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The effect of metabolic heat generation on the freezing of biological tissue has been studied. Quasi-steady approximation is used
to solve the Pennes bioheat equation in tissues. Temperature profile and motion of freezing interfaces are obtained for different
values of metabolic heat generation. It is observed that metabolism has a significant effect on freezing of biological tissues during
cryosurgery.

1. Introduction

The effect of volumetric energy generation on phase change
problems is important in several applications including
nuclear energy, geophysics, material processing, vivo freezing
of biological tissues, and solar collectors. Cryosurgery is one
of the examples that involves freezing of biological tissue in
vivo. In tissues, heat is generated by metabolism and blood
perfusion, and the heat, that is, generated during metabolic
processes such as growth and energy production of the living
system, is defined as metabolic heat.

Cryosurgery is one of the most important therapies for
tumor treatment. In cryosurgery, extreme cold is used to
destroy the tissue for therapeutic purpose. It involves local
freezing of tissues for their controlled destruction or removal.
In 1960, the concept of injecting liquid nitrogen through
cryoprobe into the target tissue to freeze them from within
was introduced. Several advantages of cryosurgery include
the low invasiveness of the procedure, minimal blood flow,
localizing the site of surgery, and reducing the recovery and
hospitalization time for the patient. The earliest model of
heat transfer in the biological tissue is discussed by Pennes
[1]. Cryosurgery destroys cells and tissues by a complex
mechanism containing ice-related factors [2]. Advantages
of cryosurgery have initiated interest among researchers to
apply it to the field of skin, breast, prostate, liver, and lung
cancers [3–11].

The aim of cryosurgery is to maximize the damage to the
undesired tissues within the defined domain and minimize
the injury to the surrounding healthy tissues [9, 12]. The
parameters which influence the process of cryosurgery are
the coolest temperature in the tissue, the duration of frozen
cycle, the rate of freezing front propagation, the thawing rate,
and the freezing-thawing cycles [13–21]. The factors which
affect necrosis such as the lowest temperature in the tissue
or the rate of freezing front propagation depend on the bio-
physical parameters that are present in a given cryosurgical
procedure, some of which may be selected and controlled
by the surgeons. These parameters include the temperature
and duration of freezing-thawing process, the shape and size
of cryoprobe, the heat capacity and thermal conductivity of
the tissue, the rate of blood flow, and metabolism in the
involved tissue [22]. Gage et al. [16] have studied the effect of
varying freezing rate, duration of freezing and thawing cycles
to investigate the effect of these factors on cell destruction in
dog skin. They suggested that features like fast cooling, slow
thawing, and repetition of the freeze/thaw cycle should be
modified by maintaining the tissues in the frozen state for
several minutes and slow thawing.

Blood perfusion and metabolic heat generation also have
an important effect on heat transfer in tissues [23–26]. The
coolest temperature in the tissues is one of the crucial
points in the process of cryosurgery. Moreover, the duration
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Figure 1: Schematic representation of one-dimensional model.

of frozen state also has much influence on the success of
cryosurgery [16, 27–31]. The tissue destruction is increased
when it is held in the frozen state in the temperature range
at which recrystallization occurs [14]. A common problem in
cryosurgery is the extent of post operative bleeding caused
by parenchyma fractures and related to the thermal stress
inside the target tissue [32]. Shi et al. [33] have described the
large volumetric expansion having the primary contributor to
large stress development during the freezing of biomaterial
through ice-crystallization. The thermal gradient and the
effect of volumetric expansion associated with freezing are
the twomost important factors that induce thermal stress [33,
34]. Consequently, the study of the thermal gradient inside
the tissue is also an important issue for the optimization of
cryosurgery.

The temperature transients in tumour and normal tissue
are useful to say whether the tumour is damaged or not and
to minimize the injury to healthy tissues during cryosurgery.
There is a need for a simple analytical solution to evaluate
the effect of parameters like metabolic heat generation on
ice-crystallization. A process of simplification is used in
solving a variety of problems which can eliminate the need
for numerical solutions. In this paper, the method of quasi-
steady approximation to study the effect of metabolic heat
generation on one-dimensional ice-crystallization during
cryosurgery has been used. Temperature profiles and motion
of freezing interface are obtained for different values of
metabolic heat generation.

2. Mathematical Model

In the present study, one-dimensional ice-crystallization in
biological tissue of length 𝐿 has been considered as shown in
Figure 1. Cryoprobe with temperature𝑇

0
= −196

∘C is applied
at 𝑥 = 0, while at the other end 𝑥 = 𝐿 an adiabatic condition
is used. In the frozen region, blood perfusion and metabolic
heat generation are zero [4, 5, 10, 11, 13].

The governing equations for one-dimensional ice-
crystallization in biological tissue are as follows.

In frozen region:
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Conditions at phase change interface:

𝑇
𝑓
(𝑥
𝑖
, 𝑡) = 𝑇ph = 𝑇𝑢 (𝑥𝑖, 𝑡) ,

𝑘
𝑓

𝜕𝑇
𝑓
(𝑥
𝑖
, 𝑡)

𝜕𝑥
− 𝑘
𝑢

𝜕𝑇
𝑢
(𝑥
𝑖
, 𝑡)

𝜕𝑥
= 𝜌
𝑢
𝑙
𝑑𝑥
𝑖

𝑑𝑡
,

(5)

where 𝜌 is the density of tissue; 𝑐 the specific heat; 𝑘 the
thermal conductivity; 𝑥

𝑖
the interface position of freezing

front; 𝑇 the temperature; 𝑥 the space coordinate; 𝑡 the time;
𝑞
𝑏
the blood perfusion term; 𝑙 the latent heat of fusion; and

𝑞
𝑚
the metabolic heat generation in the tissue. Subscripts 𝑢

and 𝑓 are for unfrozen and frozen state, respectively, and
ph and 𝐼 are for phase change and initial states, respectively.
Assuming the negligible effect of blood perfusion and using
the following dimensionless variables and constants:
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(6)

where Ste is the Stefan number defined as Ste = 𝑐
𝑢
(𝑇ph−𝑇0)/𝑙.

Equations (1) and (2) become
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The initial and boundary conditions (3)-(4) become
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Condition at phase change interface equations (5) is trans-
formed to
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3. Quasi-Steady Approximation

Due to nonlinearity of the interface energy equation, there
are few exact solutions to the problems with phase change.
The condition at phase change equation is nonlinear because
the interface velocity 𝑑𝑥

𝑖
/𝑑𝑡 depends on the temperature

gradients. In this model, the Stefan number is taken small
compared to the unity. A small Stefan number corresponds to
the sensible heat which is small compared to the latent heat.
The interface moves slowly for a small Stefan number, and
the temperature distribution at each instant corresponds to
that of steady-state. Quasi-steady approximation is justified
for Ste < 0.1 [35, 36]. Setting Ste = 0 in (7) and we get
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Integrating (13) and using boundary conditions given by (9)
and (11), the temperature distribution in frozen region is
obtained as
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Integrating (14) with boundary conditions given by (10) and
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Substituting the temperature of frozen and unfrozen regions
given by (15) and (16) into the condition at phase change
interface given by (12), we obtain
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In (19), the value of 𝑞∗
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evaluate the above integral considering the three cases which
are mentioned below.
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Table 1: Thermal properties of tissues [13, 23].

Parameter Value
Density of unfrozen tissue (kg/m3) 1050
Density of frozen tissue (kg/m3) 921
Specific heat of unfrozen tissue (J/kg ∘C) 3770
Specific heat of frozen tissue (J/kg ∘C) 1800
Thermal conductivity of unfrozen tissue (W/m ∘C) 0.5
Thermal conductivity of frozen tissue (W/m ∘C) 2
Latent heat (KJ/kg) 250
The phase change temperature (∘C) −8
Arterial blood temperature (∘C) 37
Length of tissue (m) 0.04
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(22)

Table 2: Penetration distance of interface and time taken for
different values of 𝑞∗

𝑚
.

𝑞
∗

𝑚
𝑞
𝑚
(W/m3) Interface penetration

distance 𝑥∗
𝑖

Time 𝑡∗

13 763750 1 0.3596
13.5 793125 1 0.4009
14 822500 1 0.4571
14.5 851875 1 0.5402
15 881250 1 0.6807
15.5 910625 1 1.0008
16 940000 0.4 0.1494
16.5 989375 0.4 0.6673
17 998750 0.3 0.1554
17.5 1028125 0.3 0.1747
18 1057500 0.3 0.2036
18.5 1086875 0.3 0.2561
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Figure 2: Interface position with time.

4. Results and Discussion

Thevalues of parameters used are given inTable 1 [13, 23].The
position of freezing interface with time for different values of
𝑞
∗

𝑚
is plotted in Figure 2. It is observed that when 𝑞∗

𝑚
< 16

(i.e., 𝑞
𝑚
< 940000W/m3), the freezing interface reaches to

the boundary 𝑥 = 𝐿 and the time require for solidification of
the complete tissue increases with the increase in 𝑞

𝑚
. When

𝑞
∗

𝑚
≥ 16 (i.e., 𝑞

𝑚
≥ 940000W/m3), the interface does not

reach to the boundary 𝑥 = 𝐿; this is because the equilibrium
between cooling and heat generation is obtained before the
fully freezing of tissue, and, hence, freezing interface does
not move forward. Total penetration distance of freezing
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Figure 3: Temperature distribution at 𝑞∗
𝑚
= 15.5.
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Figure 4: Temperature distribution at 𝑞∗
𝑚
= 16.

interface and time taken as given in Table 2 show that
freezing slows down with the increase in metabolic heat
generation.

The temperature profiles are required to optimize the
damage to diseased tissues. Temperature profiles for different
values of 𝑞∗

𝑚
, that is, 𝑞∗

𝑚
= 15.5, 𝑞∗

𝑚
= 16, and 𝑞∗

𝑚
= 16.5,

are plotted in Figures 3, 4, and 5, respectively. From Figure 3,
it is observed that temperature in tissue decreases with the
increase in time, and at 𝑡∗ = 1.0008 it is in frozen state.
While in case of 𝑞∗

𝑚
= 16 as shown in Figure 4, a steady

state is obtained at 𝑡∗ = 0.1494 and tissue is partially frozen.
Similarly, for 𝑞∗

𝑚
≥ 16, the partially frozen state of tissue is

observed in steady state at 𝑡∗ = 0.6673 (Figure 5).
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Figure 5: Temperature distribution at 𝑞∗
𝑚
= 16.5.

5. Conclusion

A quasi-steady approximation is used to get the temperature
profile and position of freezing interface in the biological
tissue during the freezing of biological tissues for different
values of metabolic heat generation. It is observed that the
freezing process slows down with increase in metabolic heat
generation. Freezing of the entire tissue is even not possible
when the value of metabolic heat generation is extended to
a higher value. This shows that metabolism has a significant
effect on the freezing of biological tissues during cryosurgery.
The obtained information can be used to optimize the
treatment planning.

Nomenclature

𝑥: Distance (0 ≤ 𝑥 ≤ 𝐿) (m)
𝐿: Length of tissue (m)
𝑥
𝑖
: Position of freezing interface (m)

𝑡: Time (s)
𝑇: Temperature (∘C)
𝜌: Density (kg/m3)
𝑐: Specific heat (J/kg ∘C)
𝛼: Thermal diffusivity (m2/sec)
𝑘: Thermal conductivity (W/m ∘C)
𝑙: Latent heat (KJ/kg)
𝑞
𝑚
: Metabolic heat generation (W/m3)

𝑞
𝑏
: Blood perfusion term (W/m3 ∘C).

Subscripts

ph: Phase change
𝑓: Frozen state
𝑢: Unfrozen state
𝐼: Initial state (𝑡 = 0)
𝑜: Cryoprobe.
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Superscript

∗: Dimensionless.
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