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In the Banach space setting, the existence of viable solutions for differential inclusions with nonlinear growth; that is, �̇�(𝑡) ∈

𝐹(𝑡, 𝑥(𝑡)) a.e. on 𝐼, 𝑥(𝑡) ∈ 𝑆, ∀𝑡 ∈ 𝐼, 𝑥(0) = 𝑥

0
∈ 𝑆, (∗), where 𝑆 is a closed subset in a Banach space X, 𝐼 = [0, 𝑇], (𝑇 > 0),

𝐹 : 𝐼 × 𝑆 → X, is an upper semicontinuous set-valued mapping with convex values satisfying 𝐹(𝑡, 𝑥) ⊂ 𝑐(𝑡)(‖𝑥‖ + ‖𝑥‖

𝑝
)K,

∀(𝑡, 𝑥) ∈ 𝐼 × 𝑆, where 𝑝 ∈ R, with 𝑝 ̸= 1, and 𝑐 ∈ 𝐶([0, 𝑇],R
+
). The existence of solutions for nonconvex sweeping processes with

perturbations with nonlinear growth is also proved in separable Hilbert spaces.

1. Introduction

The first motivation of the study of the concept of differential
inclusions comes from the development of some studies in
ControlTheory andOptimization; see, for instance, [1–3] and
the references therein. Many works investigated the existence
of solutions and topological properties of solution sets for
first- and second-order differential inclusions [2, 4–8]. For
example, in [4], the authors proved an existence result for the
inclusion

�̇� (𝑡) ∈ 𝐺 (𝑥 (𝑡)) a.e. on [0, 𝑇] , (𝑇 > 0) ,

𝑥 (0) = 𝑥

0
∈ R
𝑛
,

(1)

by assuming that the set-valued mapping 𝐺 is included in
the subdifferential of convex lower semicontinuous (l.s.c)
function 𝑔 : R𝑛 → R.This result has been extended inmany
ways by many authors (see, e.g., [9–11] and the references
therein. We state one of them from [12], in which the author
proved an existence result of viable solutions in the finite
dimensional setting for the differential inclusion:

�̇� (𝑡) ∈ 𝐺 (𝑥 (𝑡)) + 𝐹 (𝑡; 𝑥 (𝑡)) , a.e. on [0, 𝑇] ,

𝑥 (𝑡) ∈ 𝑆, on [0, 𝑇] ,

(2)

where 𝐺 is included in the subdifferential of a regular (not
necessary convex) function 𝑔 : R𝑛 → R, 𝑆 is closed subset

inR𝑛, and 𝐹 : [0, 𝑇]×R𝑛 is a continuous set-valuedmapping.
The infinite dimensional case of (2) has been studied in [13].
A very important type of differential inclusions that will be
considered in this work is the following:

�̇� (𝑡) ∈ −𝑁 (𝐶 (𝑡) ; 𝑥 (𝑡)) , a.e. on [0, 𝑇] ,

𝑥 (𝑡) ∈ 𝐶 (𝑡) , ∀𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥

0
∈ 𝐶 (0) ,

(3)

where 𝑁(𝑆, 𝑥) is the normal cone to 𝑆 at 𝑥 ∈ 𝑆. This
differential inclusion is called Sweeping Process Problem
(SP) and has been introduced and studied by Moreau in
1960s in the convex case [14]. This differential inclusion (SP)
models a phenomena from elastoplasticity; see the excellent
books in [3] and the references therein. Since the works [14],
many works extended in different ways the sweeping process
problem. In [15], the author introduced some new techniques
from which many results can be derived, essentially the
existence of a solution of (SP) for 𝐶(𝑡) = 𝑆 + V(𝑡), where
𝑆 is a fixed nonconvex closed set and V is a mapping with
finite variation. Another important study of the inclusion (3),
with a nonconvex set 𝐶(𝑡), has been realized by the author
in [16] who proved, in the finite dimensional setting, the
existence of solution for (3) whenever the set-valuedmapping
(𝑡; 𝑥)  𝑁

𝐶
(𝐶(𝑡); 𝑥)∩B has a closed graph. Here𝑁

𝐶
(𝐶(𝑡); ⋅)

is the Clarke normal cone and B denotes the closed unit ball
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of R𝑛. The main example of such sets 𝐶(𝑡) provided in [16]
is that of complements of open convex sets. In [17, 18] the
authors independently proved the existence of a solution of
(3) for general nonconvex sets moving in a Lipschitz way
in a finite dimensional space. Note that the results in [18]
are given for 𝜙-convex sets 𝐶(𝑡) in Hilbert spaces and under
some compactness assumptions on 𝐶. In [19], the authors
proved an existence result in Hilbert spaces with a regular
set-valued mappings 𝐶 of the perturbed sweeping process
problem defined as follows:

�̇� (𝑡) ∈ −𝑁

𝐶
(𝐶 (𝑡) ; 𝑥 (𝑡)) + 𝐹 (𝑡; 𝑥 (𝑡)) a.e. on 𝐼,

𝑥 (𝑡) ∈ 𝐶 (𝑡) , ∀𝑡 ∈ 𝐼,

𝑥 (0) = 𝑥

0
∈ 𝐶 (0) ,

(4)

where 𝐹(𝑡; ⋅) is an upper semicontinuous set-valued mapping
with convex compact values. The class of inclusions (4)
appears in particular in mathematical economy. It corre-
sponds for 𝐶(𝑡) = 𝑆 (independent of 𝑡) to modeling planning
procedures introduced by Henry [20] for 𝑆 convex and also
considered by [7] for 𝑆 tangentially regular.

To the best of our knowledge no existing works studied
the existence of solutions for differential inclusions with
nonlinear growth. The main purpose of the paper is to
prove the existence of solutions for (∗) in Banach spaces
and for (4) in separable Hilbert spaces, under the nonlinear
growth condition of the set-valued mapping 𝐹; that is, when
𝐹 : [0, 𝑇] × H → H is an upper semi-continuous set-
valuedmappingwith closed convex values satisfying𝐹(𝑡, 𝑥) ⊂

𝑐(𝑡)(‖𝑥‖ + ‖𝑥‖

𝑝
)K, where 𝑝 ∈ R, with 𝑝 ̸= 1, and 𝑐 ∈

𝐶([0, 𝑇],R
+
) and K is a convex compact set. The paper is

organized as follows. After recalling the needed concepts
in Section 2, we prove in Section 3 the existence of viable
solutions for (∗) in Banach spaces. In Section 4, we prove
the existence of solution for (SP) with perturbations having
nonlinear growth conditions with prox-regular values of𝐶 in
separable Hilbert spaces.

2. Preliminaries

This section is devoted to recall some notations and concepts
needed in the paper.

Definition 1. Let X be a Banach space, let 𝑆 ⊂ X be a
nonempty closed subset of X, and let 𝑥 ∈ 𝑆. The Bouligand
tangent cone 𝐾(𝑆; 𝑥) is defined by

𝐾 (𝑆; 𝑥) = {V : lim inf
ℎ→0

+

𝑑

𝑆
(𝑥 + ℎV)

ℎ

= 0} , (5)

where 𝑑

𝑆
(𝑥) = inf{‖𝑥 − 𝑠‖ : 𝑠 ∈ 𝑆} is the usual distance

function associated with 𝑆.
Recall from [21] the original definition of the class of

uniformly 𝑟-prox-regular sets in Hilbert spaces as the class
of all closed sets 𝑆 satisfying the following definition. Many
equivalent definitions of this class have been used for different
applications; see, for example, [5, 19, 22].

Definition 2. Let H be a Hilbert space. For a given 𝑟 ∈

(0, +∞], a subset 𝑆 is uniformly 𝑟-prox-regular if and only
if for all 𝑦 ∈ {𝑥 ∈ H : 0 < 𝑑

𝑆
(𝑥) < 𝑟}, the distance function

𝑑

𝑆
is 𝐶1 at 𝑦.

Example 3. (1) Any convex set is uniformly 𝑟-prox-regular
with 𝑟 = ∞.

(2)The union of two disjoint convex sets is not convex but
it is uniformly 𝑟-prox-regular with 𝑟 := 𝑑/2, where 𝑑 is the
distance between the two sets. More examples, details, and
characterizations of this class of sets in Hilbert spaces can be
found in [5, 19, 22].

A set-valued mapping 𝐹 : X  X is said to be upper
semicontinuous (u.s.c) at 𝑥 ∈ X provided for every 𝜖 > 0,
there exists 𝛿 > 0 such that

𝐹 (𝑥) ⊂ 𝐹 (𝑥) + 𝜖B, ∀𝑥 ∈ 𝑥 + 𝛿B. (6)

We say that 𝐹 is u.s.c. on X whenever it is u.s.c on all
𝑥 ∈ X. Obviously, the upper semicontinuity coincides with
the continuity for single-valued mappings. The following
proposition proves the u.s.c. of set-valued mappings with
closed graphs under the compactness assumption on the
closure of the range. For its proof, we refer the reader to
Proposition 1.2 in Deimling [2].

Proposition 4. LetΩ be a nonempty closed subset inX and let
𝐹 : Ω  X be a set-valued mapping with closed values. If the
graph of 𝐹 is closed and cl(𝐹(Ω)) is compact, then 𝐹 is upper
semicontinuous.

3. Nonlinear Variants of Gronwall Inequalities

Before starting this section, we refer the reader to the nice
book in [23] on Gronwall inequalities and applications. We
recall from [24] the following variant of Gronwall inequality
that can be also found in [23].

Lemma 5. Let V be a positive differentiable function satisfying
the inequality

V̇ (𝑡) ≤ ℎ (𝑡) V (𝑡) + 𝑘 (𝑡) V𝑝 (𝑡) , ∀𝑡 ∈ [𝑎, 𝑏] , (7)

where the functions ℎ and 𝑘 are continuous on [𝑎, 𝑏] and 𝑝 ≥ 0

(with 𝑝 ̸= 1) is a constant. Then

V (𝑡) ≤ exp(∫

𝑡

𝑎

ℎ (𝑠) 𝑑𝑠)

× [V1−𝑝 (𝑎) + (1 − 𝑝)

×∫

𝑡

𝑎

𝑘 (𝑠) exp((𝑝 − 1)∫

𝑠

𝑎

ℎ (𝜏) 𝑑𝜏) 𝑑𝑠]

1/(1−𝑝)

,

(8)
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for all 𝑡 ∈ [𝑎, 𝑏

1
), where 𝑏

1
is chosen so that the expression

V1−𝑝 (𝑎) + (1 − 𝑝)∫

𝑡

𝑎

𝑘 (𝑠) exp((𝑝 − 1)∫

𝑠

𝑎

ℎ (𝜏) 𝑑𝜏) 𝑑𝑠 (9)

is positive in the subinterval [𝑎, 𝑏
1
).

In the following lemma we extend Lemma 5 to the case
of negative exponent 𝑝. To the best of our knowledge no such
results on Gronwall inequalities with decreasing right hand
side of the inequality (7) which is the case when the exponent
𝑝 is assumed to be negative.

Lemma 6. Let V be a positive differentiable function satisfying
(7) with 𝑝 ≤ 0 and assume that 𝑘 is nonnegative. Then

V (𝑡) ≤ exp(∫

𝑡

𝑎

ℎ (𝑠) 𝑑𝑠)

× [V1−𝑝 (𝑎) + (1 − 𝑝)

×∫

𝑡

𝑎

𝑘 (𝜏) exp((𝑝 − 1)∫

𝜏

𝑎

ℎ (𝑠) 𝑑𝑠) 𝑑𝜏]

1/(1−𝑝)

,

(10)

for all 𝑡 ∈ [𝑎, 𝑏].

Proof. Multiplying (7) by V−𝑝(𝑡) we obtain

V̇ (𝑡) V−𝑝 (𝑡) ≤ ℎ (𝑡) V1−𝑝 (𝑡) + 𝑘 (𝑡) , ∀𝑡 ∈ [𝑎, 𝑏] .
(11)

Let 𝛾(𝑡) = (1 − 𝑝) ∫

𝑡

𝑎
ℎ(𝑠)𝑑𝑠. Then 𝛾(𝑎) = 0 and ̇𝛾(𝑡) = (1 −

𝑝)ℎ(𝑡). Rearranging the above inequality and multiplying it
by exp(−𝛾(𝑡)) yield

[V̇ (𝑡) V−𝑝 (𝑡) − ℎ (𝑡) V1−𝑝 (𝑡)] exp (−𝛾 (𝑡))

≤ 𝑘 (𝑡) exp (−𝛾 (𝑡)) , ∀𝑡 ∈ [𝑎, 𝑏] .

(12)

Let 𝑧(𝑡) = V1−𝑝(𝑡) exp(−𝛾(𝑡)). Then 𝑧(𝑎) = V1−𝑝(𝑎) and

�̇� (𝑡) = (1 − 𝑝) [V−𝑝 (𝑡) V̇ (𝑡) − V1−𝑝 (𝑡) ℎ (𝑡)] exp (−𝛾 (𝑡)) ,

(13)

and hence (12) becomes

�̇� (𝑡) ≤ (1 − 𝑝) 𝑘 (𝑡) exp (−𝛾 (𝑡)) , ∀𝑡 ∈ [𝑎, 𝑏] . (14)

Integrating this inequality over [𝑎, 𝑡] we get

𝑧 (𝑡) ≤ 𝑧 (𝑎) + (1 − 𝑝)∫

𝑡

𝑎

𝑘 (𝜏) exp (−𝛾 (𝜏)) 𝑑𝜏,

∀𝑡 ∈ [𝑎, 𝑏] .

(15)

Thus,

V (𝑡) ≤ exp(∫

𝑡

𝑎

ℎ (𝑠) 𝑑𝑠)

× [V1−𝑝 (𝑎) + (1 − 𝑝)

× ∫

𝑡

𝑎

𝑘 (𝜏) exp((𝑝 − 1)∫

𝜏

𝑎

ℎ (𝑠) 𝑑𝑠) 𝑑𝜏]

1/(1−𝑝)

,

(16)

for all 𝑡 ∈ [𝑎, 𝑏], and hence the proof is finished.

4. Solutions of Differential Inclusions with
Nonlinear Growth

The two following consequences of Lemmas 5 and 6 are the
key tools in this section. In these lemmas we take the case
ℎ(𝑡) = 𝑘(𝑡) > 0, and we separate the results in two cases
depending on the exponent 𝑝. The first case is 𝑝 ∈ (1,∞)

and the second case is 𝑝 ∈ (−∞, 1).

Lemma 7. Let V be a positive differentiable function satisfying
(7) with 𝑝 ∈ (1,∞) and assume that ℎ(𝑡) = 𝑘(𝑡) > 0, for
all 𝑡 ∈ [𝑎, 𝑏]. Let 𝛾(𝑡) = ∫

𝑡

𝑎
ℎ(𝑠)𝑑𝑠, for all 𝑡 ∈ [𝑎, 𝑏] and let

𝑏

1
∈ [𝑎, 𝑏] satisfying the inequality

∫

𝑏
1

𝑎

ℎ (𝑠) exp ((𝑝 − 1) 𝛾 (𝑠)) 𝑑𝑠 <

V1−𝑝 (𝑎)
𝑝 − 1

. (17)

Then

V (𝑡)≤exp (𝛾 (𝑏

1
)) [V1−𝑝 (𝑎) + (1 − 𝑝)

×∫

𝑏
1

𝑎

ℎ(𝑠) exp ((𝑝 − 1) 𝛾 (𝑠)) 𝑑𝑠]

1/(1−𝑝)

,

(18)

for all 𝑡 ∈ 𝐽

1
:= [𝑎, 𝑏

1
).

Lemma 8. Let V be a positive differentiable function satisfying
(7) with 𝑝 ∈ (−∞, 1). Let 𝛾(𝑡) = ∫

𝑡

𝑎
ℎ(𝑠)𝑑𝑠, for all 𝑡 ∈ [𝑎, 𝑏].

Then

V (𝑡) ≤ exp (𝛾 (𝑏)) [V1−𝑝 (𝑎) + (1 − 𝑝)

×∫

𝑏
1

𝑎

ℎ (𝑠) exp ((𝑝 − 1) 𝛾 (𝑠)) 𝑑𝑠]

1/(1−𝑝)

,

(19)

for all 𝑡 ∈ [𝑎, 𝑏].

Let 𝐹 be a set-valued mapping satisfying the following
nonlinear growth:

𝐹 (𝑡, 𝑥) ⊂ 𝑐 (𝑡) (‖𝑥‖ + ‖𝑥‖

𝑝
)K on 𝐼 × 𝐷, (20)
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where 𝐼 = [0, 𝑇], (𝑇 > 0), 𝐷 is a closed nonempty set in X,
𝑐 ∈ 𝐶(𝐼,R

+
), and 𝑝 ∈ R with 𝑝 ̸= 1. Clearly, when 𝑝 = 0, this

assumption coincides with thewell known linear growth; that
is,

𝐹 (𝑡, 𝑥) ⊂ 𝑐 (𝑡) (1 + ‖𝑥‖)K on 𝐼 × 𝐷. (21)

Our main aim in this paper is to prove the existence of
absolutely continuous solutions under the nonlinear growth
condition (20) of

�̇� (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) a.e. on 𝐼,

𝑥 (0) = 𝑥

0
∈ 𝐷,

𝑥 (𝑡) ∈ 𝐷, on 𝐼

(𝐷𝐼)

for any 𝑥

0
∈ 𝐷. To ensure the viability of the solution on the

set 𝐷, we need the following classical tangential condition:

𝐹 (𝑡, 𝑥) ∩ 𝐾 (𝐷; 𝑥) ̸= 0 on 𝐼 × 𝐷, (22)

where 𝐾(𝐷; 𝑥) is the Bouligand tangent cone to 𝐷 at 𝑥.
The following proposition is a main tool in our next

proofs.

Proposition 9. Assume that 𝑥 is a mapping from 𝐼 to X

satisfying

‖�̇� (𝑡)‖ ≤ 𝑐 (𝑡) (‖𝑥 (𝑡)‖ + ‖𝑥 (𝑡)‖

𝑝
) , 𝑎.𝑒. 𝑜𝑛 𝐼. (23)

Then 𝑥 is bounded by

𝑀 := exp (𝛾 (𝑏

2
)) [‖𝑥 (0)‖

1−𝑝
+ (1 − 𝑝)

×∫

𝑏
2

0

𝑐 (𝑠) exp ((𝑝 − 1) 𝛾 (𝑠)) 𝑑𝑠]

1/(1−𝑝)

,

(24)

on the interval 𝐼
1
, where 𝐼

1
= [0, 𝑇] when 𝑝 ∈ (−∞, 1) and

𝐼

1
= [0, 𝑏

1
) for 𝑝 ∈ (1,∞), where 𝑏

1
is given as in Lemma 7.

Proof. Let V(𝑡) = ‖𝑥(𝑡)‖. Since 𝑥 is absolutely continuous on
𝐼, then the derivatives �̇�(𝑡) and V̇(𝑡) exist a.e. on 𝐼 and satisfy

V̇ (𝑡) = ⟨�̇� (𝑡) ,

𝐽 (𝑥 (𝑡))

‖𝑥 (𝑡)‖

⟩ , (25)

where 𝐽 is the normalized duality mapping (for the definition
we refer to [25]). For such 𝑡, we have

V̇ (𝑡) ≤ ‖�̇� (𝑡)‖

‖𝐽 (𝑥 (𝑡))‖

‖𝑥 (𝑡)‖

≤ 𝑐 (𝑡) (‖𝑥 (𝑡)‖ + ‖𝑥 (𝑡)‖

𝑝
)

≤ 𝑐 (𝑡) (V (𝑡) + V(𝑡)𝑝) .

(26)

Take the functions ℎ and 𝑘 as in Lemma 7 satisfying ℎ(𝑡) =

𝑘(𝑡) = 𝑐(𝑡) > 0, for all 𝑡 ∈ 𝐼. Then by Lemmas 7 and 8 we get
the conclusion of the proposition.

In all what follows let 𝑏
2
and𝑀 be as in Proposition 9.We

recall from Deimling [2, Theorem 9, Page 117] the following
existence result for u.s.c. set-valued mappings with values
contained in a compact set.

Theorem 10. Let X be a Banach space, 𝐷 ⊂ X a nonempty
closed set, 𝐼 = [0, 𝑇], and 𝐺 : 𝐼 × X  X satisfying the
following:

(a) 𝐺 is u.s.c. with closed convex values;
(b) 𝐺(𝑡, 𝑥) ⊂ 𝑐(𝑡)K on 𝐽 ×𝐷, for someK convex compact

set inX and 𝑐 ∈ 𝐶(𝐼,R
+
);

(c) 𝐺(𝑡, 𝑥) ∩ 𝐾(𝐷; 𝑥) ̸= 0 on 𝐼 × 𝐷.

Then for every 𝑥

0
∈ 𝐷, there exists an absolutely continuous

mapping 𝑥 : 𝐼 → 𝐷 such that

�̇� (𝑡) ∈ 𝐺 (𝑡, 𝑥 (𝑡)) 𝑎.𝑒. 𝑜𝑛 𝐼,

𝑥 (0) = 𝑥

0
∈ 𝐷,

𝑥 (𝑡) ∈ 𝐷, 𝑜𝑛 𝐼.

(27)

We start now by proving the following proposition needed in the
proof of the main result.

Proposition 11. Let𝐷 be a closed subset inX and let 𝐹 : 𝐷 

X be an upper semicontinuous set-valued mapping with closed
convex values and let 𝑟

1
, 𝑟

2
> 0 be such that 𝑟

1
< 𝑟

2
, and let 𝜓 :

[0, +∞) → [0, 1] be a continuous function such that 𝜓(𝑠) = 1

for 𝑠 ≤ 𝑟

1
and 𝜓(𝑠) = 0 for 𝑠 ≥ 𝑟

2
. Let 𝐺 be a set-valued

mapping defined on 𝐷 as follows:

𝐺 (𝑡, 𝑥) = 𝜓 (‖𝑥‖) 𝐹 (𝑡, 𝑥) ∀ (𝑡, 𝑥) ∈ 𝐼 × 𝐷. (28)

If 𝐹 satisfies the nonlinear growth on 𝐼 × 𝐷; that is, 𝐹(𝑡, 𝑥) ⊂

𝑐(𝑡)(‖𝑥‖ + ‖𝑥‖

𝑝
)K on 𝐼 × 𝐷, for some 𝑐 ∈ 𝐶(𝐼,R

+
), 𝑝 ∈ R

with𝑝 ̸= 1, andK is a convex compact set inX, then𝐺 is upper
semicontinuous on 𝐼 × 𝐷 with closed convex values.

Proof. Clearly, 𝐺 has closed convex values. Let K
0

:= (𝑟

1
+

𝑟

𝑝

1
)K ∪ {0}. For any 𝑡 ∈ 𝐼 and any 𝑥 ∈ 𝐷 with ‖𝑥‖ < 𝑟

2
, we

have by the convexity ofK the following:

𝐺 (𝑡, 𝑥) = 𝜓 (‖𝑥‖) 𝐹 (𝑡, 𝑥) ⊂ 𝜓 (‖𝑥‖) 𝑐 (𝑡) (‖𝑥‖ + ‖𝑥‖

𝑝
)K

⊂ 𝑐 (𝑡) (𝑟

1
+ 𝑟

𝑝

1
)K ⊂ 𝑐K

0
,

(29)

where 𝑐 := max
𝑡∈𝐼

𝑐(𝑡) and for any 𝑡 ∈ 𝐼 and any 𝑥 ∈ 𝐷 with
𝑥 ∉ 𝑟

2
B, we have 𝐺(𝑡, 𝑥) = {0} ⊂ 𝑐K

0
. Then 𝐺(𝐼 × 𝐷) ⊂

𝑐K
0
. Then, by Proposition 4, it is sufficient to prove that the

graph of 𝐺 is closed. To do that, we fix ((𝑡

𝑛
, 𝑥

𝑛
), 𝑦

𝑛
) ∈ gph𝐺

with ((𝑡

𝑛
, 𝑥

𝑛
), 𝑦

𝑛
) → ((𝑡, 𝑥), 𝑦) and we have to prove that

((𝑡, 𝑥), 𝑦) ∈ gph𝐺; that is 𝑦 ∈ 𝐺(𝑡, 𝑥). By definition of 𝐺 we
have

𝑦

𝑛
= 𝜓 (









𝑥

𝑛









) 𝑧

𝑛
, with 𝑧

𝑛
∈ 𝐹 (𝑡

𝑛
, 𝑥

𝑛
) . (30)

First, we assume the existence of a subsequence (𝑥

𝑠(𝑛)
)

𝑛
of

(𝑥

𝑛
)

𝑛
such that 𝜓(‖𝑥

𝑠(𝑛)
‖) → 0. In this case we have for



The Scientific World Journal 5

𝑛 large enough ‖𝑥

𝑠(𝑛)
‖ ≤ 𝑟

2
and so 𝑧

𝑠(𝑛)
is bounded which

ensures that 𝑦

𝑠(𝑛)
→ 0 and so 𝑦 = 0. On the other hand,

by continuity of 𝜓 and the convergence of 𝑥
𝑛
to 𝑥, we obtain

𝜓(‖𝑥‖) = lim
𝑛
𝜓(‖𝑥

𝑠(𝑛)
‖) = lim

𝑛
𝑦

𝑠(𝑛)
= 0 and so 𝐺(𝑡, 𝑥) =

{0}. Thus, we get 𝑦 ∈ 𝐺(𝑡, 𝑥) = {0}. Assume now that there
exists some𝛼 > 0 and 𝑛

0
∈ N such that𝜓(‖𝑥

𝑛
‖) > 𝛼 > 0 for all

𝑛 ≥ 𝑛

0
. Then by continuity of 𝜓 we have 𝑧

𝑛
= 𝑦

𝑛
/𝜓(‖𝑥

𝑛
‖) →

𝑧 := 𝑦/𝜓(‖𝑥‖). Thus, by upper semicontinuity of 𝐹, we get
𝑧 ∈ 𝐹(𝑡, 𝑥); that is, 𝑦 ∈ 𝜓(‖ 𝑥 ‖)𝐹(𝑡, 𝑥) = 𝐺(𝑡, 𝑥). This
completes the proof of the closedness of the graph of 𝐺 and
hence the proof is achieved.

Now, we are ready to prove our main existence result
under the nonlinear growth condition in Banach spaces.

Theorem 12. Let X be a Banach space, 𝐷 ⊂ X a nonempty
closed set, and 𝐹 : X  X satisfying the following:

(a) 𝐹 is u.s.c. on 𝐼 × 𝐷 with 𝐹(𝑡, 𝑥) being closed convex for
all (𝑡, 𝑥) ∈ 𝐼 × 𝐷;

(b) 𝐹(𝑡, 𝑥) ⊂ 𝑐(𝑡)(‖𝑥‖ + ‖𝑥‖

𝑝
)K on 𝐼 × 𝐷, for some 𝑐 ∈

𝐶(𝐼,R
+
), and 𝑝 ∈ R with 𝑝 ̸= 1, and for some convex

compact setK inX;
(c) 𝐹(𝑡, 𝑥) ∩ 𝐾(𝐷; 𝑥) ̸= 0 on 𝐼 × 𝐷.

Then for every 𝑥

0
∈ 𝐷, there exists an absolutely continuous

mapping 𝑥 : 𝐼

1
→ 𝐷 such that

�̇� (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) 𝑎.𝑒. 𝑜𝑛 𝐼

1
,

𝑥 (0) = 𝑥

0
∈ 𝐷,

𝑥 (𝑡) ∈ 𝐷, 𝑜𝑛 𝐼

1
,

(31)

where 𝐼

1
= [0, 𝑇] when 𝑝 ∈ (−∞, 1) and 𝐼

1
= [0, 𝑏

1
) for 𝑝 ∈

(1,∞) and 𝑏

1
is as in Lemma 7.

Proof. Let 𝑘 ≥ 1 be such that K ⊂ 𝑘B and assume that 𝑐 :=

max
𝑡∈𝐼

𝑐(𝑡) > 1. Let 𝑘 = 𝑘𝑐 and let 𝑀 be as in Proposition 9
with 𝑘 instead of the function 𝑐. Then

𝑀 = exp (𝑘𝑏

2
) [









𝑥

0









1−𝑝
+ 1] − exp (𝑝𝑘𝑏

2
) , (32)

where 𝑏

2
is defined as in Proposition 9. Set 𝑟 := 𝑘(𝑀+𝑀

𝑝
) >

𝑀 and let 𝜓 : [0, +∞) → [0, 1] be a continuous function
such that 𝜓(𝑠) = 1 for 𝑠 ≤ 𝑀 and 𝜓(𝑠) = 0 for 𝑠 ≥ 𝑟. Define
now the set-valued mapping 𝐺 on 𝐼 × 𝐷 as follows:

𝐺 (𝑡, 𝑥) = 𝜓 (‖𝑥‖) 𝐹 (𝑡, 𝑥) on 𝐼 × 𝐷. (33)

By Proposition 11, the set-valued mapping 𝐺 inherits the
convexity and the upper semicontinuity of the set-valued
mapping 𝐹with𝐺(𝑡, 𝑥) ⊂ 𝑐(𝑡)K

0
, whereK

0
:= 𝑟K∪{0}. We

have to check that 𝐺 satisfies the tangential condition on 𝐷.
Let 𝑡 ∈ 𝐼 and let𝑥 ∈ 𝐷∩𝑀B.Then𝐺(𝑡, 𝑥) = 𝐹(𝑡, 𝑥) and so the
tangential condition is satisfied from (c). Assume now that
𝑡 ∈ 𝐼 and 𝑥 ∈ 𝐷 with ‖𝑥‖ > 𝑀. Then by (c) there exists some
𝑧 ∈ 𝐹(𝑡, 𝑥) such that 𝑧 ∈ 𝐾(𝐷; 𝑥). Let 𝑦 = 𝜓(‖𝑥‖)𝑧. Clearly,
𝑦 ∈ 𝐺(𝑡, 𝑥) and 𝑦 ∈ 𝜓(‖𝑥‖)𝐾(𝐷; 𝑥) ⊂ 𝐾(𝐷; 𝑥), since 𝐾(𝐷; 𝑥)

is a cone. So, 𝐺(𝑡, 𝑥) ∩ 𝐾(𝐷; 𝑥) ̸= 0. Therefore, the tangential

condition is satisfied for 𝐺 on all 𝐼 × 𝐷. Consequently, all the
assumptions (a), (b), and (c) inTheorem 10 with the compact
setK

0
instead ofK are satisfied and hence for every 𝑥

0
∈ 𝐷

there exists a solution 𝑥 on 𝐼 of (𝐷𝐼) associated with the
set-valued mapping 𝐺 defined above, that is, an absolutely
continuous mapping 𝑥 : 𝐼 → 𝐷 such that �̇�(𝑡) ∈ 𝐺(𝑡, 𝑥(𝑡))

a.e. on 𝐼, 𝑥(0) = 𝑥

0
, and 𝑥(𝑡) ∈ 𝐷 on 𝐼. Let us prove that 𝑥 is

the desired solution for (31). Clearly

�̇� (𝑡) ∈ 𝐺 (𝑡, 𝑥 (𝑡))

= 𝜓 (‖𝑥 (𝑡)‖) 𝐹 (𝑡, 𝑥 (𝑡))

⊂ 𝜓 (‖𝑥 (𝑡)‖) 𝑘 (‖𝑥 (𝑡)‖ + ‖𝑥 (𝑡)‖

𝑝
)B a.e. on 𝐼

(34)

and so we get

‖�̇� (𝑡)‖ ≤ 𝑘 (‖𝑥 (𝑡)‖ + ‖𝑥 (𝑡)‖

𝑝
) , a.e. on 𝐼.

(35)

Assume that 𝑝 ̸= 1. Using Proposition 9, we get ‖𝑥(𝑡)‖ ≤

𝑀 a.e. on 𝐼

1
and so by the definition of 𝐺 and 𝜓 we get

𝐺(𝑡, 𝑥(𝑡)) = 𝜓(‖𝑥(𝑡)‖)𝐹(𝑡, 𝑥(𝑡)) = 𝐹(𝑡, 𝑥(𝑡)) that is, 𝑥 is a
solution of (31) on 𝐼

1
.

5. Nonconvex Sweeping Process
with Perturbations Having
Nonlinear Growth Conditions

Our purpose, in this section, is to use the techniques
developed previously to extend some existing results, in
separable Hilbert spaces, of nonconvex sweeping processes
with perturbations from the case of perturbation with linear
growth to the case of perturbationwith nonlinear growth. For
this end let H be a separable Hilbert space, let 𝐼 := [0, 𝑇]

(𝑇 > 0), and let𝐶 : 𝐼  H be a set-valuedmapping satisfying
the following Lipschitz condition for any 𝑦 ∈ H and any
𝑡, 𝑡


∈ 𝐼:









𝑑

𝐶(𝑡)
(𝑦) − 𝑑

𝐶(𝑡

)
(𝑦)









≤ 𝐿











𝑡 − 𝑡










. (36)

We start with the following existence result which is a
consequence of Theorem 4.1 in [19].

Theorem 13. Let H be a separable Hilbert space and let 𝑟 ∈

(0,∞]. Assume that 𝐶(𝑡) is 𝑟-prox-regular for every 𝑡 ∈ 𝐼 and
that the assumption (36) holds. Let 𝐹 : 𝐼 × H → H be a set-
valued mapping with convex compact values in H such that 𝐹
is u.s.c. on 𝐼 × H. Assume that 𝐹(𝑡, 𝑥) ⊂ K

1
⊂ 𝛼B for all

(𝑡, 𝑥) ∈ 𝐼 × H, for some compact set K
1
in H. Then, for any

𝑥

0
∈ 𝐶(0), the sweeping process (SPP) with the perturbation

𝐹 has at least one Lipschitz continuous solution; that is, there
exists an Lipschitz continuous mapping 𝑥 : 𝐼 → H such that

−�̇� (𝑡) ∈ 𝑁

𝐶
(𝐶 (𝑡) ; 𝑥 (𝑡)) + 𝐹 (𝑡, 𝑥 (𝑡)) 𝑎.𝑒. 𝑡 ∈ 𝐼,

𝑥 (𝑡) ∈ 𝐶 (𝑡) , ∀𝑡 ∈ 𝐼,

𝑥 (0) = 𝑥

0
,

(37)

and ‖�̇�(𝑡)‖ ≤ 𝐿(2𝛼 + 1), a.e. on 𝐼.
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Using the techniques from the previous section and
Theorem 13 we prove our main result in this section.

Theorem 14. Let 𝑟 ∈ (0, +∞]. Assume that 𝐶(𝑡) is 𝑟-prox-
regular for every 𝑡 ∈ 𝐼 and that the assumption (36) holds. Let
𝐹 : 𝐼 × H → H be a set-valued mapping with convex compact
values. Assume also that 𝐹 has nonlinear growth; that is, there
exist a positive continuous function 𝑐 : 𝐼 → (0,∞), a convex
compact setK, and 𝑘 > 0 such that

𝐹 (𝑡, 𝑥) ⊂ 𝑐 (𝑡) (‖𝑥‖ + ‖𝑥‖

𝑝
)K

⊂ 𝑐 (𝑡) (‖𝑥‖ + ‖𝑥‖

𝑝
) 𝑘B, ∀ (𝑡, 𝑥) ∈ 𝐼 × H.

(38)

Assume further that the following conditions on the constants
𝐿, 𝑘, 𝑐, 𝑝, and 𝑇 are satisfied:

𝑝 ̸= 1,

𝑐 := max
𝑡∈𝐼

𝑐 (𝑡) <

1

8𝑇𝐿𝑘 (1 + 4

𝑝−1
(𝑇𝐿 +









𝑥

0









)

𝑝−1
)

.

(39)

Then for any 𝑢

0
∈ 𝐶(0), there exists a Lipschitz continuous

mapping 𝑢 : 𝐼 → H satisfying the following sweeping process
with a perturbation:

−�̇� (𝑡) ∈ 𝑁

𝐶
(𝐶 (𝑡) ; 𝑥 (𝑡)) + 𝐹 (𝑡, 𝑥 (𝑡)) 𝑎.𝑒. 𝑡 ∈ 𝐼,

𝑥 (𝑡) ∈ 𝐶 (𝑡) , ∀𝑡 ∈ 𝐼,

𝑥 (0) = 𝑥

0
.

(40)

Proof. Assume without loss of generality that 0 ∈ K. By our
assumptions on the constants 𝐿, 𝑐, and 𝑇we have after simple
computations

4

𝑝−1
(𝐿𝑇 +









𝑥

0









)

𝑝−1
<

1

8𝑐𝐿𝑇𝑘

− 1. (41)

So we can find some positive number 𝛽 > 0 such that

4

𝑝−1
(𝐿𝑇 +









𝑥

0









)

𝑝−1
< 𝛽 <

1

8𝑐𝐿𝑇𝑘

− 1. (42)

Let 𝛼 = 𝛽

1/(𝑝−1). Then

𝛼 > 4 (𝐿𝑇 + ‖𝑥

0
‖) , 2𝑐 (𝛼

𝑝−1
+ 1) <

1

4𝐿𝑇𝑘

. (43)

Define then the function 𝜓 : [0, +∞) → [0, 1] to be a
continuous function such that 𝜓(𝑠) = 1 for 𝑠 ≤ 𝛼/2 and
𝜓(𝑠) = 0 for 𝑠 ≥ 𝛼 and define the set-valued mapping 𝐺 on H

as follows:

𝐺 (𝑡, 𝑥) = 𝜓 (‖𝑥‖) 𝐹 (𝑡, 𝑥) on 𝐼 × H. (44)

Clearly 𝐺 inherits the convexity of the values from 𝐹. Also,
for any 𝑥 ∈ 𝛼B, we have

𝐺 (𝑡, 𝑥) = 𝜓 (‖𝑥‖) 𝐹 (𝑡, 𝑥)

⊂ 𝑐 (𝑡) (‖𝑥‖ + ‖𝑥‖

𝑝
)K

⊂ 𝑐 (𝛼 + 𝛼

𝑝
)K,

(45)

and for any𝑥 ∉ 𝛼B, we have𝐺(𝑡, 𝑥) = {0} ⊂ 𝑐(𝛼+𝛼

𝑝
)K.Thus,

𝐺(𝑡, 𝑥) ⊂ K
0
, for any (𝑡, 𝑥) ∈ 𝐼 × H withK

0
:= 𝑐(𝛼 + 𝛼

𝑝
)K.

Consequently, the upper semicontinuity 𝐺 follows from the
u.s.c. of 𝐹 and Proposition 11. Applying nowTheorem 13 with
𝐶 and 𝐺 we get a Lipschitz continuous mapping 𝑥 : 𝐼 → H

such that

−�̇� (𝑡) ∈ 𝑁

𝐶
(𝐶 (𝑡) ; 𝑥 (𝑡)) + 𝐺 (𝑡, 𝑥 (𝑡)) a.e. 𝑡 ∈ 𝐼, (46)

𝑥 (𝑡) ∈ 𝐶 (𝑡) , ∀𝑡 ∈ 𝐼, (47)

𝑥 (0) = 𝑥

0
, (48)

with

‖�̇� (𝑡)‖ ≤ (2𝑘𝑐 (𝛼 + 𝛼

𝑝
) + 1) 𝐿, a.e. on 𝐼. (49)

Now, let us check that 𝑥 is a solution of (SPP) with 𝐹. Clearly,
we have

‖𝑥 (𝑡)‖ ≤ ‖𝑥 (0)‖ + ∫

𝑡

0

‖�̇� (𝑠)‖ 𝑑𝑠

≤









𝑥

0









+ (2𝑘𝑐 (𝛼 + 𝛼

𝑝
) + 1) 𝐿𝑇, a.e. on 𝐼.

(50)

We use now the choice of 𝛼 and the assumptions on the
constants 𝑐, 𝐿, 𝑘 to deduce from (43) that

𝐿𝑇 +









𝑥

0









<

𝛼

4

, 2𝑐𝐿𝑘𝑇 (𝛼

𝑝
+ 𝛼) <

𝛼

4

, (51)

which ensures that

𝐿𝑇 (2𝑐𝑘 (𝛼

𝑝
+ 𝛼) + 1) +









𝑥

0









<

𝛼

2

, (52)

and hence ‖𝑥(𝑡)‖ ≤ 𝛼/2 which yields that 𝜓(‖𝑥(𝑡)‖) = 1 and
so 𝐺(𝑡, 𝑥(𝑡)) = 𝐹(𝑡, 𝑥(𝑡)). This means that 𝑥 is a solution of
(40) and hence the proof is complete.
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