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We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions
(IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods
are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation
factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the
proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides

better forecasting compared to the existing methods.

1. Introduction

Exponential increase in energy consumption globally is
leading to rapid depletion of existing fossil fuel resources
[1]. This impending scarcity has led the power industry to
explore renewable energy sources such as wind, solar, and
tidal energies [2, 3]. Renewable energy resources attract more
attention owing to their pollution free energy generation
capabilities. Wind as a potential source for generation of
electricity on a large scale has been receiving much attention
recently. In China alone, the growth rate of wind farms was
reported as 114% in 2009 with the total wind generation
capacity of 25805.3 MW [4]. However, stable production of
electricity from wind power is a quite arduous task due to the
uncertainty and intermittency of wind speed. The increasing
importance of wind energy, affected by variations in wind
speed, necessitates accurate forecasting of wind speed.

In recent past, significant amount of research has been
focused on forecasting the wind speed. However, due to
the properties of wind speed such as nonstationarity, high
fluctuations, and irregularity, accurate forecasting becomes
a challenge. Generally, forecasting of wind speed is clas-
sified into two types: (1) short-term forecasting and (2)
long-term forecasting. Short-term forecasting of wind speed
affects grid reliability and market-based ancillary service
costs [5, 6], whereas long-term forecasting provides an idea
about a particular site location [7]. The prediction models

proposed in the recent past for wind speed prediction
are categorized as physical models, time series statistical
models, and knowledge-based methods. Each model has its
own advantages and disadvantages. Physical models such
as Markov models [8] require information regarding the
temperature and climatic conditions to build the models. In
time series statistical modeling, various techniques such as
autoregressive moving average (ARMA) [9, 10], autoregres-
sive integrated moving average (ARIMA) [11], Kalman filter
[12], model-based approaches [13-15], and Particle swarm
optimization [16] are employed for prediction. Knowledge-
based methods have been the widely adapted techniques for
wind speed forecasting especially artificial neural networks
(ANN) [17,18], radial bias function [19], fuzzy logic [20], and
support vector machines [7].

Recently, hybrid methods based on divide and conquer
principle are proposed for accurate forecasting of wind speed
[21-23]. In these methods, wind speed data is decomposed
into independent components. Later, each component is
predicted with adaptive algorithms such as ARMA, SVM,
or ANN. In [23], empirical mode of decomposition (EMD)
was employed to decompose the signal into intrinsic mode
functions (IMFs), and then ARMA model with fixed coeffi-
cients was employed to forecast the IMFs individually (EMD-
ARMA). Further, SVM and ANN are employed to predict the
IMFs in [22] and [21], respectively, to improve the forecasting
performance. Different IMFs obtained from EMD posses
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different frequency bands and characteristics. For instance,
IMF-n in the lowest frequency band represents the central
tendency of data, and IMF-1 is the highest frequency band
and it mainly contains a large quantity of noisy signals.
Although regression models are effective for time series
prediction, owing to the highly nonstationary characteristics
of few IMFs (high frequency IMFs), the prediction with
regression models is not effective. On the other hand, the
performance of machine learning techniques (SVM, ANN)
for low frequency components may hamper due to the over
fitting of data.

To overcome the limitations, in this paper, we propose a
new hybrid approach for multistep prediction of the IMFs.
Instead of employing a single adaptive algorithm for pre-
dicting the IMFs, we employed the combination of LS-SVM
and AR for prediction of IMFs. Based on the partial auto-
correlation factor (PACF) and the frequency characteristics
of IMFs, the adaptive prediction algorithm will be identified.
In the proposed hybrid approach, for high frequency IMFs
(weak correlation factor), LS-SVM is employed, and for low
frequency IMFs (high correlation factor) AR model with
Kalman filter is employed. Results show that the proposed
hybrid approach provides better forecasting performance
compared to the existing methods.

The paper is organized as follows. In Section 2, brief
description of LS-SVM, AR model with Kalman filter, and the
proposed hybrid approach is discussed. Section 3 provides
wind speed data collection procedure, obtained results, and
implications. Section 4 concludes the paper.

2. Methodology

In this section, we first discuss the formulation of all the
methods (EMD, AR model with Kalman filter, and LS-SVM),
followed by the proposed hybrid approach.

2.1. Empirical Mode Decomposition (EMD) [24]. EMD has
been a widely accepted method for decomposition of non-
linear and nonstationary signals. The basic idea of EMD is
to identify the steady-state intrinsic oscillatory modes by

employing Hung-Hilbert transform. The detailed procedure
for EMD decomposition technique is well documented; for
details see [24, 25]. In Figure 1, the flowchart representation
of EMD process is shown.

The process of EMD to decompose the signal s(t) is as
follows.

(i) Step 1: initially, all extrema of s(t) will be identified by
a cubic spline.

(ii) Step 2: the mean value (m(t)) of upper envelope
(u(t)) and lower envelope (v(t)) is calculated, m(t) =
((u(t) + v(t))/2), and subtracted from s(t) to obtain
h(t), h1(t) = s(t) — m(t).

(iii) h1(t) can be an IMF, if it obeys the following condi-
tions.

(a) In the whole data series, the number of extrema
and the number of zero crossings in a whole
sampled data set must either be equal or differ
at most by one.

(b) At any point, the mean value of the envelope
defined by the local maxima and the envelope
defined by local minima is zero.

(iv) Step 3: if h1(t) does not obey the above conditions,
then hl1(t) will be considered as new signal and the
same procedure from Step 1 will be followed.

(v) Step 4: if h1(t) is an IMF, then residue (r1(¢)) for h1(t)
will be calculated, r1(t) = s(t) — h1(t). Consider r1(t)
as new signal and same procedure from Step 1 will be
employed.

2.2. Autoregressive Model (AR) with Kalman Filter [26]. AR
model is a type of random process which is popular for
prediction of various types of natural phenomena. It is also
one of the linear prediction methods designed to predict an
output of a system based on the previous outputs and the
regression coefficients (weights). In this paper, Kalman filter
is combined with the AR model to update the weights to
enhance the prediction quality.
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The state-space model of AR model of order M can be
given by
Measurement equation:

s = thst +g. o
State equation:

Wil = We + 1 (2)

—wM]T represents the weights
(time-varying filter coefficients), s, = [s,_; S - st_M]T
represents delayed inputs, and &, and #, are independent
white noise process with Gaussian distribution and variance
(@).

The Kalman filter update equations are given by [26]

where w, = [~w;, —w, ---

— — T~
W =W, +K, (st - X, wt)

_ T

e, =5 —8 W,
P18 (3)
Ki=5—7"""—
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where e, represents prediction error, K, represents Kalman
gain vector, P, represents error covariance matrix, Q repre-
sents covariance of state noise, and R represents covariance
of measurement noise.

2.3. Least Squares-Support Vector Machines (LS-SVM) [27].
LS-SVM is the least squares version of support vector
machine (SVM). In LS-SVM, the regression approximation
addresses the problem of estimating a function based on
given training data {s;, yi}fil with s; as a n-dimensional input
vector and y; as the corresponding output. A brief formula-
tion for LS-SVM is provided here; for more information see
[27]. The regression model for LS-SVM can be given in the
form:

y= wT(p (s) +b, (4)

where w is the weight vector and b is the bias.
The optimization problem for the function estimation
with LS-SVM is defined as follows:

N
. L r 2

minJ (w, &) = —w w+C) e, 5

min] (,§) = 5 Zl ; )

subject to the constraints y; = w’ ¢(s;)+b+e;; i =1,2,...,N,

where C is a regularization constant and e; is the estimation
error.

The Lagrangian function for the optimization problem
can be given as

N
L(w,b,ea) =] (w,e) - Z“f [wT<P (s;) +b+e - )’i] » (6)

i=1

where a = [y, «y, ...
pliers.
The regression model with LS-SVM can be obtained as

, o] represents the Lagrangian multi-

N
FA+T) =YK (sps)+b; t=N+1,..,I, (7)
i=1

where K(-,-) represents the Kernel function. RBF Kernel
employed in this paper is K(s, s;) = exp{—|s — s;|*/o?}.

2.4. The Hybrid EMD-LSSVM-AR Model. The procedure for
forecasting the wind speed with the proposed hybrid method
comprises three stages as shown in Figure 2. In the first stage,
owing to the nonstationary and stochastic characteristics
of wind speed time series, the signal will be decomposed
into meaningful local time scales by employing EMD [28].
In the second stage, prediction of all the decomposed
components will be performed individually with either LS-
SVM or AR model. The selection of adaptive algorithm
for an IMF is based on the obtained PACF factor and
frequency components of the corresponding IMFE. LS-SVM is
employed for weakly correlated IMFs and AR model for the
highly correlated IMFs. In the final stage, the predictions are
aggregated to attain the final forecasting result.

3. Results and Discussion

In this section, data employed for prediction is described.
Following that, the indices were employed to evaluate the
forecasting performance. Finally, performance analysis with
the existing methods is discussed.

3.1. Wind Speed Data. Wind data collected from Beloit,
Kansas, from a 20-meter anemometer as an integral part
of the Western area power administration anemometer loan
program is employed for analysis in this paper. This data
contains average wind speed and the direction in Beloit
for the period 2003-2004. The data was originally made
available by Wind Powering America, a DOE Office of
Energy Efficiency & Renewable Energy (EERE) program. For
illustration, the wind speed profile (in hours) of Beloit is
shown in Figure 3.
Two data sets are used in this paper for analysis.

(i) Mins data: in this data set, wind speed is recorded for
every 10 mins.

(ii) Hours data: in this data set, wind speed is recorded for
every one hour.

In this paper, single-step prediction and six-step ahead
prediction were performed on the two data sets separately
(six-step ahead prediction of mins data refers to the same
duration of single-step prediction of hours data). Compara-
tive analysis is performed with the existing methods for the
same data sets to highlight the advantage of the proposed
hybrid approach.

3.2. Evaluation of Forecast Performance. The indices em-
ployed to evaluate the wind forecasting performance are
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FIGURE 3: Hourly wind speed profile of Beloit.

mean absolute error (MAE) and mean absolute percent
error (MAPE). Smaller values of these indices imply better
forecasting performance.

The indices are defined as follows:

1< R
MAE = thZl|s(t)—s(t)|

. (8)
1 t)—s(t
MAPE = —ZM x 100%,
TH s(t)
where s(t) is the actual observation value for a time period
t and 5(t) is the forecast value for the same time period. The
MAE reveals the average variance between the true value and

forecast value whereas MAPE has a good sensitivity to small
changes in data.

3.3. Performance Analysis. In this subsection, forecasting
of both mins data and hours data is performed with the
proposed hybrid model. Further, a comparative analysis is
also performed with EMD-AR and EMD-LSSVM.

In Stage 1 of the proposed hybrid approach, the wind
speed data (mins data) is decomposed into nine IMFs with
EMD. Further, PACF for each IMF is computed indepen-
dently. IMFs and the corresponding PACF are shown in
Figure 4. Based on the obtained PACE LS-SVM is selected
for prediction of first two IMFs (IMF-1 and IMF-2) and for
the rest seven IMFs; AR model with Kalman filter is selected
in Stage 2. Using trail-and-error method, the parameters of
LS-SVM are initialized as C = 100, o = 50, and N = 1000.
Based on PACE second order was identified for AR model. In
Stage 3, aggregation of all the IMFs prediction is performed
to obtain the final forecasting results.

For hourly forecasting with mins data, six-step ahead
prediction is performed. Results obtained for six-step pre-
diction and single-step prediction with the proposed method
along with the existing methods are tabulated in Table 1.
The proposed method has an MAE of 0.42 for six-step
ahead forecasting, whereas for the existing methods EMD-
AR and EMD-LSSVM, MAE obtained was 0.48 and 0.52,
respectively. Single-step prediction is performed with hours
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FIGURE 4: (a) The decomposition of the wind speed profile for Beloit by EMD (b) PACF of respective IMFE.

data for one hour ahead forecasting. The procedure employed
for performing the prediction of IMFs is similar to six-
step prediction procedure. With the proposed method for
single-step prediction, MAE of 0.016 was obtained. With
EMD-AR and EMD-LSSVM, MAE obtained was 5.8 and 4.8,
respectively. For illustration, the forecasting results for all the
three methods for six-step ahead prediction are shown in
Figure 5.

To highlight the robustness of the proposed method,
six-step ahead prediction with the proposed method is
performed. Results obtained are tabulated in Table 1. Results
show that the proposed method provides better forecasting

compared to the existing methods. For illustration, six-
step ahead forecasting results with hours data for all three
methods are shown in Figure 6.

4. Conclusions

In this paper, a hybrid approach that is a combination of
EMD, LS-SVM, and AR model-Kalman filter is developed
for wind speed forecasting. The data was first decomposed
into IMFs based on the PACF, and then multistep prediction
was performed with LS-SVM for some IMFs and AR-Kalman
filter for the rest of IMFs. With the proposed method, six-step
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FIGURE 6: Performance analysis for hourly forecasting (a) EMD-AR; (b) EMD-LSSVM; (c) EMD-LSSVM-AR.
TaBLE 1: Hourly forecasting performance analysis.
Method Model errors Mins data Hours data
1 step 6 steps 1 step 6 steps

EMD-AR [23] MAE (m/s) 0.022 0.43 0.02 0.48

MAPE (%) 6.2 31.36 58 34.19
EMD-LSSVM [22] MAE (m/s) 0.018 0.49 0.019 0.52

MAPE (%) 4.6 34.45 4.8 3749
EMD-LSSVM-AR MAE (m/s) 0.012 0.39 0.016 0.42

MAPE (%) 2.8 28.25 3.2 3L19
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ahead forecasting for both mins data and hours data was
performed. A comparative analysis with existing methods
EMD-AR and EMD-LSSVM highlights the advantages of the
proposed method. Results show that the proposed hybrid
approach provides better forecasting compared to the existing
approaches.

Nomenclature

s(t): Signal

v(t): Lower envelope

A/ AR coefficients at instant ¢

W, Estimated AR coeflicients

e Prediction error

Q: Covariance of state noise

s: Input vector in LS-SVM training set
w: LS-SVM weights vector

b: Bias

a: Lagrangian multipliers

K(,-): Kernel function

y: Output of the corresponding s in LS-SVM
u(t): Upper envelope

Mean of the envelope

€, and 7,,;: State noise and measurement noise
Kalman gain vector

Error covariance matrix

Variance of measurement noise
Number of training samples
Nonlinear mapping

Regularization constant
Estimation error with LS-SVM
Predicted output with LS-SVM.
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