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The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition.The Boussinesq
approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of
the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved
explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity
and temperature profiles.

1. Introduction

The flow domain, described by thin film flow, in one of the
dimensions is much smaller than the flow in the other one
or two dimensions. By utilizing this fact, a set of simplified
modeling equations can possibly be deduced from the Navier
Stokes equations. Gravity-driven laminar flow problems
including the thin film flow have significant practical appli-
cations in many fields like industrial and chemical engineer-
ing, coating flows, biofluids, microfluidic engineering, and
medicine. The vast majority of the investigations on different
falling film flow phenomena have been studied over the years.
Fulford [1] has described in detail a variety of concepts to ana-
lyze the thin film flow procedure. However, Andersson and
Ytrehus [2, 3] studied the diffusion from a vertical wall into
an accelerating falling liquid film and gave the Falkner-Skan
solutions for gravity-driven film flows. On the other hand,
Sparrow et al. [4] described the combined forced and free
convection in boundary layer flow about the nonisothermal
body subjected to a uniform free stream velocity, and also he
gave the criteria for cataloging flows as purely forced, purely
free, andmixed. A different approach was adopted by Ander-
sson and Irgens [5, 6], namely, to divide the accelerating film
flow into a developing viscous boundary layer and an external
inviscid free stream. They furthermore demonstrated that a
similarity transformation exists, such that the boundary layer

momentum equation for power-law fluids is exactly trans-
formed into a Falkner-Skan type ordinary differential equa-
tion. Andersson et al. [7] also investigated the effects of high
Prandtl number and temperature differences in the laminar
film flow with combined and natural convection. He also
concluded that for the vast majority of the parameter combi-
nations the resulting velocity profiles 𝑓󸀠(𝜂) increased mono-
tonically from zero at the surface to unity in the free stream.

Our motivation to do the present work is to investigate
the heat transfer due to the gravity-driven laminar film flow
over the convectively heated surface. Further, both aiding and
opposing buoyancy are considered to see its effect on the
film flow and heat transfer. The homotopy analysis method
(HAM; see [8–13]) is implied to solve the considered problem,
and explicit solutions with high precision are also obtained.
To our knowledge, this is the first time to explore the explicit
solutions for this particular gravity-driven film flow problem
with convective boundary condition. Moreover, the squared
residual has been calculated which shows the correctness of
our obtained explicit solutions.

2. Mathematical Formulation and Analysis

Consider the two-dimensional laminar film flow of Newto-
nian fluid along a vertical surface. That vertical surface is
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heated or cooled from below by convection from a fluid of
temperature 𝑇

𝑓
, while 𝑇

∞
is the temperature outside the

boundary layers. To describe this laminar film flow we must
add a gravity term (body force term) to themomentum equa-
tion, and then using the boundary layer, assumptionswill give
rise to the following partial differential equation:

𝜕𝑢

𝜕𝑥
+

𝜕𝜐

𝜕𝑦
= 0, (1)

𝜌
0

[𝑢
𝜕𝑢

𝜕𝑥
+ 𝜐

𝜕𝑢

𝜕𝑦
] = 𝜌𝑔 + 𝜇

𝜕2𝑢

𝜕𝑦2
, (2)

𝜌
0
𝑐
𝑝

[𝑢
𝜕𝑇

𝜕𝑥
+ 𝜐

𝜕𝑇

𝜕𝑦
] = 𝑘

𝜕2𝑇

𝜕𝑦2
, (3)

subject to boundary conditions

𝑢 = 0, 𝜐 = 0,

−𝑘
𝜕𝑇

𝜕𝑦
= ℎ
𝑓

(𝑇
𝑓

− 𝑇) , at 𝑦 = 0,

𝑢 󳨀→ 𝑈 (𝑥) , 𝑇 󳨀→ 𝑇
∞

, as 𝑦 󳨀→ ∞.

(4)

Here 𝑢 is vertical velocity component along vertical 𝑥-axis
and 𝜐 is horizontal velocity component along horizontal 𝑦-
axis. Whereas 𝑐

𝑝
is specific heat at constant pressure, 𝜌 is the

fluid density, 𝜇 is dynamic viscosity, 𝑘 is thermal conductivity,
𝑔 is the gravitational constant, ℎ

𝑓
(𝑥) is the heat transfer coef-

ficient due to 𝑇
𝑓
, and 𝑈(𝑥) is free stream velocity. According

to the classical boundary-layer approximations, it is assumed
that stream-wise diffusion of momentum and longitudinal
heat conduction is negligible in (2) and (3). Also all the
properties of fluid are kept constant and the internal dissi-
pation of energy is neglected except the density, (𝜌(𝑇)). For
this purpose the Boussinesq approximation is used on the
buoyancy term in the momentum equation to represent the
density variation as

𝜌 = 𝜌
0

[1 − 𝛼 (𝑇 − 𝑇
0
)] , (5)

where 𝜌
0
is the density at the arbitrary reference temperature

𝑇
0
and𝛼 is the coefficient of thermal expansion. Since the fric-

tionless flow between the viscous boundary layer and the free
streamline bordering the constant-pressure atmosphere is
considered to be irrotational with downward velocity, 𝑈(𝑥) is
quasi-one-dimensional. Assuming the infinite film thickness
at the entrance 𝑥 = 0, the simple free stream solution

𝑈 (𝑥) = √2𝑔𝑥 (6)
is readily derived by integrating the one-dimensional version
of (2), given as

𝑈
𝑑𝑈

𝑑𝑥
= 𝑔. (7)

We now introduce the following similarity transformations:

𝜓 (𝜂) = 𝑓 (𝜂) ⋅ (
4𝑈]𝑥

3
)
1/2

, 𝜂 = 𝑦 ⋅ (
3𝑈

4]𝑥
)
1/2

,

𝜃 (𝜂) =
𝑇 − 𝑇
∞

𝑇
𝑓

− 𝑇
∞

,

(8)

where ] is kinematic viscosity and 𝜓 is the stream function
defined as

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝜐 = −

𝜕𝜓

𝜕𝑥
. (9)

The following set of equations is formed by substituting the
similarity transformations from (8) to (1)–(3) and thus can
be rewritten as

𝑓󸀠󸀠󸀠 (𝜂) + 𝑓 (𝜂) 𝑓󸀠󸀠 (𝜂) +
2

3
(1 − 𝑓󸀠(𝜂)

2

) −
4

3
𝜆𝜃 = 0,

𝜃󸀠󸀠 (𝜂) + Pr𝑓 (𝜂) 𝜃󸀠 (𝜂) = 0

(10)

with the associated boundary conditions given as

𝑓 (0) = 0, 𝑓󸀠 (0) = 0, 𝑓󸀠 (∞) = 1,

𝜃 (∞) = 0, 𝜃󸀠 (0) = −𝛾 (1 − 𝜃 (0)) ,
(11)

where Pr is the Prandtl number, 𝛾 is reduced heat transfer
parameter, and 𝜆 is the dimensionless temperature difference
defined as 𝜆 ≡ Gr

𝑥
/Re2
𝑥

= 𝛼(𝑇
𝑓

− 𝑇
∞

)/2. Since the dimen-
sionless parameters related to the measure of convection
velocity are defined as the local Grashof number, Gr

𝑥
=

𝛼𝑔(𝑇
𝑓

− 𝑇
0
)𝑥3/]2, and local Reynolds number, Re

𝑥
= 𝑈𝑥/].

3. Explicit Solutions by Homotopy
Analysis Method

The homotopy analysis method has been employed here to
give the explicit solutions of the nonlinear coupled differen-
tial equation. As it is shown by (A.11) (see the Appendix), the
solution series for 𝑓(𝜂) and 𝜃(𝜂) can be expressed as

𝑓 (𝜂) = 𝑓
0

(𝜂) +
+∞

∑
𝑚=1

𝑓
𝑚

(𝜂) ,

𝜃 (𝜂) = 𝜃
0

(𝜂) +
+∞

∑
𝑚=1

𝜃
𝑚

(𝜂) ,

(12)

where 𝑓
𝑚

(𝜂) and 𝜃
𝑚

(𝜂) are higher order deformation deriva-
tives. Now we can solve the first several higher order defor-
mation equations (A.12)–(A.14) to obtain 𝑓

𝑚
(𝜂) and 𝜃

𝑚
(𝜂),

which is defined as

𝑓
𝑚

(𝜂) = 𝐴𝑚
0,0

+
2𝑚+2

∑
𝑗=1

2𝑚+2

∑
𝑖=0

𝜎𝑚
𝑖,𝑗

𝐴𝑚
𝑖,𝑗

𝜂𝑖 exp−𝑗𝛽𝜂,

𝜃
𝑚

(𝜂) =
2𝑚+2

∑
𝑗=1

2𝑚+2

∑
𝑖=0

𝜎𝑚
𝑖,𝑗

𝐵𝑚
𝑖,𝑗

𝜂𝑖 exp−𝑗𝛽𝜂,

(13)

where𝛽 is the given positive constant and𝜎𝑚
𝑖,𝑗
is the coefficient

defined as

𝜎𝑚
𝑖,𝑗

=
{
{
{

1, 0 ≤ 𝑖 ≤ 2𝑚, 1 ≤ 𝑗 ≤ 2𝑚 + 2 − 𝜒
𝑖

− 2 ⌊
𝑖 + 1

2
⌋ ,

0, otherwise.

(14)
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Here 𝜒
𝑖
is given by (A.17) and ⌊⋅⌋ represents the integer

floor function. Substituting the above expression into (A.12)–
(A.14), we have the recursive coefficients 𝐴𝑚

𝑖,𝑗
and 𝐵𝑚

𝑖,𝑗
for

𝑚 ≥ 1 determined as

𝐴𝑚
𝑖,𝑗

= 𝜒
𝑚

𝜎𝑚−1
𝑖,𝑗

𝐴𝑚−1
𝑖,𝑗

+
2𝑚+2

∑
𝑞=𝑖

Γ𝑚
𝑞,𝑗

𝜇
𝑞

𝑗,𝑖
,

𝐵𝑚
𝑖,𝑗

= 𝜒
𝑚

𝛿𝑚−1
𝑖,𝑗

𝐵𝑚−1
𝑖,𝑗

+
2𝑚+2

∑
𝑞=𝑖

Ψ𝑚
𝑞,𝑗

𝛿
𝑞

𝑗,𝑖
,

(15)

for 2 ≤ 𝑗 ≤ 2𝑚 + 2 and 0 ≤ 𝑖 ≤ 2𝑚,

𝐴𝑚
𝑖,1

= 𝜒
𝑚

𝜎𝑚−1
𝑖,1

𝐴𝑚−1
𝑖,1

+
2𝑚

∑
𝑞=max[0,𝑖−1]

Δ𝑚
𝑞,1

𝜇
𝑞

1,𝑖
,

𝐵𝑚
𝑖,1

= 𝜒
𝑚

𝛿𝑚−1
𝑖,1

𝐵𝑚−1
𝑖,1

+
2𝑚

∑
𝑞=max[0,𝑖−1]

Ω𝑚
𝑞,1

𝛿
𝑞

1,𝑖
,

𝐴𝑚
0,0

= 𝜒
𝑚

𝐴𝑚−1
0,0

+
2𝑚+2

∑
𝑗=2

2𝑚+2

∑
𝑞=1

Γ𝑚
𝑞,𝑗

[(𝑗 − 1) 𝜇
𝑞

𝑗,0
−

1

𝛽
𝜇
𝑞

𝑗,1
]

−
2𝑚

∑
𝑞=0

1

𝛽
Δ𝑚
𝑞,1

𝜇
𝑞

1,1
+
2𝑚+2

∑
𝑗=2

(𝑗 − 1) Γ𝑚
0,𝑗

𝜇0
𝑗,0

,

𝐴𝑚
0,1

= 𝜒
𝑚

𝜎𝑚−1
0,1

𝐴𝑚−1
0,1

+
2𝑚+2

∑
𝑗=2

2𝑚+2

∑
𝑞=1

1

𝛽
Γ𝑚
𝑞,𝑗

𝜇
𝑞

𝑗,1

+
2𝑚

∑
𝑞=0

1

𝛽
Δ𝑚
𝑞,1

𝜇
𝑞

1,1
−
2𝑚+2

∑
𝑗=2

𝑗Γ𝑚
𝑞,𝑗

𝜇
𝑞

𝑗,0
,

𝐵𝑚
0,1

= 𝜒
𝑚

𝜎𝑚−1
0,1

𝐵𝑚−1
0,1

−
2𝑚+2

∑
𝑗=2

2𝑚

∑
𝑞=0

Ψ𝑚
𝑞,𝑗

𝛿
𝑞

𝑗,0
,

𝐴𝑚
0,𝑗

= 0,

(16)

where

𝛿
𝑞

𝑛,𝑗
=

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑞!

𝑗!

1

(2𝛽)
𝑞−𝑗+2

, 0 ≤ 𝑗 ≤ 𝑞, 𝑛 = 1,

1

2𝛽 (𝑞 + 1)
, 𝑗 = 𝑞 + 1, 𝑛 = 1,

𝑞!

𝑗!

1

2𝛽
(

1

[(𝑛 + 1) 𝛽]
𝑞−𝑗+1

−
1

[(𝑛 − 1) 𝛽]
𝑞−𝑗+1

) , 0 ≤ 𝑗 ≤ 𝑞, 𝑛 > 1,

0, 𝑗 = 𝑞 + 1, 𝑛 > 1,

𝜇
𝑞

𝑛,𝑗
=

{{{{{{{{
{{{{{{{{
{

𝑞+1

∑
𝑖=𝑗

𝛿
𝑞

𝑛,𝑗

𝛽𝑖−𝑗+1
, 0 ≤ 𝑗 ≤ 𝑞 + 1, 𝑛 = 1,

𝑞

∑
𝑖=𝑗

𝛿
𝑞

𝑛,𝑗

(𝑛𝛽)
𝑖−𝑗+1

, 0 ≤ 𝑗 ≤ 𝑞, 𝑛 > 1,

0, 𝑗 = 𝑞 + 1, 𝑛 > 1.

(17)

Other coefficients involved in the above recursive formulae
are given as

Γ𝑚
𝑖,𝑗

= ℎ
𝑓

(𝐴𝑚
𝑖,𝑗

+ 𝐵𝑚
𝑖,𝑗

+ 𝐸𝑚
𝑖,𝑗

+ 𝐽𝑚−1
𝑖,𝑗

−
4

3
𝜆𝜎𝑚−1
𝑖,𝑗

𝐵𝑚−1
𝑖,𝑗

) ,

Δ𝑚
𝑖,1

= ℎ
𝑓

(𝐽𝑚−1
𝑖,1

−
4

3
𝜆𝜎𝑚−1
𝑖,1

𝐵𝑚−1
𝑖,1

+ 𝐵𝑚
𝑖,1

) ,

Ψ𝑚
𝑖,𝑗

= ℎ
𝜃

(𝐻̃𝑚−1
𝑖,𝑗

+ Pr𝐹𝑚
𝑖,𝑗

+ Pr 𝐾̃𝑚
𝑖,𝑗

) ,

Ω𝑚
𝑖,1

= ℎ
𝜃

(𝐻𝑚−1
𝑖,1

+ Pr 𝐾̃𝑚
𝑖,1

) ,

(18)

where ℎ
𝑓
and ℎ
𝜃
are the convergence control parameters, and

𝐷𝑚
𝑖,𝑗

= 𝜎𝑚
𝑖+1,𝑗

𝐴𝑚
𝑖+1,𝑗

(𝑖 + 1) − (𝑗𝛽) 𝜎𝑚
𝑖,𝑗

𝐴𝑚
𝑖,𝑗

,

𝐸𝑚
𝑖,𝑗

= 𝜎𝑚
𝑖+1,𝑗

𝐵𝑚
𝑖+1,𝑗

(𝑖 + 1) − (𝑗𝛽) 𝜎𝑚
𝑖,𝑗

𝐵𝑚
𝑖,𝑗

,

𝐺𝑚
𝑖,𝑗

= (𝑖 + 2) (𝑖 + 1) 𝜎𝑚
𝑖+2,𝑗

𝐴𝑚
𝑖+2,𝑗

− (2𝑗𝛽) (𝑖 + 1) 𝜎𝑚
𝑖+1,𝑗

𝐴𝑚
𝑖+1,𝑗

+ (𝑗𝛽)
2

𝜎𝑚
𝑖,𝑗

𝐴𝑚
𝑖,𝑗

,

𝐻𝑚
𝑖,𝑗

= (𝑖 + 2) (𝑖 + 1) 𝜎𝑚
𝑖+2,𝑗

𝐵𝑚
𝑖+2,𝑗

− (2𝑗𝛽) (𝑖 + 1) 𝜎𝑚
𝑖+1,𝑗

𝐵𝑚
𝑖+1,𝑗

+ (𝑗𝛽)
2

𝜎𝑚
𝑖,𝑗

𝐵𝑚
𝑖,𝑗

,

𝐽𝑚
𝑖,𝑗

= (𝑖 + 3) (𝑖 + 2) (𝑖 + 1) 𝜎𝑚
𝑖+3,𝑗

𝐴𝑚
𝑖+3,𝑗

− (3𝑗𝛽) (𝑖 + 2) (𝑖 + 1) 𝜎𝑚
𝑖+2,𝑗

𝐴𝑚
𝑖+2,𝑗

+ 3 (𝑖 + 1) (𝑗𝛽)
2

𝜎𝑚
𝑖+1,𝑗

𝐴𝑚
𝑖+1,𝑗

− (𝑗𝛽)
3

𝜎𝑚
𝑖,𝑗

𝐴𝑚
𝑖,𝑗

,

𝐾𝑚
𝑖,𝑗

= (𝑖 + 3) (𝑖 + 2) (𝑖 + 1) 𝜎𝑚
𝑖+3,𝑗

𝐵𝑚
𝑖+3,𝑗

− (3𝑗𝛽) (𝑖 + 2) (𝑖 + 1) 𝜎𝑚
𝑖+2,𝑗

𝐵𝑚
𝑖+2,𝑗

+ 3 (𝑖 + 1) (𝑗𝛽)
2

𝜎𝑚
𝑖+1,𝑗

𝐵𝑚
𝑖+1,𝑗

− (𝑗𝛽)
3

𝜎𝑚
𝑖,𝑗

𝐵𝑚
𝑖,𝑗

.

(19)

Also,

𝐴𝑚
𝑖,𝑗

=
𝑚−1

∑
𝑛=0

min[2𝑚−2𝑛,𝑗−1]

∑
𝑠=max[1,𝑗−2𝑛−2]

min[2𝑚−2𝑛,𝑖]
∑

𝑟=max[1,𝑖−2𝑛−2]
𝜎𝑚−1−𝑛
𝑟,𝑠

𝐴𝑚−1−𝑛
𝑟,𝑠

𝐺𝑛
𝑖−𝑟,𝑗−𝑠

,

𝐵𝑚
𝑖,𝑗

=
𝑚−1

∑
𝑛=max[𝑗−1,𝑖−1]

𝐴𝑚−1−𝑛
0,0

𝐺𝑛
𝑖,𝑗

,

𝐸𝑚
𝑖,𝑗

=
𝑚−1

∑
𝑛=0

min[2𝑚−2𝑛,𝑗−1]

∑
𝑠=max[1,𝑗−2𝑛−2]

min[2𝑚−2𝑛,𝑖]
∑

𝑟=max[1,𝑖−2𝑛−2]
𝐷𝑚−1−𝑛
𝑟,𝑠

𝐷𝑛
𝑖−𝑟,𝑗−𝑠

,

𝐹𝑚
𝑖,𝑗

=
𝑚−1

∑
𝑛=0

min[2𝑚−2𝑛,𝑗−1]

∑
𝑠=max[1,𝑗−2𝑛−2]

min[2𝑚−2𝑛,𝑖]
∑

𝑟=max[1,𝑖−2𝑛−2]
𝜎𝑚−1−𝑛
𝑟,𝑠

𝐴𝑚−1−𝑛
𝑟,𝑠

𝐸𝑛
𝑖−𝑟,𝑗−𝑠

,

𝐾̃𝑚
𝑖,𝑗

=
𝑚−1

∑
𝑛=max[𝑗−1,𝑖−1]

𝐴𝑚−1−𝑛
0,0

𝐸𝑛
𝑖,𝑗

.

(20)

Using all the above recursive formulae and setting 𝐴0
0,0

= 1,
𝐴0
0,1

= −1/𝛽, 𝐴0
0,2

= 1/𝛽, 𝐵0
0,1

= 1, and 𝐵0
0,2

= −𝛽/(𝛾 + 2𝛽),
we can calculate all the coefficients, and thus purely explicit
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Table 1: Average squared residual errors for Err𝑚
𝑓
with ℎ

𝑓
= −1/2, ℎ

𝜃
= −1/2, and 𝛽 = 5 in the case of Pr = 1 and 𝜆 = 1.

𝑘th order 𝛾 = 1 𝛾 = 5 𝛾 = 10 𝛾 = 15 𝛾 = 20

5 2.2555 × 10−1 2.48030 × 10−1 2.56497 × 10−1 2.60104 × 10−1 2.62083 × 10−1

10 6.91281 × 10−2 8.82655 × 10−2 9.43782 × 10−2 9.66925 × 10−2 9.78824 × 10−2

20 5.043001 × 10−3 1.00880 × 10−2 1.12832 × 10−2 1.17021 × 10−2 1.19141 × 10−2

30 8.19099 × 10−4 2.58524 × 10−3 3.04192 × 10−3 3.21354 × 10−3 3.30340 × 10−3

40 1.69486 × 10−4 9.09989 × 10−4 1.14358 × 10−3 1.23538 × 10−3 1.28426 × 10−3

Table 2: Average squared residual errors for Err𝑚
𝑓
with ℎ

𝑓
= −1/2, ℎ

𝜃
= −1/2, and 𝛽 = 5 in the case of Pr = 1 and 𝜆 = −1.

𝑘th order 𝛾 = 1 𝛾 = 5 𝛾 = 10 𝛾 = 15 𝛾 = 20

5 1.11846 × 10−1 9.74131 × 10−2 9.26109 × 10−2 9.06737 × 10−2 8.96424 × 10−2

10 1.09109 × 10−2 6.67928 × 10−3 5.51535 × 10−3 5.09535 × 10−3 4.88484 × 10−3

20 3.02345 × 10−4 6.20106 × 10−4 6.00372 × 10−4 5.82802 × 10−4 5.71778 × 10−4

30 8.14679 × 10−5 1.45809 × 10−4 1.45809 × 10−4 1.35611 × 10−4 1.32648 × 10−4

40 9.69675 × 10−6 1.70644 × 10−5 1.70644 × 10−5 1.58480 × 10−5 1.54868 × 10−5

analytical solution for 𝑓(𝜂) and 𝜃(𝜂) can be obtained for 𝑚 =
1, 2, 3, . . . .

4. Results and Discussions

It is well known that convergence of the HAM series, given
by (A.1), not only depends upon the proper choice of initial
guess or linear operator but it also relies on the proper value
of convergence-control parameter. Basically we can select the
appropriate values of auxiliary parameters by two methods:
first by plotting the ℎ-curves [10] and then choosing its
value in the corresponding valid regions of ℎ and second
by determining the minimum of the squared residual [9] of
the governing equation which gives the appropriate value
of convergence-control parameter. However, one can also
accelerate the convergence of homotopy series by using the
homotopy-Pade technique or homotopy-iterative approach
[9] for the problems with strong nonlinearity.

In order to check the validity of our gained explicit solu-
tions, we apply the second approach by defining the discrete
squared residual for 𝑓(𝜂) and 𝜃(𝜂) as

Err𝑚
𝑓

=
1

𝑘 + 1

𝑘

∑
𝑗=0

[𝑁
𝑓

(
𝑚

∑
𝑛=0

𝑓
𝑛
)]

2

𝑑𝜂

Err𝑚
𝜃

=
1

𝑘 + 1

𝑘

∑
𝑗=0

[𝑁
𝑓

(
𝑚

∑
𝑛=0

𝜃
𝑛
)]

2

𝑑𝜂,

(21)

where 𝑘 is an integer. 𝑁
𝑓
and 𝑁

𝜃
denote the nonlinear opera-

tors given by (A.7). Here we use 𝑘 = 40 to gain the computa-
tional error. It is pertinent tomention here that using discrete
squared residual reduces the CPU time, suggested in [9, 14]
rather than finding exact square residual of the governing
equations. Especially, it is convenient to use it when there is
more than one unknown auxiliary parameter involved.

Further, one can improve the convergence of obtained
results by introducing more convergence-control parame-
ters in the frame of HAM. In particular, we have used

another convergence-control parameter induced in the linear
operator and initial guess denoted by 𝛽. The other two
convergence-control parameters are ℎ

𝑓
and ℎ

𝜃
. The optimal

values for the 𝛽, ℎ
𝑓
, and ℎ

𝜃
are determined by evaluating the

minimum error of (21). In our case the value of convergence-
control parameters is taken to be ℎ

𝑓
= −1/2 and ℎ

𝜃
=

−1/2. Also, here the selected value for third parameter is
𝛽 = 5, which has greatly accelerated the convergence of our
series solution by decreasing the average square residual. The
reduction in the error becomes quite slow as compared to
our present case if we change the value of 𝛽, and even in
some cases the results are not convergent. So, we can always
reduce the error and can control the convergence of HAM
analytical approximations by choosing the proper values of
convergence-control parameters.

Obviously, for given order of approximation 𝑚, if the
value of Err𝑚

𝑓
and Err𝑚

𝜃
is smaller, the better is the approxima-

tion. To confirm this, we calculated the error for 𝑓(𝜂) given
in Tables 1 and 2 for different values of 𝛾 and 𝜆. Similarly
the error for 𝜃(𝜂) is shown in Tables 3 and 4. It is also noted
that Err𝑚

𝑓
and Err𝑚

𝜃
decreasemore quickly in case of favorable

buoyancy, which approached 1.6×10−5 and 2.1×10−5 at 40th-
order approximation for several values of 𝛾. The reduction
in the error for each case with the increasing number of
iterations shows the reliability of our analytic results. Also
the accuracy of these results can be improved far more by
increasing the order of approximation.

Moreover, the velocity and temperature profiles are plot-
ted for favorable (𝜆 = −1) and unfavorable (𝜆 = +1) buoy-
ancy with the variation of 𝛾. Figure 1 shows that in the case
of favorable buoyancy, as the value of 𝛾 increases the velocity
component increases with the increase in 𝜂 but reduces by
unfavorable buoyancy as presented in Figure 2. Further the
temperature profile observed from Figures 3 and 4 describes
the effect of 𝛾 with the temperature differences (|𝜆| = 1).
From these figures we can examine that as 𝜂 increases the
temperature decreases, while the increase in the reduced
heat transfer coefficient 𝛾 increases 𝜃(𝜂) for both aiding and
opposing buoyancy.
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Table 3: Average squared residual errors for Err𝑚
𝜃
with ℎ

𝑓
= −1/2, ℎ

𝜃
= −1/2, and 𝛽 = 5 in the case of Pr = 1 and 𝜆 = 1.

𝑘𝑡h order 𝛾 = 1 𝛾 = 5 𝛾 = 10 𝛾 = 15 𝛾 = 20

5 5.31587 × 10−2 9.32074 × 10−2 1.19486 × 10−1 1.33022 × 10−1 1.41151 × 10−1

10 1.81487 × 10−2 4.38441 × 10−2 5.34957 × 10−2 5.68101 × 10−2 5.83709 × 10−2

20 2.81659 × 10−3 7.36339 × 10−3 8.33899 × 10−3 8.64952 × 10−3 8.80023 × 10−3

30 4.96569 × 10−4 1.62656 × 10−3 1.91199 × 10−3 2.01813 × 10−3 2.07356 × 10−3

40 9.44952 × 10−5 4.78105 × 10−4 6.01700 × 10−4 6.50358 × 10−4 6.76279 × 10−4

Table 4: Average squared residual errors for Err𝑚
𝜃
with ℎ

𝑓
= −1/2, ℎ

𝜃
= −1/2, and 𝛽 = 5 in the case of Pr = 1 and 𝜆 = −1.

𝑘𝑡h order 𝛾 = 1 𝛾 = 5 𝛾 = 10 𝛾 = 15 𝛾 = 20

5 5.01248 × 10−2 8.58652 × 10−2 1.10077 × 10−1 1.22631 × 10−1 1.30186 × 10−1

10 1.37880 × 10−2 3.10149 × 10−2 3.73286 × 10−2 3.92840 × 10−2 4.01227 × 10−3

20 1.10969 × 10−3 2.08900 × 10−3 2.24156 × 10−3 2.25752 × 10−3 2.25533 × 10−3

30 1.00475 × 10−4 1.92774 × 10−4 1.86875 × 10−4 1.80412 × 10−4 1.76338 × 10−4

40 8.43581 × 10−6 2.22668 × 10−5 2.18639 × 10−5 2.11068 × 10−5 2.06069 × 10−5
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Figure 1: Velocity profile𝑓󸀠(𝜂) for different values of 𝛾where𝜆 = −1
and Pr = 1.

5. Conclusions

The explicit solutions are obtained in this paper using HAM
for the gravity-driven film flow over a vertical impermeable
sheet with convective boundary condition. By choosing the
appropriate value for the convergence-control parameters we
obtain the error for 𝑓(𝜂) and 𝜃(𝜂). The decrease in the error
with the increase in the number of approximations depicts the
validity of our analytic solutions. According to the authors’
view about such kind of analytical solutions, they have never
been presented in the literature before. Finally, this is due
to homotopy analysis method that we are able to give quite
accurate explicit solutions by choosing the proper values

0
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0.8

1
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𝛾 = 0.1, 0.25, 0.5, 1, 3, 20f
󳰀 (
𝜂
)

Figure 2: Velocity profile 𝑓󸀠(𝜂) for different values of 𝛾 where 𝜆 = 1
and Pr = 1.

of convergence-control parameters, base functions, initial
approximations, and linear operators.

Appendix

According to the boundary conditions (11) we can express the
solution of 𝑓(𝜂) and 𝜃(𝜂) as follows:

𝑓 (𝜂) = 𝐴
0,0

+
∞

∑
𝑛=1

∞

∑
𝑚=0

𝐴
𝑚,𝑛

𝜂𝑚 exp−𝑛𝛽𝜂,

𝜃 (𝜂) =
∞

∑
𝑛=1

∞

∑
𝑚=0

𝐵
𝑚,𝑛

𝜂𝑚 exp−𝑛𝛽𝜂,

(A.1)
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Figure 3: Temperature profile 𝜃(𝜂) for different values of 𝛾 where
𝜆 = 1 and Pr = 1.
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Figure 4: Temperature profile 𝜃(𝜂) for different values of 𝛾 where
𝜆 = −1 and Pr = 1.

where 𝐴
𝑚,𝑛

and 𝐵
𝑚,𝑛

are the coefficients. Due to the solution
expressions given by (A.1) and boundary conditions (11), we
can choose

𝑓
0

(𝜂) = 𝜂 +
exp−2𝛽𝜂 − exp−𝛽𝜂

𝛽
,

𝜃
0

(𝜂) = exp−𝛽𝜂 +
𝛽

2𝛽 + 𝛾
exp−2𝛽𝜂

(A.2)

as initial guess for𝑓(𝜂) and 𝜃(𝜂).The auxiliary linear operator
corresponding to (10) is given as

𝐿
𝑓

=
𝜕3

𝜕𝜂3
+ 𝛽

𝜕2

𝜕𝜂2
, 𝐿

𝜃
=

𝜕2

𝜕𝜂2
+ 𝛽

𝜕

𝜕𝜂
(A.3)

with the property

𝐿
𝑓

[𝐶
1
exp−𝛽𝜂 + 𝐶

2
+ 𝐶
3
𝜂] = 0,

𝐿
𝜃

[𝐶
1
exp−𝛽𝜂 + 𝐶

2
] = 0,

(A.4)

where 𝐶
1
, 𝐶
2
, and 𝐶

3
are integral constants. Let ℎ

𝑓
and ℎ

𝜃

denote the convergence control parameters for𝑓(𝜂) and 𝜃(𝜂),
respectively. Nowwe will make the zeroth-order deformation
equation

(1 − 𝑞) 𝐿
𝑓

[𝐹 (𝜂; 𝑞) − 𝑓
0

(𝜂; 𝑞)] = 𝑞ℎ
𝑓

𝑁
𝑓

[𝐹 (𝜂; 𝑞) , Θ (𝜂; 𝑞)] ,

(1 − 𝑞) 𝐿
𝜃

[Θ (𝜂; 𝑞) − 𝜃
0

(𝜂; 𝑞)] = 𝑞ℎ
𝜃
𝑁
𝜃

[𝐹 (𝜂; 𝑞) , Θ (𝜂; 𝑞)]

(A.5)

subject to the boundary conditions

𝐹 (0; 𝑞) =
𝜕𝐹 (𝜂; 𝑞)

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0
= 0,

𝜕𝐹 (𝜂; 𝑞)

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=∞
= 1,

Θ (∞, 𝑞) = 0,
𝜕Θ (𝜂; 𝑞)

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0
= −𝛾 (1 − Θ (0)) ,

(A.6)

where the nonlinear operators 𝑁
𝑓
and 𝑁

𝜃
are defined by

using (10) as

𝑁
𝑓

=
𝜕3𝐹

𝜕𝜂3
+ 𝐹

𝜕2𝐹

𝜕𝜂2
+

2

3
(1 − (

𝜕𝐹

𝜕𝜂
)
2

) −
4

3
𝜆Θ,

𝑁
𝜃

=
𝜕2Θ

𝜕𝜂2
+ Pr ⋅ 𝐹

𝜕Θ

𝜕𝜂
,

(A.7)

where 𝑞 is an embedding parameter and 𝐹(𝜂; 𝑞) and Θ(𝜂; 𝑞)
are real functions of 𝜂 and 𝑞. Obviously, when 𝑞 = 0 and 𝑞 = 1,
it is clear from (10) and the above zeroth-order deformation
equations given by (A.5) that

𝐹 (𝜂; 0) = 𝑓
0

(𝜂) , Θ (𝜂; 0) = 𝜃
0

(𝜂) ,

𝐹 (𝜂; 1) = 𝑓 (𝜂) , Θ (𝜂; 1) = 𝜃 (𝜂) .
(A.8)

So, as 𝑞 increases from 0 to 1, 𝐹(𝜃; 𝑞) and Θ(𝜂; 𝑞) vary from
the initial guesses 𝑓

0
(𝜂) and 𝜃

0
(𝜂) to the corresponding exact

solutions 𝑓(𝜂) and 𝜃(𝜂).
Expanding 𝐹(𝜂; 𝑞) and Θ(𝜂; 𝑞) in Taylor’s series at 𝑞 = 0,

we have

𝐹 (𝜂; 𝑞) = 𝐹 (𝜂; 0) +
+∞

∑
𝑚=1

𝑓
𝑚

(𝜂) 𝑞𝑚,

Θ (𝜂; 𝑞) = Θ (𝜂; 0) +
+∞

∑
𝑚=1

𝜃
𝑚

(𝜂) 𝑞𝑚,

(A.9)
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where

𝑓
𝑚

(𝜂) =
1

𝑚!

𝜕𝑚𝐹 (𝜂; 𝑞)

𝜕𝑞𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0
,

𝜃
𝑚

(𝜂) =
1

𝑚!

𝜕𝑚Θ (𝜂; 𝑞)

𝜕𝑞𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0
.

(A.10)

Assume that all the HAM parameters are so properly chosen
that the series defined by (A.9) converges at 𝑞 = 1.Then using
(A.8) we get the solution series as

𝑓 (𝜂) = 𝑓
0

(𝜂) +
+∞

∑
𝑚=1

𝑓
𝑚

(𝜂) ,

𝜃 (𝜂) = 𝜃
0

(𝜂) +
+∞

∑
𝑚=1

𝜃
𝑚

(𝜂) .

(A.11)

Now differentiating the zeroth-order deformation equations
(A.5), 𝑚-times with respect to 𝑞, then setting 𝑞 = 0, and
finally dividing with𝑚!, we obtained the𝑚th-order deforma-
tion equations for 𝑓

𝑚
(𝜂) and 𝜃

𝑚
(𝜂):

𝐿
𝑓

[𝑓
𝑚

(𝜂) − 𝜒
𝑚

𝑓
𝑚−1

(𝜂)] = ℎ
𝑓

𝑅𝑚
𝑓

(𝜂) , (A.12)

𝐿
𝜃

[𝜃
𝑚

(𝜂) − 𝜒
𝑚

𝜃
𝑚−1

(𝜂)] = ℎ
𝜃
𝑅𝑚
𝜃

(𝜂) (A.13)

subject to boundary conditions

𝑓
𝑚

(0) = 0, 𝑓󸀠
𝑚

(0) = 0, 𝑓󸀠
𝑚

(∞) = 0,

𝜃
𝑚

(∞) = 0, 𝜃󸀠
𝑚

(0) = 𝛾𝜃
𝑚

(0) ,
(A.14)

where

𝑅𝑚
𝑓

(𝜂) = 𝑓󸀠󸀠󸀠
𝑚−1

(𝜂) +
𝑚−1

∑
𝑛=0

𝑓
𝑛

(𝜂) 𝑓󸀠󸀠
𝑚−1−𝑛

(𝜂)

−
2

3

𝑚−1

∑
𝑛=0

𝑓󸀠
𝑛

(𝜂) 𝑓󸀠
𝑚−1−𝑛

(𝜂)

−
4

3
𝜆𝜃
𝑚−1

(𝜂) +
2

3
(1 − 𝜒

𝑚
) ,

(A.15)

𝑅𝑚
𝜃

(𝜂) = 𝜃󸀠󸀠
𝑚−1

(𝜂) + Pr
𝑚−1

∑
𝑛=0

𝑓
𝑛

(𝜂) 𝜃󸀠
𝑚−1−𝑛

(𝜂) , (A.16)

𝜒
𝑚

= {
0, 𝑚 ≤ 1,

1, 𝑚 > 1.
(A.17)
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Wärme- und Stoffübertragung, vol. 29, no. 7, pp. 399–405, 1994.

[8] S. Liao, “An explicit, totally analytic approximate solution for
Blasius’ viscous flow problems,” International Journal of Non-
Linear Mechanics, vol. 34, no. 4, pp. 759–778, 1999.

[9] S. J. Liao, Homotopy Analysis Method in Nonlinear Differential
Equations, Higher Education Press, Beijing, China, 2012.

[10] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy
Analysis Method, Chapman&Hall/CRC, Boca Raton, Fla, USA,
2003.

[11] S. Liao and I. Pop, “Explicit analytic solution for similarity
boundary layer equations,” International Journal of Heat and
Mass Transfer, vol. 47, no. 1, pp. 75–85, 2004.

[12] H. Xu, “An explicit analytic solution for free convection about
a vertical flat plate embedded in a porous medium by means of
homotopy analysis method,” Applied Mathematics and Compu-
tation, vol. 158, no. 2, pp. 433–443, 2004.

[13] C. Wang, J. M. Zhu, S. J. Liao, and I. Pop, “On the explicit ana-
lytic solution of Cheng-Chang equation,” International Journal
of Heat and Mass Transfer, vol. 46, no. 10, pp. 1855–1860, 2003.

[14] S. Liao, “An optimal homotopy-analysis approach for strongly
nonlinear differential equations,” Communications in Nonlinear
Science and Numerical Simulation, vol. 15, no. 8, pp. 2003–2016,
2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


