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In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high
efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The
main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing
approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry
out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot

modules. The computational experiments prove the effectiveness of the proposed approach.

1. Introduction

When robots try to successfully complete their mission in
various environments, it is necessary to retain high autonomy
and intelligence like humans. Robots should employ precise
sensors and complex controllers and mount high perfor-
mance processors in order to attain complete autonomy and
intelligence. However, these enhanced devices bring forth
the extremely expensive cost in constructing an autonomous
robot system. Furthermore, the efficiency of the autonomous
robot system dramatically decreases as the working space
enlarges [1].

There is a well-known approach to solving the previously
mentioned problems, which utilizes numerous robots by
adopting swarm intelligence. Swarm intelligence makes a
swarm of robots perform their tasks in collaboration with
themselves. It denotes that the swarm robots can have a lot
of advantages: stability, scalability, robustness, efficiency, and
so on. Swarm robotics is a field of research on the swarm
of robots, which is working in conjunction with the nature-
inspired algorithms (i.e., swarm intelligence). The swarm
robotics aims to develop an all-round autonomous machine
in various practical areas such as industry, agriculture, fishery,

military, and medical. In recent years, many studies have
been carried out on the construction, exploration, national
defense, and security fields. In fact, most of the real-world
autonomous problems include complex situations and broad
working space. Thus, the swarm robotics can be applied to a
lot of areas in the sense of improving efficiency on the cost of
installation and maintenance [2].

Nevertheless, the swarm robotics still has some problems
when applying to practical applications due to the hurdles of
the current technologies in constructing the promising self-
assembling swarm robots (i.e., module robots). For instance,
the motors of module robots lack physical strength. The
battery which is contained in the modules cannot be as small
as a microsize. A lot of researchers have tried to improve the
module robots in order to find a better mechanism for the
system [3-5]. In this sense, this paper develops a new control
mechanism for the swarm robots by using evolutionary
techniques (i.e., genetic programming) as an effort to get over
these limitations.

The rest of this paper is organized as follows. In Section 2,
we introduce the fundamental knowledge on the self-assem-
bling swarm robots, the oscillator that is the core controller of
the system, and the genetic programming (GP). In Section 3,



we present the proposed evolutionary self-assembling mech-
anism for the swarm robots. The experimental results are
shown in Section 4. Finally, we conclude this paper in
Section 5.

2. Related Work

2.1. Self-Assembling Swarm Robots. A self-assembling swarm
robot system (S) consists of robot modules (Ms), which are a
kind of robotic cell, denoted by S = {M,, M,, ..., M}, where
N is the number of module robots. The self-assembling in the
swarm robotics means that these module robots are able to
be combined together in an efficient manner. Each module
has two major types of equipments: motion and connection
devices. The former such as rotation motor and joint devices
offers the motion power and decides the degree of freedom
(DOF) of the system. The latter such as magnet, ring, and
hook devices connects the modules together. Also, each
module robot requires the inclusion of auxiliary components
such as battery, controller, processor, and sensors, which are
necessary for the distributed control [6-9]. In principle, the
system can transform its own shape into another one suitable
to carry out given tasks. Therefore, it can conduct the work
which cannot be carried out by a single module because all
the robot modules operate in cooperation with themselves.
For example, the system may be transformed into the shape
of a snake to pass through a pipe. It is also possible to convert
the system into the shape of a four-legged animal to walk on
rugged roads or climb stairs.

2.2. Oscillator. A central pattern generator (CPG) makes the
oscillators define their signal patterns. This CPG concept
came from the biological understanding of the neural net-
work in human’s brain. In other words, the robots system is to
a human and the CPG is to a brain. The CPG is a key element
to determine the performance of a system. Thus, the main
target of this study is to develop a new mechanism that plays
a role of CPG by means of genetic programming (GP).

The oscillator contained in each module is the main issue
in the self-assembling robot system that is to be controlled
in a distributed fashion [5, 6]. This can be inspired by
the observation that each gait of animals works at regular
intervals to walk. In this sense, a lot of locomotive robots in
recent days are based on the idea of using oscillators, and
thus most of recent self-assembling robots have employed
oscillators [10-15]. In general locomotive robots, each joint
of the robots has its own oscillator which generates a signal
for the motion of that joint.

As shown in Figure 1, the angular velocity of each module
is defined by an absolute value of the oscillator. Usually,
positive/negative values for the angles denote the rotation
in clockwise/anticlockwise directions. The examples of the
generated oscillations are given in Figure 2. The equation
on the oscillator consists of mathematical operators: F =
+ - % = ", \/> log, sin(), cos(), ...}. The nonlinear opera-
tors such as ", \/> log, sin(), and cos() are used to represent
the repetitive motion of the gaits for locomotion, as shown
in Figure 2. In the simple task as given in A of Figure 2, we
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FIGURE 1: The relation between the angular velocity and the value of

an oscillator.
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FIGURE 2: Examples of the generated patterns of an oscillator. (A)
Simple rotation: the full speed to clockwise at t [0,50] and to
anticlockwise at ¢ [50, 100]; (B) repeating the motion of a module
in a sine wave; (C) a module repeating some work.

can easily discover a pattern apt for conducting the task. Also,
the regular patterns can be made the same as the walking dog
(see Figure 3). When the dog walks, he repeats the movement
of his legs regularly. We can find out the pattern of the
movement without making too much effort. However, it is
an NP problem when considering more complex tasks or a
large number of modules. In other words, the defined model
(i.e., pattern) is very important, but it is difficult to find the
optimal model. At this point, GP can be one of the solutions
to this kind of NP problem because GP is apt for generating
a complex pattern of CPG. Finally, we come up with a novel
tool to generate the patterns of oscillators. We are going to
explain the details of the proposed approach in Section 3.

2.3. Genetic Programming. GP is a stochastic search mecha-
nism inspired by the biological evolution (e.g., human’s evo-
lution) to discover computer programs by which user-defined
tasks can be conducted [16]. In principle, GP individuals are
a set of evolving computer programs that are represented by
mathematical equation, context, grammar, and so on. Thus,
GP can handle very complex, nonlinear problems such as
symbolic regression. For instance, the symbolic regression
problem is considered. The task is to find an optimal curve
that covers accurately all the given data. As shown in Figure 4,
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(b) Changing the angles of the leg joints of a walking dog

FIGURE 3: Dog walking sequence.

the GP discovers a curve that accurately fits the given
data as generation passes [17]. This example has shown the
outstanding regression performance of the traditional GP.

In general, GP employs a nonlinear tree structure for
representing individuals. The trees consist of two types of
nodes: functional and terminal. The former connects the
nodes below by a computer program assigned to that node
and the latter is the end point consisting of input data
and random values. Meanwhile, the fitness function is a
measure of how well the current program has evolved. The
fitness values give feedback to GP, thereby deciding which
individuals are more likely to survive. After that, GP operators
(i.e., selection, crossover, and mutation) are sequentially
applied. Primarily, the selection narrows down the promising
region in the search space. Since a tree representation is
employed in GP, the crossover and the mutation are different
from those of traditional evolutionary algorithms [18]. In
general, GP crossover increases the exploratory power by
randomly exchanging partial subtrees of parents and GP
mutation maintains the search diversity by replacing a subtree
of a parent with a newly generated subtree.

3. Proposed GP Approach to
Self-Assembling Robots

In this section, we present the proposed GP approach to
the CPG for the self-assembling swarm robots. Generating
the signal patterns of oscillators, which are fitted to carry
out their own mission, requires very complex computation.
The state of a module is influenced not only by the rotation
of its adjacency modules but also by the motion of almost
all modules. Existing simple solutions to these problems
resort to only controlling the period and the phase of a
sine wave, but they have limitations when generating more
complex patterns for practical applications [4, 19]. However,
the proposed GP approach is able to generate any signal
pattern for each oscillator by collaboratively evolving a set of
trees; thus, the self-assembling robots can precisely perform
any type of action (mission). As mentioned earlier, GP has
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FIGURE 4: An example of symbolic regression. The error of the
best individual is decreased as generation passes. The error can be
calculated by summing the difference values between the actual data
and the fitted data by GP.

the outstanding performance in finding out a mathematical
expression on complicated patterns. Thus, the multitree GP
proposed herein is apt for handling the CPG problem in the
self-assembling swarm robots.

3.1. Generating Signal Patterns. In the self-assembling swarm
robots, the most difficult but crucial task is to define their
motion patterns since many motors are incorporated and
the role of each motor is altered over time. The aim of this
study is to discover an optimal pattern model by GP in
order to control the motion direction of the module robots.
To this end, the idea is to obtain the angular velocities of
the modules from GP individuals. Note that each individual
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FIGURE 5: The structure of Molecube [4].

(of GP) is comprised of multiple trees that amount to the
number of module robots. In other words, the ith individual
consists of N trees in which N is the number of modules;
I = {Tl(’),Tz('), e TI(\',)}. In addition, the angular velocity of
the kth module at the tth time is formulated by

(@)

= B )
> max (T)

where m is the maximum angular velocity. In this equation,
the scaling term (i.e., m) is necessary to restrict the output
value within [—m, m] since the evaluation values of trees can
be too high or too low. The input data x consists of the
information on the states of all the modules, such as the
velocity information and the conjunction information.

3.2. Module Structure. The structure of each module is
adopted from the Molecubes which are an open-source
modular robotics framework [4]. As shown in Figure 5, each
module robot is the same as a cube with rounded corners.
It consists of two triangular pyramidal halves which are
connected with their bases. Their main axes are touching
each other. The halves of the cube are able to rotate around
their inner motors. The module robot is equipped with an
electromechanical connector at its six faces, at which other
modules can be connected; thus, its degree of freedom (DOF)
is three.

3.3. Process. In general, the self-assembling robot system
consists of a number of modules; S = {M,,M,,..., My}
where N is the number of modules and M; = {w;, F;,, F;5, . . .,
F, ¢} in which each module has one rotation axis. The angular
velocity w; of the rotation axis corresponding to the ith
module is computed from the ith tree of the best individual
of GP.

Let xp;, {wr 11 W15 Wengo1s Fis Fioo oo
F, ¢, R} be input variables for creating the ith tree in the kth
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individual of GP at the tth time. Moreover, wy ;; , represents
the angular velocity of the ith module (M;) obtained from the
kth individual at the (t — 1)th time. The binary variable of F; j
(which is time invariant) denotes the information on whether
the predefined jth face of M; is connected with the face of
any other module or not, and R is a random number between
[0, 1].

As shown in Figure 6, the sequence of the proposed
system follows several steps: population initialization, fitness
evaluation, preservation of the best individual, judgement on
the termination criterion, and performing genetic operators:
tournament selection, multitree crossover, and multitree
mutation. The iteration of these procedures until satisfying
the termination criteria makes the system evolve continually,
thereby getting a powerful control model for the practical
self-assembling robots. The detailed procedures are explained
in the next section.

3.4. Representation and Evaluation. To evaluate the individ-
uals (i.e., trees) in GP, the functional operators in the tree
are calculated along with input variables. Let Y;" € R™ be
an optimal value with regard to the ith input, where R™
denotes an m-dimensional real space. In the proposed GP,
each individual consists of N trees where N is the number of
modules; I; = {Tl(’), TZ(’), e TI(\’,)}. Consider a set of functions
f = {f, foo..., fy} in which f, : T, — Y, € R”. Thus,
the evaluation of the kth tree of individuals can be performed
by |Y;" - Y;|. Thus, the CPG problem in the self-assembling
swarm robots can be formulated by

1Y 2
i =1|— *_Y. 2
arg min f N;'Y’ Y1| . (2)

Note that the aim of GP is to discover an optimal set of
functions f which mathematically models the signal patterns
of the oscillators of all the modules in order to effectively carry
out the given mission.

As shown in Figure 7, each individual which consists of
multiple trees is evaluated by computer simulations. To do
this, the value obtained from the ith tree is first converted
into the angular velocity w;. And then, the velocity is utilized
to control the ith module (M;) of the system. The self-
assembling system controlled by these angular velocities is
monitored to measure their goodness in conducting the given
mission. Finally, this goodness becomes the fitness value of
that individual of GP. The fitness values of all individuals are
evaluated by repeating this process.

The test system (i.e., simulator) is constructed by means
of the Molecubes interface [4] which employs an AGEIA
PhysX physics engine and an OGRE open-source graph-
ics engine. The goal of this study is to investigate the
feasibility of the self-assembling system in various appli-
cations. Thus, the achievement factor that assesses the
system performance is set by the distance of migration
of the whole system. Meanwhile, the functional oper-
ators used in the proposed GP are defined as F =
{+, = %, + ", % log, sin(), cos(), AND, OR, IF-ELSE}. As
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FIGURE 7: A description of applying the multitree GP to multiple modules.

the terminal set, the proposed GP employs the input variables
presented in Section 3.3.

3.5. Selection. There are many feasible selection methods
for the proposed GP, such as 7-wise tournament selection,
roulette-wheel selection, and elitism selection. In this study,
we pick up the 7-wise tournament selection which selects 7
individuals in a random manner, and then, the best individual
is copied into the selection pool. This selection has a higher
probability of preserving the best individual which retains the
highest fitness value.

3.6. Crossover. Conceptually, the multitree GP crossover
proposed herein exchanges the randomly selected trees or
the subtrees between the parents. Although there are many
alternatives to realize the crossover, we implement the pro-
posed GP crossover similar to 1-point crossover of GA in
order to preserve the well-discovered motion patterns. The
GP crossover conducts two sequential mechanisms: mixing
and swapping. With the two parents, more specifically, the GP
crossover carries out the mixing mechanism that exchanges
the subtrees of their kth trees at the arbitrary point and the
swapping mechanism that swaps their trees from the (k+1)th
to the Nth positions (see Figure 8). As usual, the subtree

position for crossover is randomly chosen. For instance,
consider two parent individuals as follows:

L={r?, 1, 1P LT, Ga)
_ [ ) () ) ) ()
L={r, ), .t r) n0, . ). Gb)

As a crossover result, the offspring I and I} can be created as

§={r? Pl @
1 _ rG) () G) () ) (i)
1= {919, 11T, TL, (@)

where T,ii)’ and T,Ej ) represent the kth trees of the ith and the
jth offspring after the mixing mechanism, respectively.

3.7 Mutation. In principle, mutation randomly alters some
nodes of a chosen tree. As shown in Figure 9, the proposed
GP mutation consists of three mechanisms: pruning, growing,
and modifying. In the pruning case, a subtree from an
arbitrary functional node is replaced with an arbitrary leaf
(i.e., terminal) node. In the growing case, an arbitrary leaf
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FIGURE 8: An example of the proposed GP crossover.

node is replaced with a randomly created subtree. In the
modifying case, an arbitrary functional node is changed by
another one. For instance, an ith individual is given as

L={T\ Ty s Ty T

, T T Tnt - (3)
The mutation produces an offspring as follows:

Tpprees Ty s Tk (6)

where m,,m,,...,m, are randomly chosen and T,T, and
T denote the results of the growing, the pruning, and the
modifying mechanisms, respectively.

In the mutation process, one of these adding nodes
(i.e., growing), removing nodes (i.e., pruning), and changing
nodes (i.e., modifying) is settled, and then, a mutation point
is chosen in a random fashion. The decided mechanism is
performed at the mutation point. For instance, if the growing
mechanism is conducted at a leaf node, the node type of the
selected position is changed from “terminal” to “functional,”
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FIGURE 9: An example of the proposed GP mutation.

FIGURE 10: The initial configuration of the system.

and then, a randomly generated subtree is inserted into that
position.

4. Experimental Results

The proposed approach was tested by a computational exper-
iment in the physical environment. As mentioned earlier, the
simulator was constructed on the Molecubes interface using
the PhysX and OGRE engines. The goal was to move the
robot system as far as possible on the ground within 200
seconds. Only focusing on the effectiveness of the proposed
approach, a smaller number of robot modules were employed
in this experiment. As shown in Figure 10, moreover, the
initial configuration of the system was fixed by the combined
five modules which are sequentially sitting on the flat ground.
Assume that the gravity is the same as the earth’s one and
the air resistance is ignored. If a module cannot rotate on the
axis due to the impediments, the module stops its rotation.

Moreover, the breakdown of the modules was not considered
in this experiment.

For the parameter setting, the population size is 200, the
maximum number of generations is 200, and the pairwise
tournament selection is used. Moreover, the probabilities
of crossover and mutation (i.e., P, and P,) are set to 0.8
and 0.2, respectively. These values were determined by the
empirical analysis. In addition, the elitism was used to
preserve the best individual discovered so far. The initial
individuals were randomly generated under the depth limit
of ten nodes; each tree was comprised of approximately
two hundred nodes. In this experiment, five modules were
deployed (i.e, N = 5). The functional set was defined as
F=1{+-x =" \/> log} and the terminal set was given as
T = {w s, wy4..., 054 F; 1, Fyy, ..., Fi, R} (see Section 3.3).
In the case of “+” the protected division was used to avoid the
error when a numerator is divided by zero. When ¢ is “zero”
(i.e., the initial state), the rotation axes of all modules are at a
stop; thus, we set wy ,_o = 0 and wy.,__; = 0, for all k.

In Figure 11(a), the signal patterns generated on the five
modules (i.e., M, M,, M;, M,, and M;) were obtained
by the equation of each tree in the best individual at the
200th generation. Then, the self-assembling system utilized
the obtained patterns. As shown in Figure 12, the proposed
system could move ahead about 12 meters from the starting
position during 200 seconds. In this figure, we could also find
that the proposed system is evolving because its migration
distance continuously increases from approximately 4 meters
at the first generation to about 12 meters at the 200th
generation. Note that the results in Figure 12 were averaged
over ten runs in order to take into account the stochastic
nature of GP.

To assure the effectiveness of the proposed GP approach,
we performed a comparative experiment in which a simple
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FIGURE 11: The generated signal patterns of the oscillators by the best individual at the 200th generation.
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GA [18] was employed. In the GA system, each module had
three states of the angular velocity: {-m, 0, m}. An individual
was comprised of five chromosomes since five modules
were used in this experiment. Each chromosome in the GA
individual was set to 200 units, which represents the angular
velocity of a module at every second. The parameter setting of
GA was given as follows: the population size and the number
of generations were set to 200 and 200, respectively, the pair-
wise tournament selection was used, and 1-point crossover
and uniform mutation were applied with their probabilities
of 0.7 and 0.05, respectively. They were naturally decided
by the empirical observation. The elitism was employed as
well. The generated signal from the best individual in the
GA system is shown in Figure 11(b). In this figure, we only

plotted one signal pattern among the generated signals due to
the difficulties in visualizing many overlapping signals. It was
also observed that the GA system gradually improves their
performance since the migration distance achieved by the GA
system changes from around 4 meters at the first generation
to about 7 meters at the last generation (see Figure 12).
Nonetheless, this result showed that the performance of
the proposed GP approach is much better than the that
of GA system at all generations. While the GA system got
stuck completely after the 120th generation, the proposed GP
system continuously improved its performance. This implies
that the proposed GP approach becomes more and more
efficient as generation passes, as compared with the GA
system.

For the purpose of comparison, another experiment was
conducted on the existing GP approach [19]. The parameter
setting used in the proposed GP approach was employed in
the existing GP system. In Figure 12, it was shown that the
migration distance of the existing GP system amounts to
around 10 meters at the end of the generation: the proposed
GP system moves faster and further than the existing GP
system.

On the other hand, the movement traces in Figure 13
demonstrate that the structure of the proposed system was
transformed into a suitable shape to carry out their task. For
instance, the system in Figure 13(a) tried to move as far as
possible by means of a structure similar to the initial one. As
time goes on, the shape of the proposed system was able to be
transformed into a more complex structure suitable to move
faster and further than the earlier systems.

5. Conclusion

In this paper, we proposed a control algorithm for the
self-assembling swarm robot system. The main idea was
to generate the signal patterns of oscillators by means of
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FIGURE 13: The movement traces of the proposed system as generation passes.

GP in order to perform the locomotion of the system. To
this end, new multitree GP that is apt for generating the
signal patterns of robot modules for the locomotion was
developed. The experimental results showed that the pro-
posed system achieves acceptable performance due to its
evolutionary nature. Moreover, the proposed GP approach
outperformed the existing GA and GP methods. Although
there were limitations in the experiment, such as the time-
consuming simulation, a few modules, a smaller population
size, and the small number of generations, the proposed sys-
tem sufficiently showed great promise to design the oscillators
promising for the locomotion of the self-assembling robot
system.

As the future work, we are going to improve the process-
ing speed of the proposed system to overcome the aforemen-
tioned limitations. In terms of scalability, the system can be
enhanced by incorporating the domain-specific knowledge
into the crossover and mutation operators. In addition, we
will make progress on the research on other types of task,
such as jumping, swimming, and running. It is expected
that the proposed GP-based self-assembling swarm robot
system provides a new gait of locomotion in carrying out their
mission.
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