that the inclusions 𝑋𝛼

⊂ 𝑌
𝛼, 𝑋𝛽

⊂ 𝑌
𝛽, and 𝑋𝛾

⊂ 𝑌
𝛾

hold, whenever 𝑌 ⊂ 𝑋. Now, we may begin with quoting
the following lemmas [22] which are needed in proving
Theorems 14–16.

Lemma 11. 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝 : ℓ1) if and only if

(i) For 1 < 𝑝 ⩽ ∞

sup
𝐹∈F

∑

𝑘



∑

𝑛∈𝐹

𝑎𝑛𝑘



𝑞

< ∞. (49)

(ii) For 𝑝 = 1

sup
𝑘∈N

∑
𝑛

𝑎𝑛𝑘
 < ∞. (50)

Lemma 12. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) Let 1 < 𝑝 < ∞. Then, 𝐴 ∈ (ℓ𝑝 : 𝑐) if and only if

lim
𝑛→∞

𝑎𝑛𝑘 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑖𝑥𝑒𝑑 𝑘 ∈ N, (51)

sup
𝑛∈N

∑

𝑘

𝑎𝑛𝑘

𝑞
< ∞. (52)

(ii) 𝐴 ∈ (ℓ1 : 𝑐) if and only if (51) holds and

sup
𝑛,𝑘∈N

𝑎𝑛𝑘
 < ∞. (53)

(iii) 𝐴 ∈ (ℓ∞ : 𝑐) if and only if (51) holds and

sup
𝑛∈N

∑

𝑘

𝑎𝑛𝑘
 < ∞,

lim
𝑛→∞

∑

𝑘


𝑎𝑛𝑘 − lim

𝑛→∞
𝑎𝑛𝑘


= 0.

(54)

Lemma 13. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) Let 1 < 𝑝 ⩽ ∞. Then, 𝐴 ∈ (ℓ𝑝 : ℓ∞) if and only if (52)
holds

(ii) 𝐴 ∈ (ℓ1 : ℓ∞) if and only if (53) holds.

Theorem 14. Define the sets 𝑡𝜆
𝑞
and 𝑡𝜆

∞
by

𝑡
𝜆

𝑞
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup

𝐹∈F

∑

𝑘



∑

𝑛∈𝐹

𝑡
𝜆

𝑛𝑘



𝑞

< ∞} ,

𝑡
𝜆

∞
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup

𝑘∈N

∑
𝑛


𝑡
𝜆

𝑛𝑘


< ∞} .

(55)

Then, [ℓ𝜆
1
(𝐵)]

𝛼
= 𝑡

𝜆

∞
and [ℓ𝜆

𝑝
(𝐵)]

𝛼
= 𝑡

𝜆

𝑞
for 1 < 𝑝 ⩽ ∞, where

the matrix 𝑇 = (𝑡
𝜆

𝑛𝑘
) is defined via the sequence 𝑎 = (𝑎𝑛) ∈ 𝑤

by

𝑡
𝜆

𝑛𝑘
=

{{{{{{{{

{{{{{{{{

{

(
−𝑠

𝑟
)

𝑛−𝑘

[
𝜆𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+

𝜆𝑘

𝑠 (𝜆𝑘+1 − 𝜆𝑘)
] 𝑎𝑛,

0 ⩽ 𝑘 ⩽ 𝑛 − 1,

𝜆𝑛

𝑟 (𝜆𝑛 − 𝜆𝑛−1)
𝑎𝑛, 𝑘 = 𝑛,

0, 𝑘 > 𝑛,

(56)

for all 𝑛, 𝑘 ∈ N.

Proof. Let 𝑎 = (𝑎𝑛) ∈ 𝑤 and 1 < 𝑝 < ∞. Then, by using (12),
we immediately derive for every 𝑛 ∈ N that

𝑎𝑛𝑥𝑛 =
1

𝑟

𝑛

∑

𝑘=0

(
−𝑠

𝑟
)

𝑛−𝑘 𝑘

∑

𝑖=𝑘−1

(−1)
𝑘−𝑖 𝜆𝑖

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑖𝑎𝑛 = (𝑇𝑦)𝑛.

(57)

Thus, we observe by (57) that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1 whenever 𝑥 =
(𝑥𝑘) ∈ ℓ

𝜆

𝑝
(𝐵) if and only if 𝑇𝑦 ∈ ℓ1 whenever 𝑦 = (𝑦𝑘) ∈ ℓ𝑝.

This means that 𝑎 = (𝑎𝑘) ∈ [ℓ
𝜆

𝑝
(𝐵)]

𝛼 if and only if 𝑇 ∈ (ℓ𝑝 :

ℓ1). Therefore, we get by Lemma 11 with 𝑇 instead of 𝐴 that
𝑎 = (𝑎𝑘) ∈ [ℓ

𝜆

𝑝
(𝐵)]

𝛼 if and only if

sup
𝐹∈F

∑

𝑘



∑

𝑛∈𝐹

𝑡
𝜆

𝑛𝑘



𝑞

< ∞, (58)

which leads us to the consequence that [ℓ𝜆
𝑝
(𝐵)]

𝛼
= 𝑡

𝜆

𝑞
, for 1 <

𝑝 ⩽ ∞. Similarly, we get from (57) that 𝑎 = (𝑎𝑘) ∈ [ℓ
𝜆

1
(𝐵)]

𝛼
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if and only if 𝑇 ∈ (ℓ1 : ℓ1) which is equivalent to (50) of
Lemma 11 that

sup
𝑘∈N

∑
𝑛


𝑡
𝜆

𝑛𝑘


< ∞. (59)

Theorem 15. Define the sets 𝑑𝜆
1
, 𝑑𝜆

2
, 𝑑𝜆

3
, 𝑑𝜆

4
, and 𝑒𝜆

𝑞
as follows:

𝑑
𝜆

1
=
{

{

{

𝑎 = (𝑎𝑘) ∈ 𝜔 :

∞

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑗 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ N
}

}

}

,

𝑒
𝜆

𝑞
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup

𝑛∈N

𝑛−1

∑

𝑘=0

𝑎𝑘 (𝑛)

𝑞
< ∞} ,

𝑑
𝜆

2
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup

𝑘,𝑛∈N

𝑎𝑘 (𝑛)
 < ∞} ,

𝑑
𝜆

3
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : lim

𝑛→∞
∑

𝑘

𝑎𝑘 (𝑛)
 = ∑

𝑘

𝑎𝑘
} ,

𝑑
𝜆

4
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup

𝑘∈N



𝜆𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
𝑎𝑘



< ∞} ,

(60)

where

𝑎𝑘 (𝑛) = 𝜆𝑘

{

{

{

𝑎𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)

+ [
1

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+

1

𝑠 (𝜆𝑘+1 − 𝜆𝑘)
]

×

𝑛

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑗

}

}

}

for 𝑘 < 𝑛,

𝑎𝑘 = lim
𝑛→∞

𝑎𝑘 (𝑛) .

(61)

Then,

[ℓ
𝜆

𝑝
(𝐵)]

𝛽

=

{{

{{

{

𝑒
𝜆

1
∩ 𝑑

𝜆

4
∩ 𝑑

𝜆

3
, 𝑝 = ∞,

𝑒
𝜆

𝑞
∩ 𝑑

𝜆

1
∩ 𝑑

𝜆

4
, 1 < 𝑝 < ∞,

𝑑
𝜆

1
∩ 𝑑

𝜆

2
∩ 𝑑

𝜆

4
, 𝑝 = 1.

(62)

Proof. Let us consider the equality

𝑛

∑

𝑘=0

𝑎𝑘𝑥𝑘

=

𝑛

∑

𝑘=0

{

{

{

1

𝑟

𝑘

∑

𝑗=0

(
−𝑠

𝑟
)

𝑘−𝑗

[

[

𝑗

∑

𝑖=𝑗−1

(−1)
𝑗−𝑖 𝜆𝑖

𝜆𝑗 − 𝜆𝑗−1
𝑦𝑖
]

]

}

}

}

𝑎𝑘

=

𝑛−1

∑

𝑘=0

𝜆𝑘
[

[

(
1

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+

1

𝑠 (𝜆𝑘+1 − 𝜆𝑘)
)

×

𝑛

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑗
]

]

𝑦𝑘 +
𝑎𝑛

𝑟 (𝜆𝑛 − 𝜆𝑛−1)
𝑦𝑛

=

𝑛−1

∑

𝑘=0

𝑎𝑘 (𝑛) 𝑦𝑘 +
𝑎𝑛

𝑟 (𝜆𝑛 − 𝜆𝑛−1)
𝑦𝑛

= (𝐷𝑦)
𝑛

∀𝑛 ∈ N,

(63)

where the matrix𝐷 = (𝑑
𝜆

𝑛𝑘
) is defined for all 𝑛, 𝑘 ∈ N by

𝑑
𝜆

𝑛𝑘
=

{{{{

{{{{

{

𝑎𝑘 (𝑛) , 0 ⩽ 𝑘 ⩽ 𝑛 − 1,

𝜆𝑛

𝑟 (𝜆𝑛 − 𝜆𝑛−1)
𝑎𝑛, 𝑘 = 𝑛,

0, 𝑘 > 𝑛.

(64)

Then,we deduce from (63)with Lemma 12 that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈
cs whenever 𝑥 = (𝑥𝑘) ∈ ℓ𝜆𝑝(𝐵) if and only if𝐷𝑦 ∈ 𝑐 whenever
𝑦 = (𝑦𝑘) ∈ ℓ𝑝. This means that 𝑎 = (𝑎𝑘) ∈ [ℓ

𝜆

𝑝
(𝐵)]

𝛽 if and
only if 𝐷 ∈ (ℓ𝑝 : 𝑐), where 1 ⩽ 𝑝 ⩽ ∞. Therefore, we derive
from (51) and (52) that

∞

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑗 exists for each 𝑘 ∈ N,

sup
𝑛∈N

𝑛−1

∑

𝑘

𝑎𝑘 (𝑛)

𝑞
< ∞,

sup
𝑘∈N



𝜆𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
𝑎𝑘



< ∞,

(65)

which shows that [ℓ𝜆
𝑝
(𝐵)]

𝛽
= 𝑒

𝜆

𝑞
∩ 𝑑

𝜆

1
∩ 𝑑

𝜆

4
for 1 < 𝑝 < ∞.

Since beta-dual of the space ℓ𝜆
𝑝
(𝐵) for the cases 𝑝 = 1 and

𝑝 = ∞ can be similarly computed, we omit the details. This
completes the proof.

Theorem 16. Let 1 < 𝑝 ⩽ ∞. Then, [ℓ𝜆
𝑝
(𝐵)]

𝛾
= {

𝑑
𝜆

2
∩ 𝑑
𝜆

4
, 𝑝 = 1,

𝑒
𝜆

1
∩ 𝑑
𝜆

4
, 𝑝 > 1.

Proof. This may be obtained in the similar way used in the
proof ofTheorem 15 with Lemma 13 instead of Lemma 12. So,
we omit the details.
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6. Certain Matrix Mapping Related to
the Spaces ℓ𝜆

𝑝
(𝐵) and ℓ𝜆

∞
(𝐵)

In this section, we characterize the matrix classes (ℓ𝜆
𝑝
(𝐵) :

ℓ∞), (ℓ
𝜆

𝑝
(𝐵) : 𝑐0), (ℓ

𝜆

𝑝
(𝐵) : 𝑐), (ℓ𝜆

𝑝
(𝐵) : ℓ1), (ℓ

𝜆

1
(𝐵) : ℓ𝑝),

(ℓ
𝜆

∞
(𝐵) : ℓ𝑝), where 1 ⩽ 𝑝 ⩽ ∞. Also, by means of a given

basic lemma, we derive the characterizations of certain other
classes. Since the characterization of matrix mapping on the
space ℓ𝜆

𝑝
(𝐵) can be proved in a similar way, we omit the proof

for the cases 𝑝 = 1 and 𝑝 = ∞ and consider only the case
1 < 𝑝 < ∞ in the proofs of theorems given in this section.

For an infinite matrix 𝐴 = (𝑎𝑛𝑘), we write for brevity that

𝑎𝑛𝑘 (𝑚)

= 𝜆𝑘

{

{

{

𝑎𝑛𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+ [

1

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+

1

𝑠 (𝜆𝑘+1 − 𝜆𝑘)
]

×

𝑚

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑛𝑗

}

}

}

if 𝑘 < 𝑚,

𝑎𝑛𝑘

= 𝜆𝑘

{

{

{

𝑎𝑛𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+ [

1

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
+

1

𝑠 (𝜆𝑘+1 − 𝜆𝑘)
]

×

∞

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑛𝑗

}

}

}

,

𝑎 (𝑛, 𝑘,𝑚) =
1

𝑚 + 1

𝑚

∑

𝑗=0

𝑎𝑛+𝑗,𝑘 ∀𝑛, 𝑘,𝑚 ∈ N.

(66)

Now, we may begin with quoting the following lemmas (see
[22]) which are needed for proving our main results.

Lemma 17. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) 𝐴 ∈ (ℓ1 : 𝑐0) if and only if sup𝑛,𝑘∈N|𝑎𝑛𝑘| < ∞ and

lim
𝑛→∞

𝑎𝑛𝑘 = 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑖𝑥𝑒𝑑 𝑘 ∈ N. (67)

(ii) Let 1 < 𝑝 < ∞. Then, 𝐴 ∈ (ℓ𝑝 : 𝑐0) if and only if (67)
holds and sup

𝑘∈N∑𝑛
|𝑎𝑛𝑘|

𝑞
< ∞.

(iii) 𝐴 ∈ (ℓ∞ : 𝑐0) if and only if (67) holds and ∑
𝑘
|𝑎𝑛𝑘| is

uniformly convergent.

Lemma 18. Let 1 ⩽ 𝑝 < ∞. Then,𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1 : ℓ𝑝) if and
only if sup

𝑛∈N∑𝑘
|𝑎𝑛𝑘|

𝑞
< ∞.

Lemma 19. Let 1 < 𝑝 < ∞. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ∞ : ℓ𝑝) if
and only if sup

𝐾∈F∑𝑛
| ∑

𝑘∈𝐾
𝑎𝑛𝑘|

𝑝
< ∞.

Theorem 20. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) Let 1 < 𝑝 < ∞. Then, 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ∞) if and only if

∞

∑

𝑗=𝑘+1

(
−𝑠

𝑟
)

𝑘−𝑗

𝑎𝑗 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑖𝑥𝑒𝑑 𝑘 ∈ N, (68)

{
𝜆𝑘

𝑟 (𝜆𝑘 − 𝜆𝑘−1)
𝑎𝑛𝑘} ∈ ℓ∞ 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑛 ∈ N, (69)

sup
𝑘∈N

∑
𝑛

𝑎𝑛𝑘

𝑞
< ∞. (70)

(𝑎𝑛𝑘)𝑘∈N ∈ 𝑒
𝜆

𝑞
∩ 𝑑

𝜆

1
∩ 𝑑

𝜆

4
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 ∈ N. (71)

(ii) 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : ℓ∞) if and only if (68) and (69) hold and

sup
𝑛,𝑘∈N

𝑎𝑛𝑘
 < ∞. (72)

(iii) 𝐴 ∈ (ℓ
𝜆

∞
(𝐵) : ℓ∞) if and only if (68) and (69) hold and

sup
𝑘∈N

∑
𝑛

𝑎𝑛𝑘
 < ∞, (73)

lim
𝑚→∞

∑
𝑛

𝑎𝑛𝑘 (𝑚)
 = ∑

𝑛

𝑎𝑛𝑘
 . (74)

Proof. (i) Assume that the conditions (68)–(71) hold and take
any 𝑥 ∈ ℓ

𝜆

𝑝
(𝐵), where 1 < 𝑝 < ∞. Then, we have by

Theorem 16 that (𝑎𝑛𝑘)𝑘∈N ∈ [ℓ
𝜆

𝑝
(𝐵)]

𝛽 for all 𝑛 ∈ N and this
implies the existence of𝐴𝑥. Also, it is clear that the associated
sequence 𝑦 = (𝑦𝑘) is in the space ℓ𝑝 ⊂ 𝑐0.

Let us now consider the following equality derived by
using relation (12) from𝑚th partial sumof the series∑

𝑘
𝑎𝑛𝑘𝑥𝑘

as follows:
𝑚

∑

𝑘=0

𝑎𝑛𝑘𝑥𝑘 =

𝑚−1

∑

𝑘=0

𝑎𝑛𝑘 (𝑚) 𝑦𝑘 +
𝜆𝑚

𝑟 (𝜆𝑚 − 𝜆𝑚−1)
𝑎𝑛𝑚𝑦𝑚

∀𝑛,𝑚 ∈ N.

(75)

Therefore, by using (68)–(70), we obtain from (75) as 𝑚 →

∞ that

∑

𝑘

𝑎𝑛𝑘𝑥𝑘 = ∑

𝑘

𝑎𝑛𝑘𝑦𝑘 ∀𝑛 ∈ N. (76)

Furthermore, since the matrix 𝐴 = (𝑎𝑛𝑘) is in the class
(ℓ𝑝 : ℓ∞) by Lemma 13, we have 𝐴𝑦 ∈ ℓ∞. Now, by passing
to supremum over 𝑛 in (76), we derive by applying Hölder’s
inequality that

‖𝐴𝑥‖∞ = sup
𝑛∈N



∑

𝑘

𝑎𝑛𝑘𝑥𝑘



⩽ sup
𝑛∈N

(∑

𝑘

𝑎𝑛𝑘

𝑞
)

1/𝑞

(∑

𝑘

𝑦𝑘

𝑝
)

1/𝑝

< ∞,

(77)

which shows that 𝐴𝑥 ∈ ℓ∞ and hence 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ∞).
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Conversely, assume that 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ∞),

where 1 < 𝑝 < ∞. Then, since (𝑎𝑛𝑘)𝑘∈N ∈ [ℓ
𝜆

𝑝
(𝐵)]

𝛽 for all
𝑛 ∈ N by the hypothesis, the necessity of (71) is obvious. Since
(𝑎𝑛𝑘)𝑘∈N ∈ [ℓ

𝜆

𝑝
(𝐵)]

𝛽, (76) holds for all sequences 𝑥 ∈ ℓ
𝜆

𝑝
(𝐵)

and 𝑦 ∈ ℓ𝑝 which are connected by relation (12). Let us now
consider the continuous linear functionals 𝑓𝑛 on ℓ

𝜆

𝑝
(𝐵) by

𝑓𝑛 (𝑥) = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘 ∀𝑛 ∈ N. (78)

Then, since ℓ𝜆
𝑝
(𝐵) and ℓ𝑝 are norm isomorphic, it should

follow with (76) that

𝑓𝑛
 =


𝐴𝑛

𝑞
= (∑

𝑘

𝑎𝑛𝑘

𝑞
)

1/𝑞

, (79)

for all 𝑛 ∈ N. This shows that the functionals defined by
the rows of 𝐴 on ℓ

𝜆

𝑝
(𝐵) are pointwise bounded. Thus, we

deduce by Banach-Steinhaus theorem that these functionals
are uniformly bounded, which yields that there exists a
constant 𝐾 > 0 such that ‖𝑓𝑛‖ ⩽ 𝐾 for all 𝑛 ∈ N. This shows
the necessity of the condition (70) which completes the proof
of part (i).

Theorem 21. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : 𝑐) if and only if (68) and (69) hold and

lim
𝑛→∞

𝑎𝑛𝑘 = 𝛼𝑘 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ N. (80)

(ii) Let 1 < 𝑝 < ∞. Then, 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : 𝑐) if and only if

(68)–(71) hold and (80) also holds.
(iii) 𝐴 ∈ (ℓ

𝜆

∞
(𝐵) : 𝑐) if and only if (68), (69), and (74) hold,

and

lim
𝑛→∞

∑

𝑘

𝑎𝑛𝑘 − 𝛼𝑘
 = 0. (81)

Proof. We consider only part (ii). Assume that 𝐴 satisfies the
conditions (68)–(71) and (80), and 𝑥 ∈ ℓ𝜆

𝑝
(𝐵), where 1 < 𝑝 <

∞.Then,𝐴𝑥 exists and by using (80), we have for every 𝑘 ∈ N

that |𝑎𝑛𝑘|
𝑞
→ |𝛼𝑘|

𝑞 as 𝑛 → ∞ which leads us with (70) to
the following inequality:

𝑘

∑

𝑗=0


𝛼𝑗


𝑞

⩽

𝑘

∑

𝑗=0


𝑎𝑛𝑗


𝑞

= 𝑀 < ∞, (82)

which holds for every 𝑘 ∈ N. This shows that (𝛼𝑘) ∈ ℓ𝑞. Since
𝑥 ∈ ℓ

𝜆

𝑝
(𝐵), we have 𝑦 ∈ ℓ𝑝. Therefore, we derive by applying

Hölder’s inequality that (𝛼𝑘𝑦𝑘) ∈ ℓ1 for each 𝑦 ∈ ℓ𝑝.
Now, for any given 𝜖 > 0, choose a fixed 𝑘0 ∈ N such that

(

𝑘

∑

𝑘=𝑘0+1

𝑦𝑘

𝑝
)

1/𝑝

⩽
𝜖

4𝑀1/𝑞
. (83)

Then, it follows (80) that there is𝑚0 ∈ N such that


𝑘0

∑

𝑘=0

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑦𝑘



⩽
𝜖

2
, (84)

for every𝑚 ⩾ 𝑚0. Thus, by using (76), we get that


∑

𝑘

𝑎𝑛𝑘𝑥𝑘 −∑

𝑘

𝛼𝑘𝑦𝑘



=



∑

𝑘

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑦𝑘



⩽



𝑘0

∑

𝑘=0

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑦𝑘



+



∞

∑

𝑘=𝑘0+1

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑦𝑘



<
𝜖

2
+ [

[

∞

∑

𝑘=𝑘0

(
𝑎𝑛𝑘

 +
𝛼𝑘
)
𝑞]

]

1/𝑞

[

[

∞

∑

𝑘=𝑘0

𝑦𝑘

𝑝]

]

1/𝑝

<
𝜖

2
+

𝜖

4𝑀1/𝑞

[

[

(

∞

∑

𝑘=𝑘0

(
𝑎𝑛𝑘

)
𝑞
)

1/𝑞

+ (

∞

∑

𝑘=𝑘0

𝛼𝑘

𝑝
)

1/𝑝

]

]

<
𝜖

2
+

𝜖

4𝑀1/𝑞
2𝑀

1/𝑞
= 𝜖,

(85)

for all sufficiently large 𝑚 ⩾ 𝑚0. Hence, (𝐴𝑥)𝑛 → ∑
𝑘
𝛼𝑘𝑦𝑘

as 𝑛 → ∞ which means that 𝐴𝑥 ∈ 𝑐; that is, 𝐴 = (𝑎𝑛𝑘) ∈

(ℓ
𝜆

𝑝
(𝐵) : 𝑐).
Conversely, suppose that 𝐴 ∈ (ℓ

𝜆

𝑝
(𝐵) : 𝑐), where 1 < 𝑝 <

∞. Then, since 𝑐 ⊂ ℓ∞, 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ∞). Thus, the necessity

of (68)–(71) is immediately obtained fromTheorem 20which
together imply that (76) holds for all sequences 𝑥 ∈ ℓ

𝜆

𝑝
(𝐵).

Since 𝐴𝑥 ∈ 𝑐 by our assumption, we derive by (76) that 𝐴𝑦 ∈
𝑐 which means that 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝 : 𝑐). Thus the necessity
of (80) is immediate by (51) of Lemma 12. This completes the
proof of part (ii).

Now, we can mention the sequence space 𝑓 of almost
convergent sequences. The shift operator 𝑃 is defined on 𝜔
by (𝑃𝑥)𝑛 = 𝑥𝑛+1 for all 𝑛 ∈ N. A Banach limit 𝐿 is defined on
ℓ∞ such that

(i) 𝐿(𝑥) ⩾ 0 for 𝑥 = (𝑥𝑘), where 𝑥𝑘 ⩾ 0 for all 𝑘 ∈ N,
(ii) 𝐿(𝑃𝑥) = 𝐿(𝑥),
(iii) 𝐿(𝑒) = 1, where 𝑒 = (1, 1, 1, etc.).

A sequence 𝑥 = (𝑥𝑘) ∈ ℓ∞ is said to be almost convergent
to the generalized limit 𝛼 if all Banach limits of 𝑥 is 𝛼 [23],
and denoted by 𝑓 − lim𝑥𝑘 = 𝛼. Let 𝑃𝑗 be the composition
of 𝑃 with itself for 𝑗 times and define 𝑡𝑚𝑛(𝑥) for a sequence
𝑥 = (𝑥𝑘) by

𝑡𝑚𝑛 (𝑥) :=
1

𝑚 + 1

𝑚

∑

𝑗=0

(𝑃
𝑗
𝑥)

𝑛
∀𝑚, 𝑛 ∈ N. (86)
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Lorentz [23] proved that 𝑓 − lim𝑥𝑘 = 𝛼 if and only if
lim𝑚→∞𝑡𝑚𝑛(𝑥) = 𝛼, uniformly in 𝑛. It is well-known that
a convergent sequence is almost convergent such that its
ordinary and generalized limits are equal. By 𝑓 and 𝑓𝑠, we
denote the space of all almost convergent sequences and
series, respectively, that is,

𝑓 = {𝑥 = (𝑥𝑘) ∈ 𝜔 :

∃𝛼 ∈ C ∋ lim
𝑚→∞

𝑚

∑

𝑘=0

𝑥𝑛+𝑘

𝑚 + 1
= 𝛼 uniformly in 𝑛} ,

𝑓𝑠 =
{

{

{

𝑥 = (𝑥𝑘) ∈ 𝜔 :

∃𝛼 ∈ C ∋ lim
𝑚→∞

𝑚

∑

𝑘=0

𝑛+𝑘

∑

𝑗=0

𝑥𝑗

𝑚 + 1
= 𝛼 uniformly in 𝑛

}

}

}

.

(87)

Theorem 22. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : 𝑓) if and only if (68) and (69) hold, and

𝑓 − lim
𝑛→∞

𝑎𝑛𝑘 = 𝛼𝑘 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑘 ∈ N. (88)

(ii) Let 1 < 𝑝 < ∞. Then, 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : 𝑓) if and only if

(68)–(71) and (88) hold.
(iii) 𝐴 ∈ (ℓ

𝜆

∞
(𝐵) : 𝑓) if and only if (68) and (69) hold, and

lim
𝑚→∞

∑
𝑛

𝑎 (𝑛, 𝑘, 𝑚) − 𝛼𝑘
 = 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑛. (89)

Proof. Theorem 22 can be similarly proved by the same
technique used in the proof of Theorem 21.

Theorem 23. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ
𝜆

1
(𝐵) : 𝑐0) if and only if (68) and (69)

hold, and

lim
𝑛→∞

𝑎𝑛𝑘 = 0 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑘 ∈ N. (90)

(ii) Let 1 < 𝑝 < ∞. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ
𝜆

𝑝
(𝐵) : 𝑐0) if and

only if (68)–(71) and (90) hold.
(iii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ

𝜆

∞
(𝐵) : 𝑐0) if and only if (68), (69), and

(74) hold and

lim
𝑛→∞

∑

𝑘

𝑎𝑛𝑘
 = 0. (91)

Proof. It is natural thatTheorem 23 can be proved by the same
technique used in the proof of Theorem 21 with Lemma 12
instead of Lemma 17 and so we omit the proof.

Theorem 24. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : ℓ1) if and only if (68), (69), and (72) hold

and

sup
𝑘∈N

∑
𝑛

𝑎𝑛𝑘
 < ∞. (92)

(ii) Let 1 < 𝑝 < ∞. Then, 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ1) if and only if

(68)–(71) hold and

sup
𝐹∈F

∑

𝑘



∑

𝑛∈𝐹

𝑎𝑛𝑘



𝑞

< ∞. (93)

(iii) 𝐴 ∈ (ℓ
𝜆

∞
(𝐵) : ℓ1) if and only if (68), (69), and (74)

hold and

sup
𝐹∈F

∑

𝑘



∑

𝑛∈𝐹

𝑎𝑛𝑘



< ∞. (94)

Proof. Since Parts (i) and (iii) can be proved in a similar way,
to avoid the repetition of the similar statements, we consider
only part (ii).

Suppose that𝐴 satisfies the conditions (68)–(71), (93) and
take any 𝑥 ∈ ℓ𝜆

𝑝
(𝐵), where 1 < 𝑝 < ∞, then 𝑦 ∈ ℓ𝑝. We have

by Theorem 16 that (𝑎𝑛𝑘)𝑘∈N ∈ [ℓ
𝜆

𝑝
(𝐵)]

𝛽 for all 𝑛 ∈ N and
this implies that 𝐴𝑥 exists. Besides, it follows by combining
(93) and Lemma 11 that the matrix 𝐴 ∈ (ℓ𝑝 : ℓ1) and so we
have𝐴𝑦 ∈ ℓ1. Additionally, we derive from (68)–(71) that the
relation (76) holds which yields that 𝐴𝑥 ∈ ℓ1 and so we have
𝐴 ∈ (ℓ

𝜆

𝑝
(𝐵) : ℓ1).

Conversely, assume that 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ1), where 1 < 𝑝 <

∞. Since ℓ1 ⊂ ℓ∞, 𝐴 ∈ (ℓ
𝜆

𝑝
(𝐵) : ℓ∞). Thus, Theorem 20

implies the necessity of (68)–(71) which imply the relation
(76). Since 𝐴𝑥 ∈ ℓ1 by the hypothesis, we deduce by (76) that
𝐴𝑦 ∈ ℓ1 which means that 𝐴 ∈ (ℓ𝑝 : ℓ1). Now, the necessity
of (93) is immediate by the condition (49) of Lemma 11. This
completes the proof of part (ii).

Theorem 25. Let 1 ⩽ 𝑝 < ∞. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ
𝜆

1
(𝐵) : ℓ𝑝)

if and only if (68) and (69) hold, and

sup
𝑘∈N

∑
𝑛

𝑎𝑛𝑘

𝑝
< ∞. (95)

Proof. Suppose that the conditions (68), (69), and (95) hold
and take 𝑥 ∈ ℓ

𝜆

1
(𝐵). Then, 𝑦 ∈ ℓ1. We have by Theorem 16

that (𝑎𝑛𝑘)𝑘∈N ∈ [ℓ
𝜆

1
(𝐵)]

𝛽 for each 𝑛 ∈ N and this implies that
𝐴𝑥 exists. Furthermore, by (95), one can obtain that

sup
𝑘∈N

𝑎𝑛𝑘
 ⩽ sup

𝑘∈N

(∑
𝑛

|𝑎𝑛𝑘|
𝑝
)

1/𝑝

< ∞ for every 𝑛 ∈ N. (96)

Hence, the series ∑
𝑛
|𝑎𝑛𝑘| absolutely converges for each fixed

𝑛 ∈ N. Therefore; since (68) and (69) hold, if we let to limit
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in (75) as𝑚 → ∞, the relation (76) holds.Thus, by applying
Minkowski’s inequality and using (76) and (95), we obtain

(∑
𝑛



∑

𝑘

𝑎𝑛𝑘𝑥𝑘



𝑝

)

1/𝑝

= (∑
𝑛



∑

𝑘

𝑎𝑛𝑘𝑦𝑘



𝑝

)

1/𝑝

⩽ ∑

𝑘

𝑦𝑘(∑
𝑛

𝑎𝑛𝑘

𝑝
)

1/𝑝

< ∞,

(97)

which means that 𝐴𝑥 ∈ ℓ𝑝 and so 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : ℓ𝑝).

Conversely, assume that 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : ℓ𝑝), where 1 ⩽

𝑝 < ∞. Since ℓ𝑝 ⊂ ℓ∞, then 𝐴 ∈ (ℓ
𝜆

1
(𝐵) : ℓ∞). Thus,

Theorem 20 implies that the necessity of (68) and (69) is clear
by the relation (76). Since 𝐴𝑥 ∈ ℓ𝑝 by our assumption, we
deduce by (76) that 𝐴𝑦 ∈ ℓ𝑝 which means that 𝐴 ∈ (ℓ1 : ℓ𝑝).
Now, the necessity of (95) is immediate by Lemma 18. This
completes the proof.

Theorem 26. Let 1 < 𝑝 < ∞. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ
𝜆

∞
(𝐵) : ℓ𝑝)

if and only if (68) and (69) hold and

∑

𝑘

𝑎𝑛𝑘
 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑠 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑛 ∈ N,

sup
𝐾∈F

∑
𝑛



∑

𝑘∈𝐾

𝑎𝑛𝑘



𝑝

< ∞.

(98)

Proof. Theorem 26 can be proved by the same technique
used in the proof of Theorem 25 with Lemma 19 instead of
Lemma 18 and so we omit the details.

Lemma 27 (see [8, Lemma 5.3]). Let 𝜆 and 𝜇 be any two
sequence spaces, let 𝐴 be an infinite matrix and 𝐵 a triangle
matrix. Then, 𝐴 ∈ (𝜆 : 𝜇𝐵) if and only if 𝐵𝐴 ∈ (𝜆 : 𝜇).

It is trivial that Lemma 27 has several consequences.
Indeed, combining Lemma 27 withTheorems 20–26, one can
derive the following results.

Corollary 28. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and 𝑢 =

(𝑢𝑛) and V = (V𝑛) be sequences of non-zero numbers, and define
the matrix 𝐶 = (𝑐𝑛𝑘) by 𝑐𝑛𝑘 = 𝑢𝑛∑

𝑛

𝑗=0
V𝑗𝑎𝑗𝑘 for all 𝑛, 𝑘 ∈ N.

Then, the necessary and sufficient conditions in order𝐴 belongs
to any of the classes (ℓ𝜆

𝑝
(𝐵) : ℓ∞(𝑢, V)), (ℓ𝜆𝑝(𝐵) : ℓ𝑝(𝑢, V)), and

(ℓ
𝜆

𝑝
(𝐵) : 𝑐(𝑢, V)) are obtained from respective ones inTheorems

20–26 by replacing the entries of the matrix 𝐴 by those of the
matrix 𝐶. The spaces ℓ∞(𝑢, V), ℓ𝑝(𝑢, V), and 𝑐(𝑢, V) are defined
in [9] as the spaces of all sequences whose generalized weighted
means are in the spaces ℓ∞, 𝑐, and ℓ𝑝. Since the spaces ℓ∞(𝑢, V),
𝑐(𝑢, V), and ℓ𝑝(𝑢, V) can be reduce in the cases V𝑘 = 𝑟𝑘, 𝑢𝑛 =
1/𝑅𝑛 and V𝑘 = 1, 𝑢𝑛 = 1/𝑛 to the Riesz sequence spaces 𝑟𝑡

∞
,

𝑟
𝑡

𝑐
, and 𝑟𝑡

𝑝
and to the Cesàro sequence spaces 𝑋∞, 𝑐, and 𝑋𝑝,

respectively, Corollary 28 also includes the characterizations of
classes (ℓ𝜆

𝑝
(𝐵) : 𝑟

𝑡

∞
), (ℓ𝜆

𝑝
(𝐵) : 𝑟

𝑡

𝑝
), (ℓ𝜆

𝑝
(𝐵) : 𝑟

𝑡

𝑐
) and (ℓ𝜆

𝑝
(𝐵) :

𝑋∞), (ℓ𝜆𝑝(𝐵) : 𝑋𝑝) and (ℓ𝜆𝑝(𝐵) : 𝑐), where 1 ⩽ 𝑝 ⩽ ∞.

Corollary 29. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix 𝐶 = (𝑐𝑛𝑘) by

𝑐𝑛𝑘 =

𝑛

∑

𝑗=0

(
𝑛

𝑗
) (1 − 𝑟)

𝑛−𝑗
𝑟
−𝑗
𝑎𝑗𝑘 ∀𝑛, 𝑘 ∈ N. (99)

Then, the necessary and sufficient conditions in order 𝐴 which
belongs to any of the classes (ℓ𝜆

𝑝
(𝐵) : 𝑒

𝑟

∞
), (ℓ𝜆

𝑝
(𝐵) : 𝑒

𝑟

0
),

(ℓ
𝜆

𝑝
(𝐵) : 𝑒

𝑟

𝑝
), and (ℓ𝜆

𝑝
(𝐵) : 𝑒

𝑟

𝑐
) are obtained from respective ones

in Theorems 20–26 by replacing the entries of the matrix 𝐴 by
those of the matrix 𝐶; where 𝑒𝑟

∞
, 𝑒𝑟

𝑝
and 𝑒𝑟

𝑐
, and 𝑒𝑟

0
denote the

Euler spaces of all sequences whose 𝐸𝑟-transforms are in the
spaces ℓ∞, ℓ𝑝 and 𝑐, and 𝑐0 which were introduced in [6, 12],
where 1 ⩽ 𝑝 < ∞.

7. Some Geometric Properties of
the Space ℓ𝜆

𝑝
(𝐵)

In the present section, we investigate some geometric prop-
erties of the space ℓ𝜆

𝑝
(𝐵). First, we define some geometric

properties of the spaces. Let (𝑋, ‖ ⋅ ‖) be a normed space
and let 𝑆(𝑥) and 𝐵(𝑥) be the unit sphere and unit ball of
𝑋, respectively. Consider Clarkson’s modulus of convexity (see
[24, 25]) defined by

𝛿𝑋 (𝜀) = inf {1 −
𝑥 − 𝑦



2
; 𝑥, 𝑦 ∈ 𝑆 (𝑥) ,

𝑥 − 𝑦
 = 𝜀} ,

(100)

where 0 ⩽ 𝜀 ⩽ 2. The inequality 𝛿𝑋(𝜀) > 0 for all 𝜀 ∈ [0, 2]
characterizes the uniformly convex spaces. In [26], Gurarii’s
modulus of convexity is defined by

𝛽𝑋 (𝜀) = inf {1 − inf
𝛼∈[0,1]

𝛼𝑥 + (1 − 𝛼) 𝑦
 ;

𝑥, 𝑦 ∈ 𝑆 (𝑥) ,
𝑥 − 𝑦

 = 𝜀} ,

(101)

where 0 ⩽ 𝜀 ⩽ 2. It is easily shown that 𝛿𝑋(𝜀) ⩽ 𝛽𝑋(𝜀) ⩽

2𝛿𝑋(𝜀) for any 0 ⩽ 𝜀 ⩽ 2. Further, if 0 < 𝛽𝑋(𝜀) < 1, then 𝑋 is
uniformly convex, and if 𝛽𝑋(𝜀) < 1, then𝑋 is strictly convex.

ABanach space𝑋 is said to have theBanach-Saks property
if every bounded sequence (𝑥𝑛) in 𝑋 admits a sequence (𝑧𝑛)
such that the sequence {𝑡𝑘(𝑧)} is convergent in the norm in𝑋
[27], where

𝑡𝑘 (𝑧) =
1

𝑘 + 1
(𝑧0 + 𝑧1 + ⋅ ⋅ ⋅ + 𝑧𝑘) ∀𝑘 ∈ N. (102)

A Banach space 𝑋 is said to have the weak Banach-Saks
property whenever given any weakly null sequence (𝑥𝑛) in
𝑋 and there exists a subsequence (𝑧𝑛) of (𝑥𝑛) such that the
sequence {𝑡𝑘(𝑧)} is strongly convergent to zero.

In [28], Garćıa-Falset introduced the following coeffi-
cient:

𝑅 (𝑋) = sup {lim inf
𝑛→∞

𝑥𝑛 + 𝑥
 ; (𝑥𝑛) ⊂ 𝐵 (𝑥) , 𝑥𝑛

𝑤

→ 0} .

(103)
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Remark 30 (see [29]). A Banach space 𝑋 with 𝑅(𝑋) < 2 has
a weak fixed point property.

Theorem 31. The space ℓ𝜆
𝑝
(𝐵) has Banach-Saks type 𝑝.

Proof. Let (𝜀𝑛) be a sequence of positive numbers for which
∑
∞

𝑛=1
𝜀𝑛 ⩽ 1/2. Let (𝑥𝑛) be a weakly null sequence in𝐵(ℓ

𝜆

𝑝
(𝐵)).

Set 𝑢0 = 𝑥0 and 𝑢1 = 𝑥𝑛1 = 𝑥1. Then, there exists 𝑡1 ∈ N such
that



∞

∑

𝑖=𝑡1+1

𝑢1 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

< 𝜀1. (104)

The assumption “(𝑥𝑛) is a weakly null sequence” implies that
𝑥𝑛 → 0 with respect to the coordinatewise, there exists 𝑛2 ∈
N such that



𝑡1

∑

𝑖=0

𝑥𝑛 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

< 𝜀1, (105)

where 𝑛 ⩾ 𝑛2. Set 𝑢2 = 𝑥𝑛2
. Then, there exists 𝑡2 > 𝑡1 such

that



∞

∑

𝑖=𝑡2+1

𝑢2 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

< 𝜀2. (106)

By using the fact that 𝑥𝑛 → 0 with respect to the
coordinatewise, there exists 𝑛3 > 𝑛2 such that



𝑡2

∑

𝑖=0

𝑥𝑛 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

< 𝜀2, (107)

where 𝑛 ⩾ 𝑛3. If we continue this process, we can find two
increasing sequences (𝑡𝑖) and (𝑛𝑖) of natural numbers such
that



𝑡𝑗

∑

𝑖=0

𝑥𝑛 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

< 𝜀𝑗, (108)

for each 𝑛 ⩾ 𝑛𝑗+1 and



∞

∑

𝑖=𝑡𝑗+1

𝑢𝑗 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

< 𝜀𝑗, (109)

where 𝑢𝑗 = 𝑥𝑛𝑗 . Hence,



𝑛

∑

𝑗=0

𝑢𝑗

ℓ𝜆
𝑝
(𝐵)

=



𝑛

∑

𝑗=0

(

𝑡𝑗−1

∑

𝑖=0

𝑢𝑗 (𝑖) 𝑒
(𝑖)

+

𝑡𝑗

∑

𝑖=𝑡𝑗−1

𝑢𝑗 (𝑖) 𝑒
(𝑖)
+

∞

∑

𝑖=𝑡𝑗+1

𝑢𝑗 (𝑖) 𝑒
(𝑖)
)

ℓ𝜆
𝑝
(𝐵)

⩽



𝑛

∑

𝑗=0

𝑡𝑗−1

∑

𝑖=0

𝑢𝑗 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

+



𝑛

∑

𝑗=0

𝑡𝑗

∑

𝑖=𝑡𝑗−1

𝑢𝑗 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

+



𝑛

∑

𝑗=0

∞

∑

𝑖=𝑡𝑗+1

𝑢𝑗 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

⩽



𝑛

∑

𝑗=0

(

𝑡𝑗

∑

𝑖=𝑡𝑗−1+1

𝑢𝑗 (𝑖) 𝑒
(𝑖)
)

ℓ𝜆
𝑝
(𝐵)

+ 2

𝑛

∑

𝑗=0

𝜀𝑗.

(110)

On the other hand, one can see that ‖𝑥‖ℓ𝜆
𝑝
(𝐵) < 1. Thus,

‖𝑥‖
𝑝

ℓ𝜆
𝑝
(𝐵)
< 1, and we have



𝑛

∑

𝑗=0

𝑡𝑗

∑

𝑖=𝑡𝑗−1+1

𝑢𝑗 (𝑖) 𝑒
(𝑖)



𝑝

ℓ𝜆
𝑝
(𝐵)

=

𝑛

∑

𝑗=0

𝑡𝑗

∑

𝑖=𝑡𝑗−1



𝑖−1

∑

𝑘=0

𝑎𝑖𝑘𝑥𝑗 (𝑘) +
𝜆𝑖

𝑟 (𝜆𝑖 − 𝜆𝑖−1)
𝑥𝑖 (𝑘)



𝑝

+

𝑛

∑

𝑗=0

∞

∑

𝑖=0



𝑖

∑

𝑘=0

𝑎𝑖𝑘𝑥𝑗 (𝑘) +
𝜆𝑖

𝑟 (𝜆𝑖 − 𝜆𝑖−1)
𝑥𝑖 (𝑘)



𝑝

⩽ (𝑛 + 1) .

(111)

Therefore, we obtain


𝑛

∑

𝑗=0

𝑡𝑗

∑

𝑖=𝑡𝑗−1+1

𝑢𝑗 (𝑖) 𝑒
(𝑖)

ℓ𝜆
𝑝
(𝐵)

⩽ (𝑛 + 1)
1/𝑝
. (112)

By using that fact that 1 ⩽ (𝑛+1)1/𝑝 for all 𝑛 ∈ N and 1 ⩽ 𝑝 <
∞, we have



𝑛

∑

𝑗=0

𝑢𝑗

ℓ𝜆
𝑝
(𝐵)

⩽ (𝑛 + 1)
1/𝑝

+ 1 ⩽ 2(𝑛 + 1)
1/𝑝
. (113)

Therefore, the space ℓ𝜆
𝑝
(𝐵) has Banach-Saks type 𝑝.

Remark 32. Note that 𝑅(ℓ𝜆
𝑝
(𝐵)) = 𝑅(ℓ𝑝) = 2

1/𝑝, since ℓ𝜆
𝑝
(𝐵) is

linearly isomorphic to ℓ𝑝.
Thus, by Remarks 30 and 32, we have the following.
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Corollary 33. Let 1 < 𝑝 < ∞. Then, the sequence space ℓ𝜆
𝑝
(𝐵)

has the weak fixed point property.

Theorem 34. Gurarii’s modulus of convexity for the normed
space ℓ𝜆

𝑝
(𝐵) is

𝛽ℓ𝜆
𝑝
(𝐵) (𝜀) ⩽ 1 − [1 − (

𝜀

2
)

𝑝

]

1/𝑝

, (114)

where 0 ⩽ 𝜀 ⩽ 2.

Proof. Let 𝑥 ∈ ℓ𝜆
𝑝
(𝐵). Then, we have

‖𝑥‖ℓ𝜆
𝑝
(𝐵) =


Λ̂𝑥
𝑝
= [∑

𝑛


(Λ̂𝑥)

𝑛



𝑝

]

1/𝑝

. (115)

Let 0 ⩽ 𝜀 ⩽ 2 and consider the following sequences:

𝑧 = (𝑧𝑛) = {Λ̂
−1
[[1 − (

𝜀

2
)

𝑝

]

1/𝑝

] , Λ̂
−1
(
𝜀

2
) , 0, 0, . . .} ,

𝑡 = (𝑡𝑛) = {Λ̂
−1
[[1 − (

𝜀

2
)

𝑝

]

1/𝑝

] , Λ̂
−1
(−

𝜀

2
) , 0, 0, . . .} .

(116)

Since 𝑢𝑛 = (Λ̂𝑧)𝑛 and V𝑛 = (Λ̂𝑡)𝑛, one can see that

𝑢 = (𝑢𝑛) = {[1 − (
𝜀

2
)

𝑝

]

1/𝑝

,
𝜀

2
, 0, 0, . . .} ,

V = (V𝑛) = {[1 − (
𝜀

2
)

𝑝

]

1/𝑝

, −
𝜀

2
, 0, 0, . . .} .

(117)

By using the sequences 𝑧 = (𝑧𝑛) and 𝑡 = (𝑡𝑛), we obtain the
following equalities:

‖𝑧‖
𝑝

ℓ𝜆
𝑝
(𝐵)
=

Λ̂𝑧
𝑝

=



[(1 −
𝜀

2
)

𝑝

]

𝑝

1/𝑝

+


𝜀

2



𝑝

= 1 − (
𝜀

2
)

𝑝

+ (
𝜀

2
)

𝑝

= 1,

‖𝑡‖
𝑝

ℓ𝜆
𝑝
(𝐵)
=

Λ̂𝑡
𝑝

=



[(1 −
𝜀

2
)

𝑝

]

𝑝

1/𝑝

+

−
𝜀

2



𝑝

= 1 − (
𝜀

2
)

𝑝

+ (
𝜀

2
)

𝑝

= 1,

‖𝑧 − 𝑡‖
𝑝

ℓ𝜆
𝑝
(𝐵)
=

Λ̂𝑧 − Λ̂𝑡

𝑝

= {



[1 − (
𝜀

2
)

𝑝

]

1/𝑝

− [1 − (
𝜀

2
)

𝑝

]

1/𝑝

𝑝

+


𝜀

2
− (−

𝜀

2
)


𝑝

}

1/𝑝

= 𝜀.

(118)

For 0 ⩽ 𝛼 ⩽ 1

inf
𝛼∈[0,1]

‖𝛼𝑧 + (1 − 𝛼)𝑡‖ℓ𝜆
𝑝
(𝐵)

= inf
𝛼∈[0,1]


𝛼Λ̂𝑧 + (1 − 𝛼) Λ̂𝑡

𝑝

= inf
𝛼∈[0,1]

{



𝛼[1 − (
𝜀

2
)

𝑝

]

1/𝑝

+ (1 − 𝛼) [1 − (
𝜀

2
)

𝑝

]

1/𝑝

𝑝

+

𝛼
𝜀

2
+ (1 − 𝛼) (−

𝜀

2
)


𝑝

}

1/𝑝

= inf
𝛼∈[0,1]

[1 − (
𝜀

2
)

𝑝

+ (2𝛼 − 1)
𝑝
(
𝜀

2
)

𝑝

]

1/𝑝

= [1 − (
𝜀

2
)

𝑝

]

1/𝑝

.

(119)

Therefore, for 1 ⩽ 𝑝 < ∞, we have

𝛽ℓ𝜆
𝑝
(𝐵) (𝜀) ⩽ 1 − [1 − (

𝜀

2
)

𝑝

]

1/𝑝

. (120)

This step concludes the proof.

Corollary 35. The following statements hold.

(i) For 𝜀 > 2, 𝛽ℓ𝜆
𝑝
(𝐵)(𝜀) = 1. Thus, ℓ𝜆

𝑝
(𝐵) is strictly convex.

(ii) For 0 < 𝜀 ⩽ 2, 𝛽ℓ𝜆
𝑝
(𝐵)(𝜀) ⩽ 1. Thus, ℓ𝜆

𝑝
(𝐵) is uniformly

convex.

Corollary 36. For 𝛼 = 1/2, 𝛽ℓ𝜆
𝑝
(𝐵)(𝜀) = 𝛿ℓ𝜆

𝑝
(𝐵)(𝜀).

8. Conclusion

The domain of Euler means 𝐸𝑟 of order 𝑟, the method 𝐴𝑟,
and the generalized difference matrix 𝐵(𝑟, 𝑠) in the sequence
spaces ℓ𝑝 and ℓ∞ investigated by Altay et al. [6], Aydın and
Başar [7], and Kirişçi and Başar [30], respectively. Since Λ̂ is
the composition of Λ and 𝐵(𝑟, 𝑠), our corresponding results
are much more general than the results given by Kirişçi and
Başar [30]. Additionally, we emphasize on some geometric
properties of the new space ℓ𝜆

𝑝
(𝐵). It is obvious that thematrix

Λ̂ is not comparable with the matrices 𝐸𝑟, 𝐴𝑟, or 𝐵(𝑟, 𝑠). So,
the present results are new. As a natural continuation of this
paper, one can study the domain of the matrix Λ̂ in Maddox’s
spaces ℓ∞(𝑝), 𝑐(𝑝), 𝑐0(𝑝), and ℓ(𝑝).
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[15] M. Mursaleen, R. Çolak, and M. Et, “Some geometric inequali-
ties in a new Banach sequence space,” Journal of Inequalities and
Applications, vol. 2007, Article ID 86757, 6 pages, 2007.

[16] Y. Cui, C. Meng, and R. Płuciennik, “Banach-Saks property
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