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This paper considers the problem of shear building damage estimation subject to earthquake ground excitation using the Kalman
filtering approach. The structural damage is assumed to take the form of reduced elemental stiffness. Two damage estimation
algorithms are proposed: one is the multiple model approach via the optimal two-stage Kalman estimator (OTSKE), and the other
is the robust two-stage Kalman filter (RTSKF), an unbiased minimum-variance filtering approach to determine the locations and
extents of the damage stiffness. A numerical example of a six-storey shear plane frame structure subject to base excitation is used
to illustrate the usefulness of the proposed results.

1. Introduction

Structural health monitoring (SHM) is a rapidly developing
field encompassing technology and algorithms for sensing
the state of a structural system, diagnosing the structure’s
current condition, performing a prognosis of expected future
performance, and providing information for decisions about
maintenance, safety, and emergency actions [1, 2]. Advances
in microelectromechanical system (MEMS) technology over
the past decade have provided opportunities for sensing,
wireless communication, and distributed data processing for
a variety of new SHM applications [2].

A building structure may sustain damage during a strong
earthquake.Monitoring the structural health of buildings has
thus received considerable interest over the last decade. The
vibration-based damage detection technique is one of the
more promising fields in SHM because it is nondestructive
and the vibration signal of a structure is easily measurable
using properly deployed sensors [3, 4]. Structural damage
may be detected through the variation of structural features,
such as natural frequencies, modal damping, mode shapes,
frequency response functions (FRFs), and stiffness and flex-
ibility matrices [3, 5]. In this study, it is assumed that only

the stiffness matrix is altered when the structural system is
damaged.

An FRF expresses the structural response to an applied
force as a function of frequency. Theoretically, FRFs can be
expressed in terms of system properties of mass, stiffness,
damping, and modal properties. It is known that damage
detection algorithms using FRFs exhibit several advan-
tages, and have been applied to damage detection by many
researchers (see [6] and the references therein). However, as
noted by [7, 8], detection using FRFs may suffer from some
disadvantages due to the fact that it is a frequency domain
approach. Moreover, it is an indirect approach to detecting
the damage location and extent due to the need to transform
the sensor data into measured FRFs. Thus, suitable chosen
FRFs and frequencies that are close to the natural frequencies
of the damaged system are required in order to solve the
damage detection problem [3, 9]. On the other hand, this
research focuses on a direct approach to detecting structural
damage using the Kalman filtering method, which is a time-
domain approach.

Unknown input filtering (UIF) has played a significant
role in many applications, for example, bias compensation
[10, 11], maneuvering target tracking [12, 13], geophysical and
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environmental applications [14], fault detection and isolation
problems [15], and functional filtering [16]. Note that for the
first two of the above applications some assumptions of the
unknown input are used, while the remaining applications
are solved by assuming that no prior information about the
unknown input is available.

In this study, based on the equation of motion under
ground excitation, a structural damage detection and identifi-
cation problem is formulated as a standard state-space system
with unknown inputs, where the unknown input vector
represents the extent of the damage. Treating the unknown
input vector as a stochastic process with a given wide-sense
representation, and augmenting it with the system state, an
augmented state Kalman filter (ASKF) or, equivalently, the
optimal two-stage Kalman estimator (OTSKE) [11] may be
used to produce the optimal unknown input estimate, and
thus the extent of the damage can be identified. Damage
locations can, therefore, also be detected. However, it is well
known that the optimality of the ASKF (or OTSKE) can be
compromised by a poor choice of unknown input model.
Thus, the damage detection may yield a false-alarm effect.
On the other hand, without assuming the unknown input
model, the unbiased minimum variance filtering (UMVF) in
[17–19] serves as an effective method for yielding the optimal
unknown input and state estimates.Note that the result in [18]
is applicable only to a case in which the direct feedthrough
matrix of the unknown input to the output has full-column
rank, the limitation of which, however, can be relaxed by
using the refined version given in [20]. Furthermore, the
descriptor Kalman filtering (DKF) [21] also serves as a useful
means to estimate the system state for systems with unknown
inputs [22].

This paper aims to present some damage estimation
methods based on the Kalman filtering approach to deter-
mine the location and extent of structural damage under
ground excitation. Specifically, the objective of this paper
is to design damage detection and identification algorithms
for detecting the location and extent of structural damage.
In the following section, two damage estimation algorithms
are proposed: one is the multiple model approach via the
OTSKE, and the other is a specific discrete-time Kalman
filtering algorithm, called the robust two-stage Kalman filter
(RTSKF) [17], to determine the location and extent of damage
stiffness. The usefulness of the proposed results is verified
using a numerical example of a six-storey shear plane frame
structure subject to base excitation.

The remainder of this paper is organized as follows.
Section 2 states the estimation problem considered in this
paper. Section 3 formulates a discrete-time state space model
for the considered problem in order to facilitate the esti-
mator design. Section 4 derives two optimal unknown input
estimators, called the ASKF and the OTSKE, which can
simultaneously estimate the state and the extent of structural
damage subject to the latter being effectively described as
a random-walk process. Section 5 presents two unbiased
minimum-variance unknown input estimators for optimal
damage stiffness estimation without resorting to the assump-
tion of a specific unknown input model. The application
of the proposed optimal estimators to the damage location

detection and damage stiffness identification in a structurally
damaged system is explored in Section 6. A numerical exam-
ple demonstrating the usefulness of the proposed results is
given in Section 7. Section 8 concludes the paper. This paper
is an extended and refined version of conference papers [23,
24].

2. Problem Formulation

Consider a one-dimensional shear building with 𝑛 degree of
freedom under ground excitation as follows:

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = −𝑀𝐿�̈�𝑔, (1)

where 𝑥 ∈ 𝑅
𝑛 is the displacement response vector and

�̈�𝑔 ∈ 𝑅 is the ground acceleration excitation; 𝐿 represents the
loading vector, given by 𝐿 = [1 1 ⋅ ⋅ ⋅ 1]

𝑇 and 𝑀, 𝐶, and
𝐾 represent the 𝑛 × 𝑛 mass, damping, and stiffness matrices,
which are given, respectively, as follows:

𝑀 =

[

[

[

[

[

[

𝑚1

𝑚2

d
𝑚𝑛−1

𝑚𝑛

]

]

]

]

]

]

,

𝐶 =

[

[

[

[

[

[

𝑐1 + 𝑐2 −𝑐2

−𝑐2 𝑐2 + 𝑐3

d
𝑐𝑛−1 + 𝑐𝑛 −𝑐𝑛

−𝑐𝑛 𝑐𝑛

]

]

]

]

]

]

,

𝐾 =

[

[

[

[

[

[

𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2 + 𝑘3

d
𝑘𝑛−1 + 𝑘𝑛 −𝑘𝑛

−𝑘𝑛 𝑘𝑛

]

]

]

]

]

]

.

(2)

It is assumed in this paper that the variation of mass and
dampingmatrices are unchanged after the system is damaged.
Therefore, the stiffness matrix for the damaged system is
represented as 𝐾𝑑 = 𝐾 + Δ𝐾, where Δ𝐾 is obtained from
𝐾 using the damage substitution 𝑘𝑖 → 𝑘𝑖𝛿𝑘𝑖. Define the
unknown input vector 𝑑 as

𝑑 = [𝛿𝑘1 𝛿𝑘2 ⋅ ⋅ ⋅ 𝛿𝑘𝑛]
𝑇
. (3)

Then, the dynamics of system (1) corresponding to the above
damaged system can be obtained as follows:

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = −𝑀𝐿�̈�𝑔 − 𝐹 (𝑥) 𝑑, (4)

where

𝐹 (𝑥) =

[

[

[

[

[

[

1 −1

1 −1

d d
1 −1

1

]

]

]

]

]

]

× diag {𝑘1𝑥1, 𝑘2 (𝑥2 − 𝑥1) , . . . , 𝑘𝑛 (𝑥𝑛 − 𝑥𝑛−1)} .

(5)
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In realizing the well known usefulness of digital technol-
ogy, the sensor output is obtained by the following discrete-
time measurement equation:

𝑦𝑘 = 𝐻𝑑𝑥 (𝑘𝑇) + 𝐻V�̇� (𝑘𝑇) + 𝐻𝑎�̈� (𝑘𝑇) , (6)

where 𝑇 is the sampling period of the sensor. The problem of
interest in this paper is then to design an optimal discrete-
time unknown input estimator ̂

𝑑𝑘 for the damage of the
stiffness matrix based on the Kalman filtering approach. To
achieve this goal, a discrete-time state-space model corre-
sponding to system (4) and measurement (6) is first formed,
which is detailed in the following section.

3. Discrete-Time State-Space Model

Defining the augmented state vector 𝑋 as [𝑥
𝑇

�̇�
𝑇
]

𝑇, the
damaged system (4) can be rewritten as follows:

�̇� = 𝐴𝑋 + 𝐵𝑢 + 𝐺 (𝑥) 𝑑, (7)

where 𝑢 = �̈�𝑔,

𝐴 = [

0 𝐼

−𝑀
−1

𝐾 −𝑀
−1

𝐶

] ,

𝐵 = [

0

−𝐿
] , 𝐺 (𝑥) = [

0

−𝑀
−1

𝐹 (𝑥)

] .

(8)

Next, the known input 𝑢 is assumed to be a piecewise
constant during the sampling interval. Thus, sampling the
continuous-time system (7) and using the discrete-time
measurement (6) gives the following approximated discrete-
time state-space model:

𝑋𝑘+1 = 𝐴 𝑠𝑋𝑘 + 𝐵𝑠𝑢𝑘 + 𝐺𝑘𝑑𝑘, (9)

𝑦𝑘 = Φ𝑋𝑘 + 𝐷𝑢𝑘 + 𝐻𝑘𝑑𝑘, (10)

where

𝑋𝑘 = 𝑋 (𝑘𝑇) , 𝐴 𝑠 = 𝐼 + 𝐴𝑇, 𝐵𝑠 = 𝐵𝑇,

𝑢𝑘 = 𝑢 (𝑘𝑇) , 𝐺𝑘 = 𝐺 (𝑥 (𝑘𝑇)) 𝑇, 𝑑𝑘 = 𝑑 (𝑘𝑇) ,

Φ = [𝐻𝑑 − 𝐻𝑎𝑀
−1

𝐾 𝐻V − 𝐻𝑎𝑀
−1

𝐶] ,

𝐷 = −𝐻𝑎𝐿, 𝐻𝑘 = −𝐻𝑎𝑀
−1

𝐹 (𝑥 (𝑘𝑇)) .

(11)

Because the displacement vector 𝑥may not be accessible,
the matrix 𝐹(𝑥) is therefore unknown, and thus neither
matrices𝐺𝑘 or𝐻𝑘 are obtainable. To remedy this problem, the
matrices𝐺𝑘 and𝐻𝑘 are implemented alternatively as follows:

𝐺𝑘 = [

0

−𝑀
−1

𝐹 (𝑥𝑘)
] 𝑇,

�̂�𝑘 = −𝐻𝑎𝑀
−1

𝐹 (𝑥𝑘−1) ,

(12)

where 𝑥𝑘 = 𝑥(𝑘𝑇) is the estimator of the displacement
𝑥(𝑘𝑇), which remains to be determined. Note that �̂�𝑘 is
implemented using a one step delay of the state estimation
because 𝑥𝑘 is dependent on the value of �̂�𝑘. Using (12), the
discrete-time systems (9) and (10) can be rewritten as follows:

𝑋𝑘+1 = 𝐴 𝑠𝑋𝑘 + 𝐵𝑠𝑢𝑘 + 𝐺𝑘𝑑𝑘 + 𝑤𝑘,

𝑦𝑘 = Φ𝑋𝑘 + 𝐷𝑢𝑘 + �̂�𝑘𝑑𝑘 + V𝑘,
(13)

where

𝑤𝑘 = (𝐺𝑘 − 𝐺𝑘) 𝑑𝑘, V𝑘 = (𝐻𝑘 − �̂�𝑘) 𝑑𝑘. (14)

In this paper, 𝑤𝑘 and V𝑘 are viewed as independent processes
and measurement white noises with covariances 𝑄

𝑋

𝑘
and 𝑅𝑘,

respectively.

4. Optimal Unknown Input Estimators Design

In this section, we demonstrate the application of the con-
ventional Kalman filtering approach to identify the damage
stiffness vector 𝑑𝑘 based on the system (13). To facilitate the
following discussions, we assume that the unknown input
vector 𝑑𝑘 can be described by the following random-walk
process:

𝑑𝑘+1 = 𝑑𝑘 + 𝑤
𝑑

𝑘
, (15)

where 𝑤
𝑑

𝑘
is a zero-mean white noise sequence with the

following covariances: 𝐸{𝑤
𝑑

𝑘
(𝑤
𝑑

𝑙
)
𝑇
} = 𝑄

𝑑

𝑘
𝛿𝑘𝑙, 𝐸{𝑤

𝑑

𝑘
𝑤
𝑇

𝑙
} = 0,

and 𝐸{𝑤
𝑑

𝑘
V𝑇
𝑙
} = 0.

4.1. Design via the ASKF. In this subsection, we show the
result of applying the well-known ASKF [11] to the damaged
system (13)–(15) to identify the damage stiffness vector.

Usings (15), the system of (13) can be augmented as
follows:

𝑋
𝑎

𝑘+1
= 𝐴𝑘𝑋

𝑎

𝑘
+ 𝐵𝑢𝑘 + 𝑊𝑘,

𝑦𝑘 = 𝐻𝑘𝑋
𝑎

𝑘
+ 𝐷𝑢𝑘 + V𝑘,

(16)

where

𝑋
𝑎

(⋅)
= [

𝑋(⋅)

𝑑(⋅)

] , 𝐴𝑘 = [
𝐴 𝑠 𝐺𝑘

0 𝐼

] , (17)

𝐵 = [

𝐵𝑠

0
] , 𝑊𝑘 = [

𝑤𝑘

𝑤
𝑑

𝑘

] , 𝐻𝑘 = [Φ �̂�𝑘
] . (18)

Solving (16) for 𝑋𝑎
𝑘|𝑘

using the ASKF, we obtain

𝑋
𝑎

𝑘|𝑘−1
= 𝐴𝑘−1𝑋

𝑎

𝑘−1|𝑘−1
+ 𝐵𝑢𝑘−1,

𝑋
𝑎

𝑘|𝑘
= 𝑋
𝑎

𝑘|𝑘−1
+ 𝐾𝑘 (𝑦𝑘 − 𝐷𝑢𝑘 − 𝐻𝑘𝑋

𝑎

𝑘|𝑘−1
) ,

𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴

𝑇

𝑘−1
+ 𝑄𝑘−1,

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻

𝑇

𝑘
(𝐻𝑘𝑃𝑘|𝑘−1𝐻

𝑇

𝑘
+ 𝑅𝑘)

−1

,

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃𝑘|𝑘−1,

(19)
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where

𝑃(⋅) =
[

[

𝑃
𝑋

(⋅)
𝑃
𝑋𝑑

(⋅)

𝑃
𝑑𝑋

(⋅)
𝑃
𝑑

(⋅)

]

]

, 𝑄𝑘 = [

𝑄
𝑋

𝑘
0

0 𝑄
𝑑

𝑘

] . (20)

Finally, the damage stiffness vector 𝑑𝑘 and the displace-
ment 𝑥𝑘 can be estimated, respectively, from the above ASKF
as

̂
𝑑𝑘 = [0 0 𝐼]𝑋

𝑎

𝑘|𝑘
,

𝑥𝑘 = [𝐼 0 0]𝑋
𝑎

𝑘|𝑘
.

(21)

4.2. Design via the OTSKE. It is noted that the computational
complexity of the ASKF can be reduced using the previously
proposed OTSKE (see [11] for details). In the following, we
show the result of applying the OTSKE to the damaged
systems (13)–(15) to identify the damage stiffness vector.

Using the following two-stage 𝑈-𝑉 transformation:

𝑋
𝑎

𝑘|𝑘−1
= 𝑇 (𝑈𝑘)𝑋

𝑎

𝑘|𝑘−1
,

𝑋
𝑎

𝑘|𝑘
= 𝑇 (𝑉𝑘)𝑋

𝑎

𝑘|𝑘
,

𝑃𝑘|𝑘−1 = 𝑇 (𝑈𝑘) 𝑃𝑘|𝑘−1(𝑇 (𝑈𝑘))
𝑇
,

𝐾𝑘 = 𝑇 (𝑉𝑘)𝐾𝑘,

𝑃𝑘|𝑘 = 𝑇 (𝑉𝑘) 𝑃𝑘|𝑘(𝑇 (𝑉𝑘))
𝑇
,

(22)

where

𝑋

𝑎

(⋅)
= [

𝑋(⋅)

𝑑(⋅)

] , 𝑃(⋅) = [

𝑃
𝑋

(⋅)
0

0 𝑃
𝑑

(⋅)

] ,

𝐾𝑘 = [
𝐾
𝑋

𝑘

𝐾
𝑑

𝑘

] , 𝑇 (𝑀) = [

𝐼 𝑀

0 𝐼
] ,

(23)

from (19), we can obtain the OTSKE as follows:

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘 + 𝑉𝑘𝑑𝑘|𝑘,
(24)

where 𝑋𝑘|𝑘 is given by

𝑋𝑘|𝑘−1 = 𝐴 𝑠𝑋𝑘−1|𝑘−1 + 𝐵𝑠𝑢𝑘−1

+ (𝑈𝑘 − 𝑈𝑘) 𝑑𝑘−1|𝑘−1,

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 + 𝐾
𝑋

𝑘
(𝑦𝑘 − 𝐷𝑢𝑘 − Φ𝑋𝑘|𝑘−1) ,

𝑃
𝑋

𝑘|𝑘−1
= 𝐴 𝑠𝑃

𝑋

𝑘−1|𝑘−1
𝐴
𝑇

𝑠
+ 𝑄
𝑋

𝑘−1
+ 𝑈𝑘𝑄

𝑑

𝑘−1
𝑈

𝑇

𝑘
,

𝐾
𝑋

𝑘
= 𝑃
𝑋

𝑘|𝑘−1
Φ
𝑇
𝑅

−1

𝑘
,

𝑅𝑘 = Φ𝑃
𝑋

𝑘|𝑘−1
Φ
𝑇
+ 𝑅𝑘,

𝑃
𝑋

𝑘|𝑘
= (𝐼 − 𝐾

𝑋

𝑘
Φ)𝑃
𝑋

𝑘|𝑘−1
,

(25)

𝑑𝑘|𝑘 is given by

𝑑𝑘|𝑘 = (𝐼 − 𝐾
𝑑

𝑘
𝑆𝑘) 𝑑𝑘−1|𝑘−1

+ 𝐾
𝑑

𝑘
(𝑦𝑘 − 𝐷𝑢𝑘 − Φ𝑋𝑘|𝑘−1) ,

𝑃
𝑑

𝑘|𝑘−1
= 𝑃
𝑑

𝑘−1|𝑘−1
+ 𝑄
𝑑

𝑘−1
,

𝐾
𝑑

𝑘
= 𝑃
𝑑

𝑘|𝑘−1
𝑆
𝑇

𝑘
(𝑆𝑘𝑃
𝑑

𝑘|𝑘−1
𝑆
𝑇

𝑘
+ 𝑅𝑘)

−1

,

𝑃
𝑑

𝑘|𝑘
= (𝐼 − 𝐾

𝑑

𝑘
𝑆𝑘) 𝑃
𝑑

𝑘|𝑘−1
,

(26)

and the blending matrices 𝑈𝑘, 𝑈𝑘, 𝑉𝑘, and 𝑆𝑘 are given,
respectively, by

𝑈𝑘 = 𝐴 𝑠𝑉𝑘−1 + 𝐺𝑘−1,

𝑈𝑘 = 𝑈𝑘𝑃
𝑑

𝑘−1|𝑘−1
(𝑃
𝑑

𝑘|𝑘−1
)

−1

,

𝑉𝑘 = 𝑈𝑘 − 𝐾
𝑋

𝑘
𝑆𝑘,

𝑆𝑘 = Φ𝑈𝑘 + �̂�𝑘.

(27)

Finally, the damage stiffness vector 𝑑𝑘 and the displace-
ment 𝑥𝑘 can be estimated from the above OTSKE as follows:

̂
𝑑𝑘 = 𝑑𝑘|𝑘, 𝑥𝑘 = [𝐼 0]𝑋𝑘|𝑘.

(28)

5. Unbiased Minimum-Variance Unknown
Input Estimators Design

In this section, we show how to derive an optimal damage
stiffness estimator without resorting to the assumption of
a specific unknown input model, for example, (15), usu-
ally required in the standard Kalman filtering approach.
To achieve this goal, we consider the previously proposed
extended DKF (EDKF) [22], which can be viewed as a
robust version of the ASKF applied to the system of (13).
Furthermore, we show that the state estimator of the EDKF
can be implemented alternatively in the form of the RTSKF
developed in [17], which can be viewed as a robust version of
the OTSKE.

5.1. Design via the EDKF. First, we reformulate system (13) as
the following descriptor system (see [22] for details):

𝐸𝑋
𝑎

𝑘+1
= 𝐴𝑘𝑋

𝑎

𝑘
+ 𝐵𝑠𝑢𝑘 + �̂�𝑘𝑑𝑘 + 𝑤𝑘,

(29)

𝑦𝑘 = 𝐻𝑘𝑋
𝑎

𝑘
+ 𝐷𝑢𝑘 + V𝑘, (30)

where

𝐸 = [𝐼 0] , 𝐴𝑘 = [𝐴 𝑠 𝐺𝑘
] ,

�̂�𝑘 = 𝐺𝑘 (𝐼 − �̂�
+

𝑘
�̂�𝑘) ,

(31)

and𝑋
𝑎

𝑘
and𝐻𝑘 are defined in (17)-(18). Here, the notation𝑀

+

is the Moore-Penrose pseudoinverse of 𝑀.
Next, using the following full-rank factorization:

�̂�𝑘 = �̂�𝑘

̃
�̂�𝑘,

(32)

where �̂�𝑘 is of full-column rank; the descriptor systems (29)
and (30) can be rewritten as the following augmented output
equation (AOE):

[
𝑋

𝑎

𝑘

𝑦𝑘 − 𝐷𝑢𝑘

] = [
𝐸 −�̂�𝑘−1

𝐻𝑘 0

] [

𝑋
𝑎

𝑘

̃
𝑑𝑘−1

] + [

𝜂𝑘−1

V𝑘
] , (33)
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where

𝑋

𝑎

𝑘
= 𝐴𝑘−1𝑋

𝑎

𝑘−1|𝑘−1
+ 𝐵𝑠𝑢𝑘−1,

𝜂𝑘 = −𝐴𝑘 (𝑋
𝑎

𝑘
− 𝑋
𝑎

𝑘|𝑘
) − 𝑤𝑘,

̃
𝑑𝑘 =

̃
�̂�𝑘𝑑𝑘.

(34)

Note that in the above equation, ̃
𝑑𝑘 represents the part of 𝑑𝑘

that is unestimable at time 𝑘.
Then, solving (33) for the estimates of 𝑋

𝑎

𝑘
and ̃

𝑑𝑘−1, we
obtain

[

𝑋
𝑎

𝑘|𝑘

̃
𝑑𝑘−1|𝑘

] = [

0 0 𝐼 0

0 0 0 𝐼
]Λ
+

𝑘

× [(𝑋

𝑎

𝑘
)

𝑇

(𝑦𝑘 − 𝐷𝑢𝑘)
𝑇

0 0]

𝑇

,

𝑃
𝑋
𝑎

𝑘|𝑘
= − [0 0 𝐼 0] Λ

+

𝑘
[0 0 𝐼 0]

𝑇
,

𝑃
𝑑

𝑘−1|𝑘
= − [0 0 0 𝐼] Λ

+

𝑘
[0 0 0 𝐼]

𝑇
,

(35)

where

Λ 𝑘 =

[

[

[

[

[

[

[

[

[

[

[

𝑃

𝑋
𝑎

𝑘
0 𝐸 −�̂�𝑘−1

0 𝑅𝑘 𝐻𝑘 0

𝐸
𝑇

𝐻

𝑇

𝑘
0 0

−�̂�

𝑇

𝑘−1
0 0 0

]

]

]

]

]

]

]

]

]

]

]

, (36)

with

𝑃

𝑋
𝑎

𝑘
= 𝐴𝑘−1𝑃

𝑋
𝑎

𝑘−1|𝑘−1
𝐴
𝑇

𝑘−1
+ 𝑄
𝑋

𝑘−1
. (37)

Finally, the displacement estimate 𝑥𝑘 is obtained as
follows:

𝑥𝑘 = [𝐼 0 0]𝑋
𝑎

𝑘|𝑘
, (38)

the estimable unknown input functional estimate𝑑𝑘|𝑘 is given
by

𝑑𝑘|𝑘 = [0 0 𝐼]𝑋
𝑎

𝑘|𝑘
, (39)

and the unestimable unknown input functional estimate
̃
𝑑𝑘−1|𝑘 is given by

̃
𝑑𝑘−1|𝑘 =

̃
�̂�𝑘−1𝑑𝑘−1|𝑘.

(40)

Using the fact that 𝑑𝑘|𝑘 = 𝜑𝑘𝑑𝑘|𝑘 (see [20] for details), where
𝜑𝑘 = �̂�

+

𝑘
�̂�𝑘, and subject to the following condition:

̃
𝑑𝑘 ≈

̃
𝑑𝑘−1,

(41)

which indicates that the unestimable unknown inputs are
varied smoothly, the damage stiffness estimate at time 𝑘 can
be obtained as follows:

̂
𝑑𝑘 = 𝜓

+

𝑘
[

𝑑𝑘|𝑘

̃
𝑑𝑘−1|𝑘

] , 𝜓𝑘 = [

𝜑𝑘

̃
�̂�𝑘−1

] . (42)

Remark 1. The above EDKF can be viewed as a robust version
of the ASKF in Section 4.1. Specifically, if the following
substitutions are used:

𝐸 ← 𝐼, 𝐴𝑘 ← 𝐴𝑘,

𝑄
𝑋

𝑘
← 𝑄𝑘, 𝐵𝑠 ← 𝐵,

(43)

then the EDKF becomes the ASKF.

Remark 2. If the matrix �̂�𝑘 is of full-column rank, then the
unknown input vector 𝑑𝑘 is completely estimable at time 𝑘,
and one therefore has 𝜑𝑘 = 𝐼 and ̃

�̂�𝑘−1 = 0. Thus, from (42)
we have ̂

𝑑𝑘 = [0 0 𝐼]𝑋
𝑎

𝑘|𝑘
.

5.2. Design via the RTSKF. Although the EDKF is simple, as is
the ASKF, it may also suffer from computational complexity
due to the heavy burden of the pseudoinverse operation. In
this section, we show how to derive a compact version of the
EDKF, which is in the form of the RTSKF.

First, using the approach in [25], we can reform the
descriptor system (29) as follows:

𝑋
𝑎

𝑘+1
= 𝐸
+
(𝐴𝑘𝑋

𝑎

𝑘
+ 𝐵𝑠𝑢𝑘 + �̂�𝑘

̃
𝑑𝑘 + 𝑤𝑘) + 𝑈

𝑋
𝑎

𝑘
𝑑
𝑋
𝑎

𝑘
, (44)

where

𝑈
𝑋
𝑎

𝑘
= [0 𝐼]

𝑇
, 𝑑

𝑋
𝑎

𝑘
= 𝑑𝑘+1.

(45)

Using the following notations:

�̆�𝑘 = [
0 �̂�𝑘

𝐼 0

] ,
̆

𝑑𝑘 = [

𝑑𝑘+1

̃
𝑑𝑘

] , (46)

(44) can be rewritten as

𝑋
𝑎

𝑘+1
= 𝐸
+
(𝐴𝑘𝑋

𝑎

𝑘
+ 𝐵𝑠𝑢𝑘 + 𝑤𝑘) + �̆�𝑘

̆
𝑑𝑘.

(47)

Second, using the relationship 𝐸
+

= 𝐸
𝑇 and applying the

RTSKF [17] to (30) and (47), we have

𝑋
𝑎

𝑘|𝑘
= [

𝑋𝑘|𝑘

0

] + �̆�𝑘
̆

𝑑𝑘−1|𝑘,

𝑃
𝑋
𝑎

𝑘|𝑘
=

[

[

𝑃
𝑋

𝑘|𝑘
0

0 0

]

]

+ �̆�𝑘𝑃

̆𝑑

𝑘−1|𝑘
�̆�
𝑇

𝑘
,

(48)

where 𝑋𝑘|𝑘 is given by

𝑋𝑘|𝑘−1 = 𝐴 𝑠𝑋𝑘−1|𝑘−1 + 𝐵𝑠𝑢𝑘−1 + 𝐺𝑘−1𝑑𝑘−1|𝑘−1,

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 + 𝐾
𝑋

𝑘
(𝑦𝑘 − 𝐷𝑢𝑘 − Φ𝑋𝑘|𝑘−1) ,

𝑃
𝑋

𝑘|𝑘−1
= 𝐴𝑘−1𝑃

𝑋
𝑎

𝑘−1|𝑘−1
𝐴
𝑇

𝑘−1
+ 𝑄
𝑋

𝑘−1
,

𝐾
𝑋

𝑘
= 𝑃
𝑋

𝑘|𝑘−1
Φ
𝑇
�̃�
−1

𝑘
,

𝑃
𝑋

𝑘|𝑘
= (𝐼 − 𝐾

𝑋

𝑘
Φ)𝑃
𝑋

𝑘|𝑘−1
,

(49)



6 The Scientific World Journal

̆
𝑑𝑘−1|𝑘 is given by

̆
𝑑𝑘−1|𝑘 = 𝐾

̆𝑑

𝑘
(𝑦𝑘 − 𝐷𝑢𝑘 − Φ𝑋𝑘|𝑘−1) ,

𝐾

̆𝑑

𝑘
= 𝑃

̆𝑑

𝑘−1|𝑘
𝑆
𝑇

𝑘
�̃�
−1

𝑘
,

𝑃

̆𝑑

𝑘−1|𝑘
= (𝑆
𝑇

𝑘
�̃�
−1

𝑘
𝑆𝑘)

+

,

(50)

and �̆�𝑘, 𝑆𝑘, and �̃�𝑘 are given, respectively, by

�̆�𝑘 = [

𝑉𝑘

[𝐼 0]
] , 𝑉𝑘 = [0 �̂�𝑘−1

] − 𝐾
𝑋

𝑘
𝑆𝑘, (51)

𝑆𝑘 = [�̂�𝑘 Φ�̂�𝑘−1
] , (52)

�̃�𝑘 = Φ𝑃
𝑋

𝑘|𝑘−1
Φ
𝑇
+ 𝑅𝑘.

(53)

Third, using (17), (46), (48), and (51), we have

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘 + 𝑉𝑘
̆

𝑑𝑘−1|𝑘,
(54)

𝑑𝑘|𝑘 = [𝐼 0]
̆

𝑑𝑘−1|𝑘,
(55)

̃
𝑑𝑘−1|𝑘 = [0 𝐼]

̆
𝑑𝑘−1|𝑘,

(56)

which have the following respective error covariances:

𝑃
𝑋

𝑘|𝑘
= 𝑃
𝑋

𝑘|𝑘
+ 𝑉𝑘𝑃

̆𝑑

𝑘−1|𝑘
𝑉
𝑇

𝑘
,

𝑃
𝑑

𝑘|𝑘
= [𝐼 0] 𝑃

̆𝑑

𝑘−1|𝑘
[𝐼 0]

𝑇
,

𝑃
𝑑

𝑘−1|𝑘
= [0 𝐼] 𝑃

̆𝑑

𝑘−1|𝑘
[0 𝐼]

𝑇
.

(57)

Finally, the displacement estimate 𝑥𝑘 is obtained as
follows:

𝑥𝑘 = [𝐼 0]𝑋𝑘|𝑘, (58)

and the damage stiffness estimate at time 𝑘 is obtained as
follows:

̂
𝑑𝑘 = 𝜓

+

𝑘
̆

𝑑𝑘−1|𝑘.
(59)

The equivalence of the EDKF and the RTSKF can be verified
as shown in [25].

Remark 3. The above RTSKF can be viewed as a robust
version of the OTSKE in Section 4.2 and is an extended result
of the original in [17]. Specifically, if the unknown inputs do
not enter the measurement equation, that is, �̂�𝑘 = 0, one has
𝜑𝑘 = 0, 𝑆𝑘 = Φ�̂�𝑘−1, �̂�𝑘 = 𝐺𝑘, and

̃
�̂�𝑘 = 𝐼. Thus, from (50),

(55), and (56), we have 𝑑𝑘|𝑘 = 0 and ̆
𝑑𝑘−1|𝑘 = 𝑑𝑘−1|𝑘, which

signifies that only one delay of the unestimable unknown
input estimate can be obtained. Note that in this extended
RTSKF, the filter ̆

𝑑𝑘−1|𝑘 serves as a primitive unknown input
estimator in the sense that through it both the estimable and
unestimable unknown input estimates, that is, 𝑑𝑘|𝑘 and ̃

𝑑𝑘−1|𝑘,
respectively, can be obtained.

Remark 4. If the matrix �̂�𝑘 is of full-column rank, then one
has �̂�𝑘 = 0, ̃�̂�𝑘 = 0, and 𝑆𝑘 = �̂�𝑘. Then, from (55) and (59),
we have ̂

𝑑𝑘 = 𝑑𝑘|𝑘, and hence the obtained RTSKF will be
equivalent to the RTSF originally developed in [18].Thus, the
above RTSKF can be viewed as an extended result of those in
[18, 20].

6. Damage Detection and Identification

In this section, we demonstrate the application of the prev-
iously proposed optimal unknown input estimators to simul-
taneously detect and identify the damage stiffness of a struc-
turally damaged system.

6.1. Kalman Filtering Approach. Aswill be seen in the numer-
ical example simulation given in Section 7, the usefulness of
the OTSKE (or the ASKF) can be compromised if the chosen
𝑄
𝑑

𝑘
is unproper, by assuming an improper unknown input

model, and thus the damage stiffness may not be correctly
identified. Specifically, the estimated damage stiffness of the
OTSKE may not work well for the health stiffness; that is,
𝛿𝑘𝑖 = 0, by choosing a large value of 𝑄𝑑

𝑘
. On the other hand,

the damage stiffness may also not be correctly estimated if
a small value of 𝑄

𝑑

𝑘
is chosen. To address this problem, a

multiple model approach similar to that given in [26] may be
used.Thus, in this subsection we present a structural damage
detection method based on the multiple model approach via
the OTSKE to improve the identified damage stiffness results.

First, we use a small value of 𝑄
𝑑

𝑘
, denoted as 𝑄

𝑑

𝑘
=

𝛾𝑠𝐼𝑛, in the OTSKE to detect (identify) those places that
the stiffness are in health. Let 𝜖(𝛾𝑠) be a given dead-zone
threshold associated with the small value 𝛾𝑠. Then, the 𝑖th
area with healthy stiffness is declared when the 𝑖th output
of the unknown input estimator ̂

𝑑
𝑖

𝑘
satisfies the following

relationship: |
̂
𝑑
𝑖

𝑘
| ≤ 𝜖(𝛾𝑠), and hence the corresponding

damage stiffness detection value is set to zero. On the other
hand, if the 𝑖th output of the unknown input estimator
̂
𝑑
𝑖

𝑘
satisfies the relationship: |

̂
𝑑
𝑖

𝑘
| > 𝜖(𝛾𝑠), then we set the

corresponding damage stiffness detection value to one.
Second, we use a large value of 𝑄𝑑

𝑘
, denoted as 𝑄𝑑

𝑘
= 𝛾𝑙𝐼𝑛,

where 𝛾𝑙 > 𝛾𝑠, in the OTSKE to estimate the true damage
stiffness, denoted as ̂

𝑑𝑙𝑘.
Finally, we denote a detection matrix 𝐷𝑘 as

𝐷𝑘 = [𝐷
1

𝑘
𝐷
2

𝑘
⋅ ⋅ ⋅ 𝐷

𝑛

𝑘
]

𝑇
, (60)

where 𝐷
𝑖

𝑘
is given as follows:

𝐷
𝑖

𝑘
=

{

{

{

0







̂
𝑑
𝑖

𝑘






≤ 𝜖 (𝛾𝑠) ,

1







̂
𝑑
𝑖

𝑘






> 𝜖 (𝛾𝑠) ,

(61)

and the estimate of the 𝑖th damage stiffness is obtained as
follows:

̂
𝑑
𝑖

𝑘
= min (𝐷

𝑖

𝑘
,
̂
𝑑
𝑖

𝑙𝑘
) . (62)
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6.2. Constrained Optimization Approach. First, we address
the damage detection issue. Using (10), (50), (55), (56), and
(59), we obtain the following alternative damage stiffness
estimate:

̂
𝑑𝑘 = 𝜓

+

𝑘
𝑆
∗

𝑘
(�̂�𝑘𝑑𝑘 + Φ𝑋𝑘|𝑘−1 + V𝑘) , (63)

where

𝑆
∗

𝑘
= (𝑆
𝑇

𝑘
�̃�
−1

𝑘
𝑆𝑘)

+

𝑆
𝑇

𝑘
�̃�
−1

𝑘
,

𝑋𝑘|𝑘−1 = 𝑋𝑘 − 𝑋𝑘|𝑘−1.

(64)

As shown in [22], under the following condition:

rank [𝑆𝑘] = rank [�̂�𝑘] + rank [�̂�𝑘−1] , (65)

the expectation of (63) is given as follows:

𝐸 [
̂
𝑑𝑘] = (𝜓

𝑇

𝑘
𝜓𝑘)

−1

𝜓
𝑇

𝑘
𝑆
∗

𝑘
(�̂�𝑘𝐸 [𝑑𝑘] + Φ�̂�𝑘−1𝐸 [

̃
𝑑𝑘−1]) ,

= (𝜓
𝑇

𝑘
𝜓𝑘)

−1

𝜓
𝑇

𝑘
𝑆
∗

𝑘
𝑆𝑘 [

𝜑𝑘𝐸 [𝑑𝑘]

̃
�̂�𝑘−1𝐸 [𝑑𝑘−1]

]

≈ (𝜓
𝑇

𝑘
𝜓𝑘)

−1

𝜓
𝑇

𝑘
𝜓𝑘𝐸 [𝑑𝑘] = 𝐸 [𝑑𝑘] .

(66)

It is thus clear from (66) that the 𝑖th component of the signal
̂
𝑑𝑘 will be zero only if the 𝑖th stiffness is healthy, which also
signifies that the 𝑖th element of the damage stiffness estimate
will behave like a zero-mean white noise.

Next, we address the damage identification issue. Because
the constrained optimization approach is more sensitive than
the Kalman filtering approach, and those components of ̂

𝑑𝑘

that are healthy are zero-mean white noises, the extent of the
damage stiffness can be identified using the time average of
the damage stiffness estimates as follows:

𝛿𝑘𝑖 = 𝐸 [
̂
𝑑
𝑖

𝑘
] ≈

1

𝑘

𝑘

∑

𝑗=1

̂
𝑑
𝑖

𝑗
. (67)

Finally, in order to decrease the noise effect and to
increase the robustness of the above identification algorithm,
we modify (67) by incorporating a suitable chosen threshold
𝜖 as the following effective mean:

𝛿𝑘𝑖 = 𝐸[
̂
𝑑
𝑖

𝑘
]
|𝑑
𝑖

𝑘
|≤𝜖

. (68)

7. A Numerical Example

7.1. 6-Storey Shear Building Model. In this paper, an example
study for the detection of the location and the identification
of the extent of damage stiffness matrix of a six-storey shear
building is provided to illustrate the effectiveness of the
proposed results.The shear building is a simplifiedmodel that
assumes all of the building mass is lumped at the floor. The
floor and beams of the shear building are rigid relative to its
column. Therefore, there are only lateral displacements and
no axial deformation or rotation. The displacements at each
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Figure 1: Ground acceleration excitation.

floor are defined by one degree of freedom alone. Thus, there
are six degrees of freedom in the structure to describe total
displacements in the considered example.

The parameters of system (1) in this study are chosen as
𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚6 = 30Kg and 𝑘1 = 𝑘2 = ⋅ ⋅ ⋅ =

𝑘6 = 55500N/m. The chosen damping matrix is Rayleigh
damping, based on the assumption that the damping ratio
is chosen as 5% for all modes. The damage is assumed to
occur at the first three storeys, and all instances of damage are
modeled as a 50% reduction in stiffness. In the simulation, we
assume that only acceleration sensors are used. Thus, using
𝐻𝑑 = 𝐻V = 0 and 𝐻𝑎 = 𝐼 in (6) we have the following
acceleration response:

𝑦 = �̈� = −𝑀
−1

𝐶�̇� − 𝑀
−1

𝐾𝑥 − 𝐿�̈�𝑔 − 𝑀
−1

𝐹 (𝑥) 𝑑, (69)

which yields the following measurement matrices:

Φ = −𝑀
−1

[𝐾 𝐶] , 𝐷 = −𝐿,

𝐻 = −𝑀
−1

𝐹 (𝑥) .

(70)

The sampling rate for the measurement is chosen as 100Hz.
The ground acceleration excitation is illustrated in Figure 1,
and the response of the acceleration sensor in each floor is
shown in Figure 2. In this simulation, both the OTSKE and
the RTSKF are considered. The initial setting of the OTSKE
is given as follows: 𝑋0|−1 = 0, 𝑑−1|−1 = 0, 𝑈0 = 0, 𝑄𝑋

0
=

diag{0, 𝐼}, 𝑃𝑋
0|−1

= 𝐼, and 𝑃
𝑑

−1|−1
= 0, while that for the RTSKF

is given as follows:𝑋0|−1 = 0 and 𝑃
𝑋

0|−1
= 𝐼. Themeasurement

noise covariance is set as 𝑅𝑘 = 𝐼.

7.2. Damage Detection and Identification Using the OTSKE.
The variation of the stiffness of each storey can be identified
using Kalman filtering with a suitable chosen 𝑄

𝑑

𝑘
. Figure 3

shows the identified damage stiffness values and the true ones
using the OTSKE with 𝑄

𝑑

𝑘
= 1000𝐼6. From the figure, it is

clear that the damage stiffness of the first three storeys can
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Figure 2: Acceleration sensor responses.
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Figure 3: Damage stiffness estimation using the OTSKE with 𝑄
𝑑

𝑘
=

1000𝐼
6
.

be correctly identified with the following error percentages:
0.41%, 3.83%, and −16.88%, respectively. On the other hand,
the estimated damage stiffness values of the 4th to 6th storeys
differ from their true values, yielding −0.15, 0.09, and 0.11
reductions of their corresponding true stiffness values. This
simulation clearly illustrates that the OTSKE can accurately
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Figure 4: Damage stiffness estimation using the OTSKE with 𝑄
𝑑

𝑘
=

0.001𝐼
6
.

estimate the damage stiffness. However, it may also fail to
identify healthy stiffness values.

In showing one possibility of correctly identifying healthy
stiffness values using the OTSKE, we decrease the covariance
𝑄
𝑑

𝑘
as 𝑄
𝑑

𝑘
= 0.001𝐼6. The identified damage stiffness

values are illustrated in Figure 4, from which the estimated
damage stiffness values of the 4th to 6th storeys are near
their true values, yielding 0.02, 0.01, and 0.00 reductions
of their corresponding true stiffness values. However, it is
also observed that in this case the damage stiffness values
of the first three storeys are identified with the following
respective error percentages: 90.08%, 90.81%, and 93.02%,
which obviously differ from their true values.This simulation
case clearly shows the potential disadvantage of applying the
OTSKE to structural damage estimation.

From the above simulation results, we may draw the
following implications: (1) the larger the value of the covari-
ance matrix 𝑄

𝑑

𝑘
chosen is, the more accurately the extent of

the damage stiffness will be identified, and (2) the smaller
the value of the covariance matrix 𝑄

𝑑

𝑘
chosen is, the more

accurately healthy stiffness areas will be detected. With the
above observations, if one can correctly identify the places
which have damage stiffness, that is, the first three storeys,
and identify healthy areas, that is, the 4th to 6th storeys, then
one can properly choose 𝑄

𝑑

𝑘
as 𝑄
𝑑

𝑘
= diag{1000𝐼3, 0.001𝐼3}.

Figure 5 shows the identified damage stiffness values and the
true values using this specific 𝑄

𝑑

𝑘
, from which we observe

that the estimated damage stiffness values of the 4th to
6th storeys are very near their true values, with 0.00, 0.00,
and 0.00 reductions of their corresponding true stiffness
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Figure 5: Damage stiffness estimation using the OTSKE with 𝑄
𝑑

𝑘
=

diag{1000𝐼
3
, 0.001𝐼

3
}.

values. Moreover, the damage stiffness values of the first
three storeys are identifiedwith the following respective error
percentages: 0.13%, 4.05%, and −15.00%. Nevertheless, it
should be stressed that this specific value of𝑄𝑑

𝑘
is heuristically

chosen and may not work well in practical system design.
In order to improve the aforementioned potential short-

coming of theOTSKE, in the followingwe showan alternative
application of the new proposed multiple model approach
via the OTSKE in Section 6.1 in order to identify the damage
stiffness of all storeys. To achieve this aim, we choose 𝛾𝑠 =

0.001, 𝛾𝑙 = 1000, and 𝜖(𝛾𝑠) = 0.03. Figure 6 shows the
identified stiffness and the true values using the multiple
model approach, from which we obtain that the estimated
damage stiffness values of the 4th to 6th storeys correspond
to exactly their true values, which are zero. Moreover, the
damage stiffness values of the first three storeys are identified
with the following respective error percentages: 0.41%, 3.83%,
and −16.88%, which are slightly poorer than those obtained
using the OTSKE with 𝑄

𝑑

𝑘
= diag{1000𝐼3, 0.001𝐼3}. However,

it should be stressed that no information on the damaged
storeys is required for the proposedmultiplemodel approach.
Note that the feasible value of the dead-zone threshold 𝜖(𝛾𝑠)

remains to be determined.

7.3. DamageDetection and IdentificationUsing the RTSKF. As
shown in the previous subsection, the location and the extent
of damage stiffness may not be simultaneously identified by a
single filter when applying the conventional Kalman filtering
approach, for example, the OTSKE. In this subsection, we
demonstrate the application of the proposed RTSKF to detect

𝛿
k1

𝛿
k2

𝛿
k3

𝛿
k4

𝛿
k5

𝛿
k6

Estimated
True

1

0

−1

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Time (s)
0 5 10 15 20 25 30 35 40 45 50

1

0

−1

1

0

−1

1

0

−1

1

0

−1

1

0

−1

Figure 6: Damage stiffness estimation using multiple model
approach (𝛾

𝑠
= 0.001, 𝛾

𝑙
= 1000, and 𝜖(𝛾

𝑠
) = 0.03).

the locations in which the stiffness is healthy and to identify
the extent of any damage stiffness.

First, we show the detection simulation results using
the RTSKF. To this end, we illustrate the unknown input
estimates, that is, ̂

𝑑𝑘, in Figure 7. From the figure, we find
that the magnitudes of the stiffness estimates of the last
three storeys, which are healthy, are more like white noise
than those of the others. Therefore, we deduce that the
storey which has no damage stiffness may yield a white-
noise-like signal. Based on the above observed results, one
can correctly detect the storey with no damage stiffness.
In this simulation, a numerical measure is further used to
quantitatively determine the location of damage stiffness.The
quantitative measure is defined as a cumulative excess of
magnitude bound, represented by 𝐸MB. For the 𝑖th damage
stiffness, 𝐸𝑖MB is given as follows:

𝐸
𝑖

MB = ∑

𝑘

𝑢𝑠 (







̂
𝑑𝑘 (𝑖)






− 𝜖) , (71)

where 𝑢𝑠 is the unit-step function. By choosing 𝜖 = 1.5, the
values of 𝐸MB for 1 to 6 storeys are given by 78, 13, 20, 211, 221,
and 237, respectively, which gives a more clear indication that
the last three storeys have no damage stiffness.

Second, we show the identified extent of the damage
stiffness based on the effective mean algorithm (68). This is
illustrated in Figure 8. From the figure, we obtain that the
estimated damage stiffness values of the first three storeys are
given by −0.5045, −0.5062, and −0.5035, respectively, which
have the following respective error percentages: −0.91%,
−1.24%, and −0.70%. These identified results are slightly
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Figure 7: Unknown inputs estimation using the RTSKF.

better than those obtained using themultiplemodel approach
via the OTSKE. Furthermore, the estimated damage stiffness
values of the last three storeys are given by −0.0082, −0.0121,
and −0.0104, respectively.These identified results are compa-
rable to those obtained using themultiplemodel approach via
the OTSKE.

In summary, the above simulation results illustrate the
usefulness of the proposed damage detection and identifica-
tion algorithm through the proposed constrained optimiza-
tion approach.

7.4. Discussions. As shown in the previous two subsections,
the Kalman filtering approach serves as a useful means of
simultaneously detecting the healthy areas and identifying
the extent of any damage stiffness. It should be stressed
that, as compared to the substructure-based FRF approach
in [6], this time-domain-based method is a direct approach
to solving damage detection and identification problems in
the sense that no further frequency domain transformations
are used. Moreover, apart from the approach in [6], where
only the locations of damage stiffness can be detected, the
proposed optimal filtering algorithms can accurately estimate
the extent of any damage stiffness.

In order to compare the detection performance of the
proposed RTSKF with that of the method in [6], we further
consider the substructure-based FRF approach with a dam-
age location index (SubFRFDI) in order to locate damage. In
this method, a multi-DOF (degrees of freedom) structure is
divided into several substructures. Thus, for the simulation
case, we have six substructures. Then, the FRF of each
substructure is calculated in order to obtain the dedicated
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Figure 8: Damage stiffness estimation using the RTSKF (𝜖 = 1.5).
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Figure 9: Damage location indices obtained through a substruc-
ture-based FRF approach.

SubFRFDI. If the properties of a structural system do not
change, then the index is close to zero.However, if the damage
to a specific storey of the shear building is severe, then its
corresponding index value will be high. We illustrate the
SubFRFDI values of the considered six-storey shear building
model in Figure 9. From the figure, it is obtained that the
SubFRFDI values of the last three storeys are smaller than
those of the first three storeys, which indicates that the
damage to the first three storeys is more severe than that of
the others. However, it is also observed that the SubFRFDI
values of the 4th and 5th storeys may be high enough to be
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declared to have damage stiffness. Note that the SubFRFDI-
basedmethod lacks the ability to determine the damage level.
On the other hand, the proposed optimal filtering methods
can simultaneously identify the extent of the damage stiffness
and detect those places where the stiffness is healthy, which
shows that they aremore reliable than those obtained through
the substructure-based FRF approach.

8. Conclusion

This paper has presented a novel state-space-based struc-
tural damage estimation technique, based on discrete-time
Kalman filtering and unbiased minimum-variance filtering
(or constrained optimization method), to detect areas where
the stiffness is healthy and to identify the extent of any
damage stiffness. It is shown by a numerical example that
the previously proposed OTSKE with a multiple model
approach can accurately estimate the damage stiffness and
detect healthy stiffness. Moreover, this paper shows that the
recently proposed EDKF can also be applied to detecting and
identifying structural damage. A special implementation of
the EDKF, called the RTSKF, is also proposed in order to
reduce computational complexity. Through the RTSKF, the
new proposed quantitative measure 𝐸MB, and the effective
means of the damage stiffness estimates given by (68), one
can more accurately detect and identify damage stiffness.
Simulation results show that the proposed optimal filtering
methods are more reliable than those obtained through the
substructure-based FRF approach in the sense that both the
location and extent of damage stiffness are provided in the
former.
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