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High-order consensus seeking, in which individual high-order dynamic agents share a consistent view of the objectives and the
world in a distributed manner, finds its potential broad applications in the field of cooperative control. This paper presents stability
switches analysis of arbitrary high-order consensus in multiagent networks with time delays. By employing a frequency domain
method, we explicitly derive analytical equations that clarify a rigorous connection between the stability of general high-order
consensus and the system parameters such as the network topology, communication time-delays, and feedback gains. Particularly,
our results provide a general and a fairly precise notion of how increasing communication time-delay causes the stability switches
of consensus. Furthermore, under communication constraints, the stability and robustness problems of consensus algorithms up
to third order are discussed in details to illustrate our central results. Numerical examples and simulation results for fourth-order
consensus are provided to demonstrate the effectiveness of our theoretical results.

1. Introduction

Our understanding of distributed cooperative control for
both natural and engineered dynamic networks has been
advanced in the last few years [1–8]. Particularly, it is
found that the research on shared information of interest
in the network of dynamic agents facilitates significantly the
distributed coordinated control [8–16]. Therefore, an essen-
tial issue for successful coordination is to design effective
algorithms so that the agents in the network can converge to a
consistent sense or view of the shared information of interest.
A consensus algorithm is an interaction rule that governs the
information exchange between a dynamic agent and all of its
neighbors in the network. Notwithstanding original studies
in the area of computer science (particularly in distributed
computation and automata), the consensus problems dis-
cussed previously have been studied extensively in the context
of distributed coordination of dynamic networks, partly due
to the potential applications including congestion control in
communication networks, cooperative control of multiple
vehicle systems, formation control, swarming and flocking,
distributed sensor network, attitude alignment of groups of
satellites, air traffic control, and many others [17–20].

It is noticed that most algorithms focus on the consensus
problems for the networks of agents with single or double
integrator dynamics. In the current paper, we investigate
arbitrary high-order consensus networks in presence of
communication time-delays, which generalize the aforemen-
tioned existing results in the literature.The idea of employing
high-order integrator dynamic agents under communication
constraints is inspired by the following reasons.

First, from the point of view of system science, nonlinear
systems of a broad class (i.e., feedback linearizable systems)
can be transformed to linear systems via feedback control
and transformation of the state vector by using differential-
geometric methods [21]. Hence, if there exist algorithms
solving the consensus problems for networks of agents
with dynamics described by the high-order integrator, then
consensus controllers can be readily designed for nonlinear
dynamic networks. Second, observing flocking, schooling,
and swarming behaviors in nature has truly inspired that
biological networks may also have to build consensus on
acceleration or even jerk tomaintain the collective behaviours
in some sudden events (for instance, when one of a fish school
is suddenly aware of some source of foods or threats) [22].
Third, due to the limited communication capacity of dynamic
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agents, the communication time-delays are inevitable in
reality. It is well known that unmodeled delay effects may
deteriorate the performance of the system and even destabi-
lize it [23]. Therefore, it is of both theoretical and practical
interest to pursue the consensus problems in our general
framework.

In our earlier work [16], it was shown that the forced
second-order consensus with delayed input can be achieved
asymptotically for appropriate time-delay if the network is
connected. However, as the order of the consensus increases,
the effects of high-order dynamics of the agents emerge, and
the consensus problems are much more complicated.

In this paper, we extend earlier work and introduce
scalable arbitrary high-order consensus algorithms with
communication time-delays. Via frequency domain analysis,
we investigate the stability switches and establish an explicit
general connection between the arbitrary high-order con-
sensus and the system parameters, including the Laplacian
spectrum of the underlying network topology, the feedback
gains of the algorithms, and communication constraints. The
main contribution of this paper is to provide a theoretical
and computational framework for analysis and synthesis
of scalable arbitrary high-order consensus algorithms in
presence of communication time-delays.

An outline of this paper is as follows. Section 2 deals
with basic concepts and notational details used throughout
the paper and introduces the arbitrary high-order consensus
algorithms with communication time-delays. The main the-
oretical results are given in Section 3, while Section 4 offers
numerical simulation instances, showing the effectiveness
of the present method. Finally, concluding remarks are
presented in Section 5.

2. Background and Problem Statement

Consider 𝑛 dynamic agents with 𝑘th-order dynamics de-
scribed by

𝑥̇
(0)

𝑖 (𝑡) = 𝑥
(1)

𝑖 (𝑡) ,

...

𝑥̇
(𝑘−2)

𝑖 (𝑡) = 𝑥
(𝑘−1)

𝑖 (𝑡) ,

𝑥̇
(𝑘−1)

𝑖 (𝑡) = 𝑢𝑖 (𝑡) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑥(𝑚)
𝑖

(𝑡) ∈ 𝑅, 𝑚 = 0, 1, . . . , 𝑘 − 1, and
𝑢𝑖(𝑡) ∈ 𝑅 denote the information states and the control input
of agent 𝑖, respectively. 𝑥(𝑚)

𝑖
(𝑡) denotes the 𝑚th derivative of

𝑥𝑖 with 𝑥
(0)

𝑖
(𝑡) = 𝑥𝑖(𝑡). Define the states of the whole network

as

X (𝑡) = [(x(0)(𝑡))𝑇, . . . , (x(𝑘−1) (𝑡) )𝑇]
𝑇
, (2)

where x(𝑚)(𝑡) = [𝑥
(𝑚)
1 (𝑡), . . . , 𝑥

(𝑚)
𝑛 (𝑡)]

𝑇, 𝑚 = 0, 1, . . . , 𝑘 − 1.
Then, we can decompose x(𝑚)(𝑡) according to the following
equation:

x(𝑚) (𝑡) = 𝑥
(𝑚)

(𝑡) 1 + 𝛿
(𝑚)

(𝑡) , (3)

where 𝑥
(𝑚)

(𝑡) = ∑𝑖 𝑥
(𝑚)

𝑖
(𝑡)/𝑛, 1 = [1, 1, . . . , 1]

𝑇
∈ R𝑛, and

𝛿
(𝑚)

(𝑡) ∈ R𝑛. We refer to 𝑒(𝑡) = ∑
𝑘−1

𝑚=0 ‖𝛿
(𝑚)

(𝑡)‖

2
as the overall

group disagreement for the 𝑘th-order consensus problems,
where ‖ ⋅ ‖ denotes the Euclidean norm. The set of integers,
real numbers, and complex numbers are denoted byZ, R, and
C, respectively.

Information exchange between agents can be naturally
modeled by the weighted undirected graph 𝐺 = (𝑉, 𝐸,A),
where 𝑉 = {V𝑖} is the set of agents, {𝑒𝑖𝑗} = 𝐸 ⊆ 𝑉 × 𝑉 is the
set of links between the agents, and A is the corresponding
weighted adjacency matrix.The adjacency matrixA = [𝑎𝑖𝑗] ∈

𝑅
𝑛×𝑛 is defined such that 𝑎𝑖𝑗 > 0 if (V𝑗, V𝑖) ∈ 𝐸, while 𝑎𝑖𝑗 = 0 if

(V𝑗, V𝑖) ∉ 𝐸. Therefore, the 𝑎𝑖𝑗 allow our results to be valid and
useful for weighted network, that is, much more general than
0-1 weighted network. Let matrix L = [𝑙𝑖𝑗] be defined as 𝑙𝑖𝑖 =
∑𝑗 ̸= 𝑖 𝑎𝑖𝑗 and 𝑙𝑖𝑗 = −𝑎𝑖𝑗, where 𝑖 ̸= 𝑗. Following algebraic graph
theory, L is positive semidefinite and is called the Laplacian
matrix. The set of neighbors of agent 𝑖 is defined as𝑁𝑖 = {V𝑗 :
(V𝑗, V𝑖) ∈ 𝐸}. The degree of the node V𝑖 ∈ 𝑉 and the average
of the degrees of the vertices adjacent to V𝑖 are denoted by
𝑑𝑖 = |𝑁𝑖| and𝑚𝑖, respectively.The graph𝐺 does not contain a
loop, a link joining an agent to itself. Suppose that each agent
exchanges the information with its neighboring agents after
the communication time-delay 𝜏𝑖𝑗 > 0 corresponding to the
link 𝑒𝑖𝑗 ∈ 𝐸.

We employ the following scalable time-delayed high-
order consensus algorithm:

𝑢𝑖 (𝑡) = ∑

𝑗∈𝑁𝑖

𝑎𝑖𝑗

𝑘−1

∑

𝑚=0

𝛽𝑚 (𝑥
(𝑚)

𝑗 (𝑡 − 𝜏𝑖𝑗) − 𝑥
(𝑚)

𝑖 (𝑡 − 𝜏𝑖𝑗)) , (4)

where 𝛽𝑚 are positive constants denoting the feedback gains
of the algorithm.

The high-order consensus problem discussed in this
paper is defined exactly as follows.

Definition 1 (𝑘th-order consensus). For the network of 𝑘th-
order integrator systems, consensus is said to be reached
globally asymptotically among dynamic agents if |𝑥(𝑚)

𝑖
(𝑡) −

𝑥
(𝑚)

𝑗
(𝑡)| → 0, 𝑚 = 0, 1, . . . , 𝑘 − 1, for all 𝑖 ̸= 𝑗 as 𝑡 → ∞ for

any 𝑥(0).

3. Main Results

3.1. General Stability Switches Criterion. In this section, we
consider the high-order consensus problems in weighted net-
works of dynamic agents with 𝑘th-order integrator dynamics
when the interaction is affected by communication time-
delays.The following theoremprovides the general formalism
for the high-order consensus with communication time-
delays and gives insight in the relation between the stability
switches of general high-order consensus and the system
parameters such as the network topology, communication
time-delays, and feedback gains.

Theorem 2. Consider a network of n dynamic agents with
dynamics described by (1). Assume that the network 𝐺 =
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(𝑉, 𝐸,A) is connected and that each agent receives the infor-
mation from its neighboring agents after a constant time-delay
𝜏 > 0 and applies the control law (4). Then, the following
statements are true:

(a) if all 𝐾𝑖(𝜔) := 𝜔
2𝑘

− 𝜇
2
𝑖 | ∑
𝑘−1

𝑚=0 𝛽𝑚(𝑗𝜔)
𝑚
|

2
= 0 (2 ≤

𝑖 ≤ 𝑛) have no positive roots, then no stability switch of
consensus may occur, and hence, if consensus is stable
at 𝜏 = 0 it remains stable for all 𝜏 > 0, whereas if it is
unstable at 𝜏 = 0 it remains unstable for all 𝜏 > 0;

(b) if there exist equations 𝐾𝑖(𝜔) = 0 that have at least
one positive root and each of them is simple, then
as 𝜏 increases, a finite number of stability switches
of consensus may occur, and eventually the consensus
becomes unstable.

Proof. Since the graph 𝐺 is connected, the Laplacian matrix
L of 𝐺 has a simple zero eigenvalue, and all the other
eigenvalues are positive real numbers. Hence, −L has exactly
one zero eigenvalue, and all the other eigenvalues are negative
real numbers. Therefore, we write the eigenvalues of −L in
the form 𝜇𝑛 ≤ 𝜇𝑛−1 ≤ ⋅ ⋅ ⋅ ≤ 𝜇2 < 𝜇1 = 0. Given the time-
delayed high-order algorithm (4), the network dynamics can
be written as

ẋ(0) (𝑡) = x(1) (𝑡) ,

...

ẋ(𝑘−2) (𝑡) = x(𝑘−1) (𝑡) ,

ẋ(𝑘−1) (𝑡) = −L
𝑘−1

∑

𝑚=0

𝛽𝑚x
(𝑚)

(𝑡 − 𝜏) .

(5)

Despite the nonzero time-delay 𝜏 existing in the net-
work, we still have that 𝑥(𝑘−1) is an invariant quality during
the transient process. Then, by employing the appropriate
linear transformations z(𝑚)(𝑡) = U𝑇x(𝑚)(𝑡), the closed-loop
dynamics equations can be decoupled into 𝑛 noninteracting
subsystems

𝑧̇
(0)

𝑖 (𝑡) = 𝑧
(1)

𝑖 (𝑡) ,

...

𝑧̇
(𝑘−2)

𝑖 (𝑡) = 𝑧
(𝑘−1)

𝑖 (𝑡) ,

𝑧̇
(𝑘−1)

𝑖 (𝑡) = 𝜇𝑖

𝑘−1

∑

𝑚=0

𝛽𝑚𝑧̇
(𝑚)

𝑖 (𝑡 − 𝜏) ,

(6)

where 𝑖 = 1, 2, . . . , 𝑛 and 𝑧
(𝑚)

𝑖
(𝑡) is the 𝑖th components of

z(𝑚)(𝑡). In order to establish the stability of the high-order

consensus system, our proof heavily depends on the fre-
quency domain analysis. After taking the Laplace transform
of the last set of equations, we get

[

[

[

[

[

[

[

𝑧
(0)

𝑖 (𝑠)

...
𝑧
(𝑘−2)

𝑖 (𝑠)

𝑧
(𝑘−1)

𝑖 (𝑠)

]

]

]

]

]

]

]

= (𝑠I𝑘 −Ω𝑖 (𝑠))
−1

[

[

[

[

[

[

[

𝑧
(0)

𝑖 (0)

...
𝑧
(𝑘−2)

𝑖 (0)

𝑧
(𝑘−1)

𝑖 (0)

]

]

]

]

]

]

]

, (7)

where

Ω𝑖 (𝑠) =

[

[

[

[

[

0 1 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 1

𝛽0𝜇𝑖𝑒
−𝜏𝑠

⋅ ⋅ ⋅ 𝛽𝑘−2𝜇𝑖𝑒
−𝜏𝑠

𝛽𝑘−1𝜇𝑖𝑒
−𝜏𝑠

]

]

]

]

]

, (8)

𝑠 is the Laplace variable, and I𝑘 is the 𝑘 × 𝑘 identity matrix.
Denote Ξ𝑖(𝑠) = 𝑠I𝑘 − Ω𝑖(𝑠). Let (𝑠, [𝑓𝑖0, . . . , 𝑓𝑖(𝑘−2),

𝑓𝑖(𝑘−1)]
𝑇
) be a right MIMO transmission zero of Ξ𝑖(𝑠) at

frequency 𝑠 in the direction [𝑓𝑖0, . . . , 𝑓𝑖(𝑘−2), 𝑓𝑖(𝑘−1)]
𝑇; that is,

Ξ𝑖(𝑠)[𝑓𝑖0, . . . , 𝑓𝑖(𝑘−2), 𝑓𝑖(𝑘−1)]
𝑇

= 0, where 𝑠 ∈ C and [𝑓𝑖0, . . . ,

𝑓𝑖(𝑘−2), 𝑓𝑖(𝑘−1)]
𝑇

̸= 0. Then, we find that

𝑠𝑓𝑖0 − 𝑓𝑖1 = 0,

...

𝑠𝑓𝑖(𝑘−2) − 𝑓𝑖(𝑘−1) = 0,

−𝑒
−𝜏𝑠

𝜇𝑖

𝑘−1

∑

𝑚=0

𝛽𝑚𝑓𝑖𝑚 + 𝑠𝑓𝑖(𝑘−1) = 0,

(9)

and therefore,

[𝑠
𝑘
− 𝑒
−𝜏𝑠

𝜇𝑖

𝑘−1

∑

𝑚=0

𝛽𝑚𝑠
𝑚
]𝑓𝑖0 = 0. (10)

It is obvious that𝑓𝑖0 ̸= 0.Thus, (10) tells us that the poles of the
𝑖th subsystem described by (6) can be determined according
to the following fundamental transcendental equations:

𝑄𝑖 (𝑠) := 𝑠
𝑘
− 𝑒
−𝜏𝑠

𝜇𝑖

𝑘−1

∑

𝑚=0

𝛽𝑚𝑠
𝑚

= 0, (11)

where 𝑖 = 1, 2, . . . , 𝑛.
From (6), we note that the first subsystem (for 𝜇1 = 0)

is marginally stable. Hence, for the high-order consensus to
be stable, all the other subsystems (for 𝜇𝑖(2 ≤ 𝑖 ≤ 𝑛)) have
to be asymptotically stable, which means that all the poles
(i.e., roots) given by (11), for 2 ≤ 𝑖 ≤ 𝑛, need to be located
in the open left half-plane (LHP). Therefore, it is sufficient to
consider the location of the roots of the equations 𝑄𝑖(𝑠) = 0

for 2 ≤ 𝑖 ≤ 𝑛. Since

lim sup
Re(𝑠)>0
|𝑠|→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠
−𝑘
𝜇𝑖

𝑘−1

∑

𝑚=0

𝛽𝑚𝑠
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, (12)
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we conclude that the total multiplicity 𝐷𝑖(𝜏) of roots of
𝑄𝑖(𝑠) = 0 in the open right half-plane is finite, and 𝐷𝑖(𝜏) can
change only if a root appears on or crosses the imaginary axis.

As communication time-delay 𝜏 increases, it may happen
that roots cross the imaginary axis, and the equations𝑄𝑖(𝑠) =
0 may change from stable to unstable or vice versa, and
accordingly, the stability of consensus may switch. If so, we
say that there has been a stability switch of consensus. Now,
we examine the location of roots and the direction of motion
as they cross the imaginary axis as follows.

Assume that 𝑠 = 𝑗𝜔 ̸= 0 is a root of (11). Because 𝑀(𝑠) :=

𝑠
𝑘 and 𝑁𝑖(𝑠) := −𝜇𝑖∑

𝑘−1

𝑚=0 𝛽𝑚𝑠
𝑚 (2 ≤ 𝑖 ≤ 𝑛) are polynomials

of real coefficients, we may choose 𝜔 > 0 without loss of
generality. Equation (11) implies that𝐾𝑖(𝜔) = 0, which clearly
implies (a) of our theorem.

Next, assume there exist equations 𝐾𝑖(𝜔) = 0 (𝑖 ∈ Δ ⊆

{2, 3, . . . , 𝑛}) that have at least one positive root and each of
them is simple. Our discussion thereafter is limited to such
nonempty set 𝑖 ∈ Δ. We set 𝑀(𝑗𝜔) = 𝑀𝑅(𝜔) + 𝑗𝑀𝐼(𝜔) and
𝑁𝑖(𝑗𝜔) = 𝑁𝑖𝑅(𝜔) + 𝑗𝑁𝑖𝐼(𝜔), where𝑀𝑅,𝑀𝐼,𝑁𝑖𝑅, and𝑁𝑖𝐼 are
real-valued functions.Then, we find that (11) holds if and only
if

𝑁𝑖𝑅 cos (𝜔𝜏) + 𝑁𝑖𝐼 sin (𝜔𝜏) = −𝑀𝑅,

𝑁𝑖𝐼 cos (𝜔𝜏) − 𝑁𝑖𝑅 sin (𝜔𝜏) = −𝑀𝐼.

(13)

Therefore,

sin (𝜔𝜏) =

−𝑀𝑅𝑁𝑖𝐼 + 𝑀𝐼𝑁𝑖𝑅

󵄨
󵄨
󵄨
󵄨
𝑁𝑖

󵄨
󵄨
󵄨
󵄨

2
, (14)

cos (𝜔𝜏) =
−𝑀𝑅𝑁𝑖𝑅 − 𝑀𝐼𝑁𝑖𝐼

󵄨
󵄨
󵄨
󵄨
𝑁𝑖

󵄨
󵄨
󵄨
󵄨

2
, (15)

where 0 ≤ 𝜔𝜏 < 2𝜋. For each root of𝐾𝑖(𝜔) = 0 (𝑖 ∈ Δ), it may
be possible to calculate all values of 𝜏 > 0 that satisfy (14) and
(15).

Now suppose that we have obtained values of 𝜔, 𝜏 by
the previous procedure. We regard the root 𝑠(𝜏) of (11) as
a function of time-delay 𝜏, and we need to determine the
direction of motion of Re(𝑠(𝜏)) as 𝜏 is varied. That is, we
calculate

Φ = sign(

d
d𝜏

Re (𝑠 (𝜏))
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝑗𝜔

)

= sign(Re( d
d𝜏

𝑠 (𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝑗𝜔

)) .

(16)

Since 𝑄𝑖(𝑠) is an analytic function of 𝑠 and 𝜏, a root 𝑠(𝜏) will
be a differentiable function of time-delay 𝜏, except at points
where the root is multiple.

Then, differentiating (11) with respect to 𝜏 gives

(

d𝑠
d𝜏

)

−1

= −

𝑀
󸀠
(𝑠)

𝑠𝑀 (𝑠)

+

𝑁
󸀠
𝑖 (𝑠)

𝑠𝑁𝑖 (𝑠)
−

𝜏

𝑠

, (17)

which holds at any simple root 𝑗𝜔 of (11) with 𝑖 ∈ Δ.
Therefore,

Φ = sign(Re( d
d𝜏

𝑠 (𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝑗𝜔

))

= sign Re(−

𝑀
󸀠
(𝑗𝜔)

𝑗𝜔𝑀(𝑗𝜔)

+

𝑁
󸀠
𝑖 (𝑗𝜔)

𝑗𝜔𝑁𝑖 (𝑗𝜔)
−

𝜏

𝑗𝜔

)

= sign Re(−

𝑀
󸀠
(𝑗𝜔)

𝑗𝜔𝑀(𝑗𝜔)

+

𝑁
󸀠
𝑖 (𝑗𝜔)

𝑗𝜔𝑁𝑖 (𝑗𝜔)
)

= −sign Im(

𝑀
󸀠
(𝑗𝜔)

𝑀 (𝑗𝜔)

−

𝑁
󸀠
𝑖 (𝑗𝜔)

𝑁𝑖 (𝑗𝜔)
)

= sign [− Im (𝑀
󸀠
(𝑗𝜔)𝑀 (𝑗𝜔) − 𝑁

󸀠

𝑖 (𝑗𝜔)𝑁𝑖 (𝑗𝜔))]

= sign [𝑀𝑅𝑀
󸀠

𝑅 + 𝑀𝐼𝑀
󸀠

𝐼 − 𝑁𝑖𝑅𝑁
󸀠

𝑖𝑅 − 𝑁𝑖𝐼𝑁
󸀠

𝑖𝐼]

= sign [𝐾
󸀠

𝑖 (𝜔)]

= sign[

[

d
d𝜔

(𝜔
2𝑘

− 𝜇
2

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑘−1

∑

𝑚=0

𝛽𝑚(𝑗𝜔)
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

)
]

]

.

(18)

The last line in (18) is a central formula that explicitly
connects the horizontal moving sense of a root of (11) when
communication time-delay 𝜏 increases with the properties of
the network topology and feedback gains.

Suppose that 𝜔𝑖1 > 𝜔𝑖2 > ⋅ ⋅ ⋅ > 𝜔𝑖𝑝 > 0 are constants such
that 𝑗𝜔𝑖𝑑, 𝑑 = 1, 2, . . . , 𝑝, are simple roots of our 𝐾𝑖(𝜔) = 0

corresponding to 𝜇𝑖 (𝑖 ∈ Δ) that cross the imaginary axis at
𝑗𝜔𝑖𝑑 at time-delay values 𝜏𝑖𝑑𝑟 (𝑟 = 1, 2, . . .) determined by (14)
and (15). At each crossing, the number of roots in the half-
plane Re(𝑠) > 0 changes by two, as roots occur in conjugate
pairs. Since 𝐾

󸀠
𝑖 (𝜔𝑖𝑑) and 𝐾

󸀠
𝑖 (𝜔𝑖(𝑑+1)) have opposite signs, we

observe that crossing at two adjacent simple roots 𝑗𝜔𝑖𝑑 and
𝑗𝜔𝑖(𝑑+1) must be in opposite moving directions. Moreover,
for crossing at a given root 𝑗𝜔𝑖𝑑, the difference between the
adjacent time-delay values is 𝜏𝑖𝑑(𝑟+1) − 𝜏𝑖𝑑𝑟 = 2𝜋/𝜔𝑖𝑑. Hence,
on the average, crossings occur most frequently at 𝑗𝜔𝑖1, next
most frequently at 𝑗𝜔𝑖2, . . ., and least often at 𝑗𝜔𝑖𝑝, which
implies that crossings at 𝑗𝜔𝑖(2𝑞+1) must be to the right and
crossings at 𝑗𝜔𝑖(2𝑞) must be to the left. Then, as 𝜏 increases,
a finite number of stability switches of consensus may occur,
and eventually the consensus becomes unstable. This clearly
implies (b) of our theorem.

3.2. Analytical Results on the Maximum Tolerable Commu-
nication Time-Delays for High-Order Consensus. Theorem 2
provides a fairly general and precise notion of how increasing
communication time-delay affects the stability of arbitrary
high-order consensus and sheds light on the relation between
the graph Laplacian spectrum of the underlying network
and the convergence properties of the proposed consensus
algorithm. Furthermore, the method of proof given develops
a way to determine the critical values of time-delay 𝜏 where
stability switch of consensus may occur. With Theorem 2
in hand, we may even derive closed-form analytical results
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on the maximum tolerable communication time-delays for
consensus problems with specific orders.

We now introduce the following existing results reported
in Olfati-Saber and Murray [5] for the first-order consensus
case and our earlier work [16] for the second-order case,
respectively. It can be shown that these two statements are
routine corollaries of Theorem 2 which we derived in this
paper.

Corollary 3 (see [5]). Consider a network of first-order inte-
grator agents. Assume that the network 𝐺 = (𝑉, 𝐸,A) is
connected and that each agent receives the information from
its neighboring agents after a constant time-delay 𝜏 > 0 and
applies the control law (4). Then, the network solves first-order
consensus if and only if 𝜏 ∈ [0, 𝜏

∗
) with

𝜏
∗
= −

𝜋

2𝛽0𝜇𝑛

. (19)

Corollary 4 (see [16]). Consider a network of second-order
integrator agents. Assume that the network 𝐺 = (𝑉, 𝐸,A) is
connected and that each agent receives the information from
its neighboring agents after a constant time-delay 𝜏 > 0 and
applies the control law (4). Then, the network solves second-
order consensus if and only if 𝜏 ∈ [0, 𝜏

∗
) with

𝜏
∗
= min
2≤𝑖≤𝑛

{arctan
(𝛽1𝜔𝑖/𝛽0)

𝜔𝑖

} , (20)

where

𝜔𝑖 = (

(𝜇
2
𝑖 𝛽
2
1 + (𝜇

4
𝑖 𝛽
4
1 + 4𝜇

2
𝑖 𝛽
2
0)
1/2

)

2

)

1/2

. (21)

Now we give the necessary and sufficient condition
for the stability of the third-order consensus in multiagent
networks with time-delays, with the purpose of showing
how Theorem 2 can be applied to consensus problems with
specific orders.

Corollary 5. Consider a network of third-order integrator
agents. Assume that the network𝐺 = (𝑉, 𝐸,A) is connected and
that each agent receives the information from its neighboring
agents after a constant time-delay 𝜏 > 0 and applies the control
law (4). Suppose that the network topology and feedback gains
satisfy the following conditions:

(i) 𝜇2 < −

𝛽0

𝛽1𝛽2

;

(ii) 𝛽
2

1 − 2𝛽0𝛽2 > 0.

(22)

Then, the network solves third-order consensus if and only if
𝜏 ∈ [0, 𝜏

∗
) with

𝜏
∗
= min
2≤𝑖≤𝑛

{

𝜃𝑖

𝜔𝑖

} , (23)

where 𝜔𝑖 and 𝜃𝑖 are given by (24), (25), and (26).

Proof. For the third-order consensus, we have 𝑘 = 3,𝑀(𝑠) =

𝑠
3, and𝑁𝑖(𝑠) = −𝜇𝑖∑

2

𝑚=0 𝛽𝑚𝑠
𝑚. When 𝜏 = 0, (11) degenerates

to the polynomials 𝑠3 − 𝜇𝑖𝛽2𝑠
2
− 𝜇𝑖𝛽1𝑠 − 𝜇𝑖𝛽0 = 0, which are

Hurwitz stable for the nonidentically zero eigenvalues 𝜇𝑖 (2 ≤

𝑖 ≤ 𝑛) if and only if hypothesis (i) holds. When 𝜏 > 0, the
equation

𝐾𝑖 (𝜔) = 𝜔
6
− 𝜇
2

𝑖 𝛽
2

2𝜔
4
− 𝜇
2

𝑖 (𝛽
2

1 − 2𝛽0𝛽2) 𝜔
2
− 𝜇
2

𝑖 𝛽
2

0 = 0

(24)

is a cubic equation in 𝜔
2, and hence, the cubic formula can

be applied to yield the closed-form solution. Furthermore, by
Descartes’ Rule of Signs, we see that the cubic equation in
𝜔
2 has exactly one positive real root for all 2 ≤ 𝑖 ≤ 𝑛 due

to hypothesis (ii). Therefore, the existence and uniqueness of
positive real roots 𝜔𝑖 > 0 of the original (24) are guaranteed.
Then, the crossing at 𝑗𝜔𝑖 must be to the right. Using (14) and
(15), the critical communication time-delay 𝜏 can be given by

sin (𝜃) =

𝜔
3
(𝛽0 − 𝛽2𝜔

2
)

𝜇𝑖 [(𝛽0 − 𝛽2𝜔
2
)
2
+ 𝛽
2
1𝜔
2
]

, (25)

cos (𝜃) =
−𝜔
3
𝛽1𝜔

𝜇𝑖 [(𝛽0 − 𝛽2𝜔
2
)
2
+ 𝛽
2
1𝜔
2
]

, (26)

where 0 ≤ 𝜃 < 2𝜋.Then, we have the following set of values of
𝜏𝑖𝑟 corresponding to 𝜇𝑖 for which there are imaginary roots:

𝜏𝑖𝑟 =
𝜃𝑖

𝜔𝑖

+

2𝑟𝜋

𝜔𝑖

, (27)

where 𝑟 = 0, 1, 2, . . ..
Hence, the explicit expression for the tight upper bound

on the time-delays is given by 𝜏
∗

= min2≤𝑖≤𝑛{𝜃𝑖/𝜔𝑖}. Then
we conclude from Theorem 2 that when 0 ≤ 𝜏 < 𝜏

∗, the
consensus is stable and when 𝜏 > 𝜏

∗, it is unstable. Moreover,
the system has a globally asymptotically stable oscillatory
solution when 𝜏 = 𝜏

∗.

Remark 6. The maximum tolerable communication time-
delay is a fundamental performance measure for consensus
and hence plays an important role in the design of distributed
coordination of multiagent systems. It is shown previously
that the communication constraints affect the stability of
a high-order consensus process in a rather sophisticated
fashion. Our results imply that the optimal (or suboptimal)
feedback gains and network topologies can be synthesized
such that the general high-order consensus robustness of
the dynamic network to the communication time-delays is
maximized. Thus, in that sense our results can shed light on
the whole distributed cooperative control design.

4. Numerical Example and Simulation Results

We stress that the results in this paper characterize the
robustness of the distributed algorithms to the communi-
cation time-delays existing in the network for the arbitrary
high-order consensus. In order to illustrate this point, we
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Figure 1: Undirected communication graph𝐺 used for fourth-order
consensus problem.

consider solving fourth-order consensus problem of the
network of four agents, whose communication graph 𝐺 is
shown in Figure 1. It is easy to see that 𝐺 is a connected
graph. We assume that the numbers on the links are the
corresponding weights of the communication links in the
graph 𝐺, and that the communication time-delay 𝜏 ≥ 0 is
time invariant. Moreover, the agents evolve according to (1)
and (4) starting from a random initial conditions that can be
arbitrary continuous function defined on [−𝜏, 0]. We assume
that the communication time-delay 𝜏 ≥ 0 is time invariant.
The algorithm parameters are assigned to the values 𝛽0 = 1,
𝛽1 = 1, 𝛽2 = 3, and 𝛽3 = 1. By Theorem 2, we have 𝑘 = 4,
𝑀(𝑠) = 𝑠

4, and 𝑁𝑖(𝑠) = −𝜇𝑖∑
3

𝑚=0 𝛽𝑚𝑠
𝑚. Then all equations

𝐾𝑖(𝜔) = 0, 2 ≤ 𝑖 ≤ 4 have exactly one positive real root for
all 𝜔2 = 1.1760, 𝜔3 = 2.0311, and 𝜔4 = 5.6174. Thus, the
corresponding crossings at 𝑗𝜔𝑖 for all 𝑄𝑖(𝑠) = 0 must be to
the right. Furthermore, when 𝜏 = 0, the consensus is stable,
since the characteristic polynomials

𝑃𝑖 (𝑠) = 𝑠
4
− 𝜇𝑖𝛽3𝑠

3
− 𝜇𝑖𝛽2𝑠

2
− 𝜇𝑖𝛽1𝑠 − 𝜇𝑖𝛽0 (28)

are Hurwitz stable for the nonidentically zero eigenvalues 𝜇𝑖.
Hence, as communication time-delay 𝜏 increases, exactly one
stability switch of consensus can occur, and the consensus
becomes unstable after such switch. Using (14) and (15), the
switch point (i.e., the tight upper bound on the time-delays)
is given by 𝜏

∗
≈ 0.1208.

In the first simulation experiment, we choose the time-
delay 𝜏 = 0.12 that is slightly below 𝜏

∗. Then, Theorem 2
guarantees fourth-order consensus, and such a result can
be clearly verified from Figure 2(a), where the evolution of
fourth-order consensus system is represented. In the second
simulation experiment, we use 𝜏 = 0.13, so having 𝜏 > 𝜏

∗.
As predicted by our theory, the dynamics becomes unstable,
and fourth-order consensus cannot be achieved. This can
be seen in Figure 2(b). The numerical simulation results are
consistent with the theoretical results.

5. Conclusions

This paper has presented arbitrary high-order consen-
sus algorithms for information consensus in networks of
dynamic agents suffering from communication time-delays.
Using frequency domainmethod, a rigorous and general con-
vergence analysis was given. By taking communication time-
delay 𝜏 as a parameter and examining the location of poles
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Figure 2: Evolutions of the fourth-order consensus with communi-
cation time-delays on graph𝐺 given in Figure 1: (a) 𝜏 = 0.12 and (b)
𝜏 = 0.13.

and direction of motion as they cross the imaginary axis,
we established our central result of arbitrary high-order con-
sensus, Theorem 2. In addition, we developed a systematic
method to determine the critical value(s) of communication
time-delay 𝜏 at which stability switches of consensus (if any)
occur.The sufficient and necessary conditions for the stability
of the consensus up to third-order under mild assumptions
were given, with the purpose of showing how Theorem 2
can be applied to consensus problems with specific orders.
Numerical simulation results were provided to demonstrate
the effectiveness of our theoretical results and analytical
tools. We suggest that insights provided by these results will
illuminate the design principles and evolution mechanisms
of both natural and engineered dynamic network, where
consensus is functionally significant.
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