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In this paper, a Meir-Keeler contraction is introduced to propose a viscosity-projection approximation method for finding a
common element of the set of solutions of a family of general equilibrium problems and the set of fixed points of asymptotically
strict pseudocontractions in the intermediate sense. Strong convergence of the viscosity iterative sequences is obtained under some
suitable conditions. Results presented in this paper extend and unify the previously known results announced by many other
authors.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of𝐻. Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping and 𝐹 :

𝐶 × 𝐶 → R be a bifunction, where R denotes the set of real
numbers. We consider the following generalized equilibrium
problem: Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (1)

We use EP(𝐹, 𝐴) to denote the set of solution of problem (1).
If 𝐴 ≡ 0, the zero mapping, then the problem (1) reduces to
the normal equilibrium problem: Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (2)

We use EP(𝐹) to denote the set of solution of problem (2). If
𝐹 ≡ 0, then the problem (1) reduces to the classical variational
inequality problem: Find 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

We use VI(𝐶, 𝐴) to denote the set of solution of problem (3).
The generalized equilibriumproblem (1) is very general in the
sense that it includes, as special cases, saddle point problems,
variational inequalities, optimization problems, mini-max

problems, the Nash equilibrium problem in noncooperative
games, and others (see, e.g., [1–4]).

Recall that a nonlinear mapping 𝑇 : 𝐶 → 𝐶 is said to be
nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (4)

𝑇 is said to be uniformly𝐿-Lipschitz continuous if there exists
a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (5)

𝑇 is said to be asymptotically nonexpansive if there exists a
sequence 𝑘

𝑛
∈ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞ such that

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (6)

𝑇 is said to be asymptotically nonexpansive in the intermedi-
ate sense [5] if it is continuous and the following inequality
holds:

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) ≤ 0. (7)

Putting 𝜉
𝑛
= max{0, sup

𝑥,𝑦∈𝐶
(‖𝑇
𝑛

𝑥−𝑇
𝑛

𝑦‖− ‖𝑥−𝑦‖)}, we see
that 𝜉

𝑛
→ 0 as 𝑛 → ∞. Then scheme (7) is reduced to the

following:
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝜉
𝑛
, ∀𝑥, 𝑦 ∈ 𝐶. (8)
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The class of asymptotically nonexpansive mappings in the
intermediate sense was introduced by Kirk [5] as a general-
ization of the class of asymptotically nonexpansivemappings.
It is known that, if 𝐶 is a nonempty bounded closed convex
subset of a real Hilbert space 𝐻, then every asymptotically
nonexpansive self-mapping in the intermediate sense has a
fixed point (see, e.g., [6]).

Recall also that 𝑇 is said to be a 𝜆-strict pseudocontrac-
tion [7, 8] if there exists a coefficient 𝜆 ∈ [0, 1) such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑦 ∈ 𝐶.

(9)

𝑇 is said to be an asymptotically 𝜆-strict pseudocontraction
[9, 10] if there exists a sequence 𝑘

𝑛
∈ [1,∞) with 𝑘

𝑛
→ 1 as

𝑛 → ∞ and a constant 𝜆 ∈ [0, 1) such that

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩

2

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩(𝑥 − 𝑇

𝑛

𝑥) − (𝑦 − 𝑇
𝑛

𝑦)
󵄩󵄩󵄩󵄩

2

,

𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(10)

𝑇 is said to be an asymptotically𝜆-strict pseudocontraction in
the intermediate sense [11, 12] if there exists a sequence 𝑘

𝑛
∈

[1,∞) with 𝑘
𝑛

→ 1 as 𝑛 → ∞ and a constant 𝜆 ∈ [0, 1)

such that

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩

2

− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

−𝜆
󵄩󵄩󵄩󵄩(𝑥 − 𝑇

𝑛

𝑥) − (𝑦 − 𝑇
𝑛

𝑦)
󵄩󵄩󵄩󵄩

2

) ≤ 0,

∀𝑥, 𝑦 ∈ 𝐶.

(11)

Putting 𝑒
𝑛

= max{0, sup
𝑥,𝑦∈𝐶

(‖𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦‖
2

− 𝑘
𝑛
‖𝑥 − 𝑦‖

2

−

𝜆‖(𝑥 − 𝑇
𝑛

𝑥) − (𝑦 − 𝑇
𝑛

𝑦)‖
2

)}, we see that 𝑒
𝑛
→ 0 as 𝑛 → ∞.

Then scheme (11) is reduced to the following:

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩

2

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩(𝑥 − 𝑇

𝑛

𝑥) − (𝑦 − 𝑇
𝑛

𝑦)
󵄩󵄩󵄩󵄩

2

+ 𝑒
𝑛
,

𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(12)

We use Fix(𝑇) to denote the set of fixed point of 𝑇, that is,
Fix(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. The class of asymptotically
strict pseudocontractions in the intermediate sense was
introduced as a generalization of the asymptotically strict
pseudocontractions and asymptotically nonexpansive in the
intermediate sense. Clearly, a nonexpansive mapping is a 0-
strict pseudocontraction, and an asymptotically nonexpan-
sivemapping is an asymptotically 0-strict pseudocontraction.
(see, e.g., [7–12]).

Fixed point technique represent an important tool for
finding the approximate solution of equilibrium problem and
its variant forms, which have been studied extensively in
recent years due to their applications in physics, economics,
optimization, and pure and applied sciences. Some numerical

methods have been proposed for finding a common element
of the set of fixed point of various types of nonexpansive
mappings and the set of solution of equilibrium problems
with bifunctions satisfying certain conditions; see [8–20] and
references therein.

In 2009, Qin et al. [10] introduced the following explicit
iterative algorithm for finding a common fixed point of a
finite family of asymptotically 𝜆

𝑖
-strictly pseudocontractions

𝑇
𝑖
for each 𝑖 = 1, 2, . . . , 𝑁

𝑥
𝑛
= 𝛼
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛼
𝑛−1

) 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑥
𝑛−1

, 𝑛 ≥ 1, (13)

where 𝑥
0
∈ 𝐶, {𝛼

𝑛
}
∞

𝑛=0
is a sequence in (0,1) and 𝑛 = [ℎ(𝑛) −

1]𝑁 + 𝑖(𝑛), 𝑖 = 𝑖(𝑛) = 1, 2, . . . , 𝑁. They also obtain weak
and strong convergence theorems based on the cyclic scheme
above.

Recently, Sahu et al. [11] considered a new iterative
scheme for asymptotically strictly pseudocontractive map-
pings in the intermediate sense. To be more precise, they
proved the following theorem.

Theorem SXY. Let𝐶 be a nonempty closed and convex subset
of a real Hilbert space 𝐻 and 𝑇 : 𝐶 → 𝐶 be a uniformly con-
tinuous asymptotically 𝜆-strictly pseudocontractivemapping in
the intermediate sense with a sequence {𝑘

𝑛
} such that Fix(𝑇) is

nonempty and bounded. Let {𝛼
𝑛
} be a sequence in [0, 1] such

that 0 < 𝛿 ≤ 𝛼
𝑛
≤ 1 − 𝜆 for all 𝑛 ∈ N. Let {𝑥

𝑛
} ⊂ 𝐶 be a

sequence generated by the following (CQ) algorithm:

𝑢 = 𝑥
1
∈ 𝐶,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑇
𝑛

𝑥
𝑛
,

𝐶
𝑛
= {𝑤 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
} ,

𝑄
𝑛
= {𝑤 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑤, 𝑢 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

(𝑢) ,

(14)

where 𝜃
𝑛
= (𝑘
𝑛
− 1)𝜌

2

𝑛
+ 𝑒
𝑛
and 𝜌

𝑛
= sup{‖ 𝑥

𝑛
− 𝑝 ‖: 𝑝 ∈

Fix(𝑇)} < ∞.Then, {𝑥
𝑛
} converges strongly to𝑃Fix(𝑇)(𝑢), where

𝑃Fix(𝑇) is metric projection from𝐻 onto Fix(𝑇).
In 2011, Hu and Cai [12] modified schemes (13) and (14) to

the case of asymptotically strictly pseudocontractive mappings
in the intermediate sense concerning the equilibrium problem
and proposed the following modified hybrid method:

𝑥
0
∈ 𝐶, 𝑢

0
∈ 𝐶,

𝐹 (𝑢
𝑛
, 𝑦) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑧
𝑛
= (1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑧
𝑛
,
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𝐶
𝑛
= {𝑤 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
} ,

𝑄
𝑛
= {𝑤 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑤, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

(𝑥
0
) ,

(15)

where 𝜃
𝑛
= (𝑘
ℎ(𝑛)

−1)𝜌
2

𝑛
+𝑒
ℎ(𝑛)

→ 0 as 𝑛 → ∞ and𝜌
𝑛
= sup{‖

𝑥
𝑛
− 𝑝 ‖: 𝑝 ∈ Ω} < ∞. Moreover, they obtained convergence

theorems under some suitable conditions.
On the other hand, Moudafi [13] introduced the following

viscosity approximation method for fixed point problem of
nonexpansive mapping

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, (16)

where 𝑓 is a contractive mapping. He proved that the viscosity
iterative sequence {𝑥

𝑛
} convergence strongly to a fixed point of

𝑇, which is the unique solution of the variational inequality:

⟨(𝐼 − 𝑓) 𝑥, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑧 ∈ Fix (𝑇) . (17)

Furthermore, S. Takahashi and W. Takahashi [14] and Inchan
[15] modified the viscosity approximation methods for finding
a common element of the set of fixed point problems and
equilibrium problems.

In 2012, Kimura and Nakajo [16] introduced a Meir-Keeler
contraction and proposed a modified viscosity approximations
by the shrinking projection method in Hilbert spaces, the so-
called viscosity-projection method. To be more precise, they
proved the following theorem.

Theorem KN. Let 𝐶 be a nonempty closed convex subset of
𝐻, and let {𝑇

𝑛
} be a sequence of mappings of 𝐶 into itself with

Ω = ⋂
∞

𝑛=1
Fix(𝑇
𝑛
) ̸=Ø which satisfies the following condition:

there exists {𝑎
𝑛
} ⊂ R with lim inf

𝑛→∞
𝑎
𝑛

> −1 such that ‖
𝑇
𝑛
𝑥 − 𝑧‖

2

≤‖ 𝑥 − 𝑧‖
2

− 𝑎
𝑛
‖ 𝑥 − 𝑇

𝑛
𝑥‖
2 for every 𝑛 ∈ N, 𝑥 ∈ 𝐶,

and 𝑧 ∈ Ω. Let 𝑓 be a Meir-Keeler contraction of 𝐶 into itself,
and let {𝑥

𝑛
} be a sequence generated by

𝑥
1
= 𝑥 ∈ 𝐶, 𝐶

1
= 𝐶,

𝑦
𝑛
= 𝑇
𝑛
𝑥
𝑛
,

𝐶
𝑛+1

= {𝑤 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

− 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

2

} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑓 (𝑥
𝑛
) ,

(18)

for each 𝑛 ∈ N. For every sequence {𝑧
𝑛
} ⊂ 𝐶 and 𝑧

𝑛
→ 𝑧 ∈ 𝐶

and𝑇
𝑛
𝑧
𝑛
→ 𝑧 imply that 𝑧 ∈ Ω.Then, {𝑥

𝑛
} converges strongly

to 𝑞 ∈ Ω, which satisfies 𝑞 = 𝑃
Ω
𝑓(𝑞).

In this paper, inspired and motivated by research going
on in this area, we introduce a new viscosity-projection
method for a family of general equilibrium problems and

asymptotically strict pseudocontractions in the intermediate
sense, which is defined in the following way:

𝑥
1
∈ 𝐶, 𝐶

1
= 𝐶,

𝑢
𝑛
= 𝐹
𝐴
𝑀

𝑟
𝑀,𝑛

𝐹
𝐴
𝑀−1

𝑟
𝑀−1,𝑛

⋅ ⋅ ⋅ 𝐹
𝐴
2

𝑟
2,𝑛

𝐹
𝐴
1

𝑟
1,𝑛

𝑥
𝑛
,

𝑧
𝑛
= (1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑧
𝑛
,

𝐶
𝑛+1

= {𝑤 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑓 (𝑥
𝑛
) ,

(19)

where 𝜃
𝑛
= (𝑘
ℎ(𝑛)

− 1)𝜌
2

𝑛
+ 𝑒
ℎ(𝑛)

→ 0 as 𝑛 → ∞ and 𝜌
𝑛
=

sup{‖ 𝑥
𝑛
− 𝑝 ‖: 𝑝 ∈ Ω} < ∞.

Our purpose is not only to extend the viscosity-projection
method with aMeir-Keeler contraction to the case of a family
of general equilibrium problems and asymptotically strict
pseudocontractions in the intermediate sense, but also to
obtain a strong convergence theorem by using the proposed
schemes under some appropriate conditions. Results pre-
sented in this paper extend and unify the corresponding ones
of [10–13, 16].

2. Preliminaries

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space𝐻 with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, respectively.
We use notation ⇀ for weak convergence and → for strong
convergence of a sequence. For every point𝑥 ∈ 𝐻, there exists
a unique nearest point in 𝐶, denoted by 𝑃

𝐶
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐶
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (20)

𝑃
𝐶
is called the metric projection of 𝐻 onto 𝐶 defined by

𝑃
𝐶
(𝑥) = argmin

𝑦∈𝐶
‖ 𝑥 − 𝑦 ‖. It is well known that 𝑃

𝐶
is

nonexpansive mapping, and 𝑢 = 𝑃
𝐶
𝑥 is equivalent to (see,

e.g., [21]) the following:

⟨𝑥 − 𝑢, 𝑢 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (21)

Recall that a mapping𝐴 : 𝐶 → 𝐻 is said to bemonotone
if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶. (22)

𝐴 is said to be 𝑟-strongly monotone if there exists a constant
𝑟 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝑟
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (23)

𝐴 is said to be 𝛼-inverse strongly monotone if there exists a
constant 𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (24)

It is easy to see that if 𝐴 is an 𝛼-inverse strongly monotone
mapping from 𝐶 into𝐻, then 𝐴 is 1/𝛼-Lipschitz continuous.
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To study the generalized equilibrium problem (1), wemay
assume that the bifunction 𝐹 : 𝐶 × 𝐶 → R satisfies the
following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim

𝑡→0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝐹(𝑥, 𝑦);
(A4) for each𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is convex and lower semi-

continuous.

Lemma 1 (see [1, 3]). Let 𝐹 : 𝐶 × 𝐶 → R be a bifunction
satisfying (A1)–(A4). Then, for any 𝑟 > 0 and 𝑥 ∈ 𝐻, there
exists 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (25)

Further, if 𝐹
𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝐹(𝑧, 𝑦) + (1/𝑟)⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥

0, ∀𝑦 ∈ 𝐶}, then the following hold:

(1) 𝐹
𝑟
is single-valued;

(2) 𝐹
𝑟
is firmly nonexpansive, that is, ‖𝐹

𝑟
𝑥−𝐹
𝑟
𝑦‖
2

≤ ⟨𝐹
𝑟
𝑥−

𝐹
𝑟
𝑦, 𝑥 − 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;

(3) Fix(𝐹
𝑟
) = EP(𝐹);

(4) EP(𝐹) is closed and convex.

Lemma 2 (see [8]). In a Hilbert space 𝐻, there hold the
following identities:

(i) ‖𝑥 + 𝑦‖
2

≤‖𝑥‖
2

+ 2⟨𝑦, (𝑥 + 𝑦)⟩, for all 𝑥, 𝑦 ∈ 𝐻;

(ii) ‖𝑡𝑥+(1−𝑡)𝑦‖2 = 𝑡 ‖𝑥‖
2

+(1−𝑡) ‖𝑦‖
2

−𝑡(1−𝑡) ‖𝑥−𝑦‖
2,

for all 𝑡 ∈ [0, 1], for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 3 (see [8]). Let 𝐶 be a nonempty closed convex subset
of a real Hilbert space𝐻. For any 𝑥, 𝑦, 𝑧 ∈ 𝐻 and given also a
real number 𝑎 ∈ R, the set

{V ∈ 𝐶 :
󵄩󵄩󵄩󵄩𝑦 − V

󵄩󵄩󵄩󵄩

2

≤ ‖𝑥 − V‖
2

+ ⟨𝑧, V⟩ + 𝑎} (26)

is closed and convex.

Lemma 4 (see [11]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻 and 𝑇 : 𝐶 → 𝐶 be a
uniformly 𝐿-Lipschitz continuous and asymptotically 𝜆-strict
pseudocontraction in the intermediate sense. Then Fix(𝑇) is
closed and convex.

Lemma 5 (see [11]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻 and 𝑇 : 𝐶 → 𝐶 be a
uniformly 𝐿-Lipschitz continuous and asymptotically 𝜆-strict
pseudocontraction in the intermediate sense. Then 𝐼 − 𝑇 is
demiclosed at zero, that is, if the sequence {𝑥

𝑛
} ⊂ 𝐶 such that

𝑥
𝑛
⇀ 𝑥 and 𝑥

𝑛
− 𝑇𝑥
𝑛
→ 0 as 𝑛 → ∞, then 𝑥 ∈ Fix(𝑇).

Lemma 6 (see [11]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space𝐻 and 𝑇 : 𝐶 → 𝐶 be an asymptotically

𝜆-strict pseudocontraction in the intermediate sense with 𝛾
𝑛
=

𝑘
𝑛
− 1. Then
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩

≤
1

1 − 𝜆
{𝜆

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

+√[1 + (1 − 𝜆) 𝛾
𝑛
]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜆) 𝑒
𝑛
} ,

𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(27)

Recall also that a mapping 𝑓 of a complete metric space
(𝑋, 𝑑) into itself is called a contractionwith coefficient 𝑟 ∈ (0, 1)

if ‖ 𝑓(𝑥)−𝑓(𝑦) ‖≤ 𝑟 ‖ 𝑥−𝑦 ‖, for all 𝑥, 𝑦 ∈ 𝑋. It is known that
𝑓 has a unique fixed point (see, e.g., [22]). On the other hand,
Meir and Keeler [23] defined the following mapping, called the
Meir-Keeler contraction. A mapping 𝑓 : 𝑋 → 𝑋 is called a
Meir-Keeler contraction if, for every 𝜖 > 0, there exists 𝛿 > 0

such that 𝑑(𝑥, 𝑦) < 𝜖 + 𝛿 implies that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) < 𝜖, ∀𝑥, 𝑦 ∈ 𝑋. (28)

We know that Meir-Keeler contraction is a generalization of
contraction, and the following result, which extends the Banach
contraction principle, is proved in [23].

Lemma 7 (see [23]). A Meir-Keeler contraction defined on a
complete metric space has a unique fixed point.

Lemma 8 (see [24]). Let 𝑓 be a Meir-Keeler contraction on a
convex subset 𝐶 of a Banach space 𝐸. Then, for every 𝜖 > 0,
there exists 𝑟 ∈ (0, 1) such that ‖ 𝑥 − 𝑦 ‖≥ 𝜖 implies that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑟

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (29)

Let {𝐶
𝑛
} be a sequence of nonempty closed convex subsets

of 𝐻. We define a subset 𝑠-𝐿𝑖
𝑛
𝐶
𝑛
of 𝐻 as follows: 𝑥 ∈ 𝑠-𝐿𝑖

𝑛
𝐶
𝑛

if and only if there exists {𝑥
𝑛
} ⊂ 𝐻 such that 𝑥

𝑛
→ 𝑥 and

𝑥
𝑛

∈ 𝐶
𝑛
for all 𝑛 ∈ N. Similarly, a subset 𝑤-𝐿𝑠

𝑛
𝐶
𝑛
of 𝐻 is

defined by𝑦 ∈ 𝑤-𝐿𝑠
𝑛
𝐶
𝑛
if and only if there exists a subsequence

{𝐶
𝑛
𝑖

} of {𝐶
𝑛
} and a sequence {𝑦

𝑖
} ⊂ 𝐻 such that 𝑦

𝑖
⇀ 𝑦 and

𝑦
𝑖
∈ 𝐶
𝑛
𝑖

for all 𝑖 ∈ N. If 𝐶
0
⊂ 𝐻 satisfies

𝐶
0
= 𝑠-𝐿𝑖

𝑛
𝐶
𝑛
= 𝑤-𝐿𝑠

𝑛
𝐶
𝑛
, (30)

it is said that {𝐶
𝑛
} converges to 𝐶

0
in the sense of Mosco [25],

and we write 𝐶
0
= 𝑀-lim

𝑛
𝐶
𝑛
. One of the simplest examples of

Mosco convergence is a decreasing sequence {𝐶
𝑛
} with respect

to inclusion.TheMosco limit of such a sequence is⋂∞
𝑛=1

𝐶
𝑛
. For

more details, see [26].

Lemma 9 (see [27]). Let {𝐶
𝑛
} be a sequence of nonempty

closed convex subsets of 𝐻. If 𝐶
0

= 𝑀-lim
𝑛
𝐶
𝑛
exists and is

nonempty, then, for each 𝑥 ∈ 𝐻, {𝑃
𝐶
𝑛

𝑥} converges strongly to
𝑃
𝐶
0

𝑥.
For the rest of this paper, let 𝐹

𝑚
: 𝐶 × 𝐶 → R be a

bifunction satisfying (A1)–(A4) and 𝐴
𝑚

: 𝐶 → 𝐻 be an 𝛼
𝑚
-

inverse strongly monotone mapping, for some𝑚 = 1, 2, . . . ,𝑀.
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For each 𝑟
𝑚

> 0 and 𝑥 ∈ 𝐻, define a mapping 𝐹𝐴𝑚
𝑟
𝑚

: 𝐻 → 𝐶

as follows:

𝐹
𝐴
𝑚

𝑟
𝑚

(𝑥) = {𝑧 ∈ 𝐶 : 𝐹
𝑚
(𝑧, 𝑦) + ⟨𝐴

𝑚
𝑥, 𝑦 − 𝑧⟩

+
1

𝑟
𝑚

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(31)

It follows from Lemma 1 that 𝐹𝐴𝑚
𝑟
𝑚

= 𝐹
𝑟
𝑚

(𝐼 − 𝑟
𝑚
𝐴
𝑚
) for each

𝑚 = 1, 2, . . . ,𝑀.
Let 𝑇
𝑖
: 𝐶 → 𝐶 be a uniformly 𝐿

𝑖
-Lipschitz continuous

and asymptotically 𝜆
𝑖
-strict pseudocontractive mapping in the

intermediate sense with the sequences {𝑘
𝑛,𝑖
} ⊂ [1,∞) such that

lim
𝑛→∞

𝑘
𝑛,𝑖

= 1 and {𝑒
𝑛,𝑖
} ⊂ [0,∞) such that lim

𝑛→∞
𝑒
𝑛,𝑖

= 0,
for some 𝑖 = 1, 2, . . . , 𝑁, that is,

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑖
𝑥 − 𝑇
𝑛

𝑖
𝑦
󵄩󵄩󵄩󵄩

2

≤ 𝑘
𝑛,𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑖

󵄩󵄩󵄩󵄩(𝑥 − 𝑇
𝑛

𝑖
𝑥) − (𝑦 − 𝑇

𝑛

𝑖
𝑦)

󵄩󵄩󵄩󵄩

2

+ 𝑒
𝑛,𝑖
,

∀𝑥, 𝑦 ∈ 𝐶.

(32)

Remark that 𝐿 = max{𝐿
𝑖
: 1 ≤ 𝑖 ≤ 𝑁}, 𝜆 = max{𝜆

𝑖
: 1 ≤ 𝑖 ≤

𝑁}, 𝑘
𝑛
= max{𝑘

𝑛,𝑖
: 1 ≤ 𝑖 ≤ 𝑁, 𝑛 ∈ N} and 𝑒

𝑛
= max{𝑒

𝑛,𝑖
: 1 ≤

𝑖 ≤ 𝑁, 𝑛 ∈ N}.

3. Main Results

Theorem 10. Let 𝐶 be a nonempty closed convex subset of
Hilbert space 𝐻. Let 𝐹

𝑚
: 𝐶 × 𝐶 → R be a bifunction

satisfying (A1)–(A4), and let 𝐴
𝑚

: 𝐶 → 𝐻 be an 𝛼
𝑚
-

inverse strongly monotone mapping, for each 𝑚 = 1, 2, . . . ,𝑀.
Let 𝑇
𝑖

: 𝐶 → 𝐶 be a uniformly 𝐿
𝑖
-Lipschitz continuous

and asymptotically 𝜆
𝑖
-strict pseudocontractive mapping in the

intermediate sense with the sequences {𝑘
𝑛,𝑖
} and {𝑒

𝑛,𝑖
} for each

𝑖 = 1, 2, . . . , 𝑁. If 𝑓 is a Meir-Keeler contraction of 𝐶 into itself
andΩ = (⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
))∩(⋂

𝑀

𝑚=1
EP(𝐹
𝑚
, 𝐴
𝑚
)) is nonempty and

bounded. Assume that {𝛼
𝑛
}, {𝛽
𝑛
} are sequences in [0, 1] such

that 0 < 𝑎 ≤ 𝛼
𝑛
≤ 1, 0 < 𝑏 ≤ 𝛽

𝑛
≤ 1 − 𝜆 and {𝑟

𝑚,𝑛
} ⊂ (0,∞)

such that 𝑟
𝑚,𝑛

∈ [𝑐, 𝑑] ⊂ (0, 2𝛼
𝑚
), for each 𝑚 = 1, 2, . . . ,𝑀

and 𝑛 ∈ N. Then the sequence {𝑥
𝑛
} generated by (19) converges

strongly to 𝑞 = 𝑃
Ω
𝑓(𝑞).

Proof. We split the proof into six steps.

Step 1. We prove that 𝑃
Ω
𝑓 exists a unique fixed point. To do

this, we first show that (𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
) is nonexpansive for each

𝑚 = 1, 2, . . . ,𝑀. Indeed,
󵄩󵄩󵄩󵄩(𝐼 − 𝑟

𝑚,𝑛
𝐴
𝑚
) 𝑥 − (𝐼 − 𝑟

𝑚,𝑛
𝐴
𝑚
) 𝑦

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝑟

𝑚,𝑛
(𝐴
𝑚
𝑥 − 𝐴

𝑚
𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 2𝑟
𝑚,𝑛

⟨𝐴
𝑚
𝑥 − 𝐴

𝑚
𝑦, 𝑥 − 𝑦⟩

+ 𝑟
2

𝑚,𝑛

󵄩󵄩󵄩󵄩𝐴𝑚𝑥 − 𝐴
𝑚
𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝑟
𝑚,𝑛

(2𝛼
𝑚
− 𝑟
𝑚,𝑛

)
󵄩󵄩󵄩󵄩𝐴𝑚𝑥 − 𝐴

𝑚
𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(33)

It follows that (𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
) is nonexpansive. By Lemma 1,

we know that ⋂
𝑀

𝑚=1
EP(𝐹
𝑚
, 𝐴
𝑚
) is closed and convex. We

also know from Lemma 4 that ⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
) is closed, and

convex. Hence, Ω = (⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
)) ∩ (⋂

𝑀

𝑚=1
EP(𝐹
𝑚
, 𝐴
𝑚
)) is

a nonempty, closed and convex subset of 𝐶. Consequently,
𝑃
Ω
is well-defined. Since 𝑃

Ω
is nonexpansive, the composed

mapping 𝑃
Ω
𝑓 of 𝐶 into itself is a Meir-Keeler contraction on

𝐶; see [24, Proposition 3]. By Lemma 7, there exists a unique
fixed point 𝑧 ∈ Ω of 𝑃

Ω
𝑓.

Step 2. We show that 𝐶
𝑛
is closed convex subset of 𝐶 for each

𝑛 ≥ 1. By the assumption of 𝐶
𝑛+1

, it is easy to see that 𝐶
𝑛
is

closed for each 𝑛 ≥ 1.We only show that𝐶
𝑛
is convex for each

𝑛 ≥ 1. It is obvious that𝐶
1
= 𝐶 is closed and convex. Suppose

that 𝐶
𝑘
is closed and convex for some 𝑘 ≥ 1. For any 𝑤 ∈ 𝐶

𝑘
,

we see that

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑤
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
, 𝑘 ≥ 1, (34)

is equivalent to

2 ⟨𝑥
𝑘
− 𝑦
𝑘
, 𝑤⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑘

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
. (35)

Taking 𝑤
1
and 𝑤

2
in 𝐶
𝑘+1

and putting 𝑤 = 𝑡𝑤
1
+ (1 − 𝑡)𝑤

2
, it

follows that 𝑤
1
, 𝑤
2
∈ 𝐶
𝑘
, and so

2 ⟨𝑥
𝑘
− 𝑦
𝑘
, 𝑤
1
⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑘

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
, (36)

2 ⟨𝑥
𝑘
− 𝑦
𝑘
, 𝑤
2
⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑘

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
. (37)

Combing (36) and (37), we obtain that

2 ⟨𝑥
𝑘
− 𝑦
𝑘
, 𝑤⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑘

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
. (38)

That is,

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑤
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑘
. (39)

In view of the convexity of 𝐶
𝑘
, we see that 𝑤 ∈ 𝐶

𝑘
.

This implies that 𝑤 ∈ 𝐶
𝑘+1

. Therefore, 𝐶
𝑘+1

is convex.
Consequently, 𝐶

𝑛
is closed and convex for each 𝑛 ≥ 1.

Step 3. We show that Ω ⊂ 𝐶
𝑛
for each 𝑛 ≥ 1. Put Θ𝑚

𝑛
= 𝐹
𝐴
𝑚

𝑟
𝑚,𝑛

𝐹
𝐴
𝑚−1

𝑟
𝑚−1,𝑛

⋅ ⋅ ⋅ 𝐹
𝐴
2

𝑟
2,𝑛

𝐹
𝐴
1

𝑟
1,𝑛

for every𝑚 = 1, 2, . . . ,𝑀 andΘ
0

𝑛
= 𝐼 for all

𝑛 ∈ N. Note that 𝐹𝐴𝑚
𝑟
𝑚,𝑛

= 𝐹
𝑟
𝑚,𝑛

(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
) is nonexpansive.

Therefore, 𝑢
𝑛

= Θ
𝑀

𝑛
𝑥
𝑛
. It is obvious that Ω ⊂ 𝐶

1
= 𝐶.
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Suppose thatΩ ⊂ 𝐶
𝑘
for some 𝑘 ≥ 1. Taking 𝑝 ∈ Ω, it follows

from Lemma 1 that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑥
𝑛

−𝐹
𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑥
𝑛

− (𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
)Θ
𝑀−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
0

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(40)

From (19), we observe that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

= (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
[𝑘
ℎ(𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑒
ℎ(𝑛)

]

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑘
ℎ(𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
− 𝜆)

×
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
𝑒
ℎ(𝑛)

≤ 𝑘
ℎ(𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
𝑒
ℎ(𝑛)

.

(41)

By virtue of convexity of ‖ ⋅ ‖2, combining (40) and (41), we
have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑧
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[𝑘
ℎ(𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
𝑒
ℎ(𝑛)

]

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (𝑘
ℎ(𝑛)

− 1)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑒
ℎ(𝑛)

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛

(42)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
, (43)

where 𝜃
𝑛
= (𝑘
ℎ(𝑛)

− 1)𝜌
2

𝑛
+ 𝑒
ℎ(𝑛)

→ 0 as 𝑛 → ∞ and 𝜌
𝑛
=

sup{‖ 𝑥
𝑛
− 𝑝 ‖: 𝑝 ∈ Ω} < ∞. Setting 𝑛 = 𝑘 in (40)–(43), it

follows that 𝑝 ∈ 𝐶
𝑘+1

. Therefore,Ω ∈ 𝐶
𝑛
for each 𝑛 ≥ 1.

Step 4. Next, we prove that lim
𝑛→∞

𝑥
𝑛

= 𝑞, where 𝑞 =

𝑃
⋂
∞

𝑛=1
𝐶
𝑛

𝑓(𝑞). Note that 𝐶
𝑛
is a closed convex subset of 𝐻

and 0 ̸=Ω ⊂ 𝐶
𝑛+1

⊂ 𝐶
𝑛
for all 𝑛 ∈ N. Thus, {𝑥

𝑛
} is well-

defined. Since the composed mapping 𝑃
⋂
∞

𝑛=1
𝐶
𝑛

𝑓 is a Meir-
Keeler contraction on 𝐶, there exists a unique fixed point
𝑞 = 𝑃

⋂
∞

𝑛=1
𝐶
𝑛

𝑓(𝑞) ∈ ⋂
∞

𝑛=1
𝐶
𝑛
by Lemma 7. Let 𝑤

𝑛
= 𝑃
𝐶
𝑛

𝑓(𝑞)

for each 𝑛 ∈ N. We get ⋂∞
𝑛=1

𝐶
𝑛

= 𝑀-lim
𝑛
𝐶
𝑛
, since Ω ⊂

𝐶
𝑛+1

⊂ 𝐶
𝑛
for every 𝑛 ∈ N. Thus, from Lemma 9, we get

𝑤
𝑛
󳨀→ 𝑃
⋂
∞

𝑛=1
𝐶
𝑛

𝑓 (𝑞) = 𝑞. (44)

We prove that 𝑥
𝑛

→ 𝑞 in the following. If it were so, it
would hold that lim sup

𝑛→∞
‖ 𝑥
𝑛
− 𝑞 ‖> 0. Let 𝜖 > 0, such

that lim sup
𝑛→∞

‖ 𝑥
𝑛
− 𝑞 ‖> 𝜖. By the definition of Meir-

Keeler contraction, there exists 𝛿 > 0 with lim sup
𝑛→∞

‖

𝑥
𝑛
− 𝑞 ‖> 𝜖 + 𝛿 such that ‖ 𝑥 − 𝑦 ‖< 𝜖 + 𝛿 implies that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 < 𝜖, ∀𝑥, 𝑦 ∈ 𝐶. (45)

FromLemma 8, there exists 𝑟 ∈ (0, 1) such that ‖ 𝑥−𝑦 ‖≥ 𝜖+𝛿

implies that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 < 𝑟

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (46)

By (44), there exists 𝑛
0
∈ N such that ‖ 𝑤

𝑛
− 𝑞 ‖< 𝛿 for each

𝑛 ≥ 𝑛
0
. As in the proof of [24, Theorem 8], we consider the

following two cases:

(i) There exists 𝑛
1
≥ 𝑛
0
such that ‖ 𝑥

𝑛
1

− 𝑞 ‖< 𝜖 + 𝛿.
(ii) ‖ 𝑥

𝑛
− 𝑞 ‖≥ 𝜖 + 𝛿 for every 𝑛 ≥ 𝑛

0
.

In case (i), it holds that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− 𝑤
𝑛
1
+1

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑛
1

) − 𝑓 (𝑞)
󵄩󵄩󵄩󵄩󵄩
< 𝜖. (47)

Thus we get

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− 𝑞
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− 𝑤
𝑛
1
+1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛
1
+1

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< 𝜖 + 𝛿,

(48)

which means that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤ 𝜖 + 𝛿 < lim sup

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 . (49)

This is a contradiction. In case (ii), we have

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)

󵄩󵄩󵄩󵄩 < 𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 , 𝑛 ≥ 𝑛
0
. (50)

Thus we get

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− 𝑤
𝑛
1
+1

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)

󵄩󵄩󵄩󵄩

< 𝑟
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 ≤ 𝑟 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑞

󵄩󵄩󵄩󵄩) ,

(51)
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It follows from (44) that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩 = lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− 𝑤
𝑛
1
+1

󵄩󵄩󵄩󵄩󵄩

≤ 𝑟 lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩

< lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩 .

(52)

This is a contradiction again. Therefore, we obtain that
lim
𝑛→∞

𝑥
𝑛
= 𝑞. Moreover, since 𝑥

𝑛+1
= 𝑃
𝐶
𝑛+1

𝑓(𝑥
𝑛
), we have

⟨𝑓(𝑥
𝑛
) − 𝑥
𝑛+1

, 𝑥
𝑛+1

− 𝑦⟩ ≥ 0 for each 𝑦 ∈ 𝐶
𝑛+1

. ByΩ ⊂ 𝐶
𝑛+1

,
we have

⟨𝑓 (𝑞) − 𝑞, 𝑞 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ Ω, (53)

which is equivalent to 𝑞 = 𝑃
Ω
𝑓(𝑞) from the property ofmetric

projection.

Step 5. Now, we prove that lim
𝑛→∞

‖ 𝑥
𝑛
− 𝑢
𝑛
‖= 0. From

𝑥
𝑛
→ 𝑞 as 𝑛 → ∞, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (54)

Since 𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑓(𝑥
𝑛
) ∈ 𝐶
𝑛+1

, we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
. (55)

It follows from (55) and Lemma 2 that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛+1
+ 𝑥
𝑛+1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑦
𝑛
− 𝑥
𝑛+1

, 𝑥
𝑛+1

− 𝑥
𝑛
⟩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2

≤ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝜃
𝑛
.

(56)

Since 𝜃
𝑛
= (𝑘
ℎ(𝑛)

− 1)𝜌
2

𝑛
+ 𝑒
ℎ(𝑛)

→ 0 as 𝑛 → ∞ and (54), we
obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (57)

For each 𝑝 ∈ Ω,𝑚 = 1, 2, . . . ,𝑀, it follows from (33) and
(40) that
󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑟
𝑚,𝑛

(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐹
𝑟
𝑚,𝑛

(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑚,𝑛
𝐴
𝑚
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝑟
𝑚,𝑛

(2𝛼
𝑚
− 𝑟
𝑚,𝑛

)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝑟
𝑚,𝑛

(2𝛼
𝑚
− 𝑟
𝑚,𝑛

)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩

2

.

(58)

By (40), (42), and (58), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛

=
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
+ 𝜃
𝑛

≤
󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑝
󵄩󵄩󵄩󵄩 + 𝜃
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝑟
𝑚,𝑛

(2𝛼
𝑚
− 𝑟
𝑚,𝑛

)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
,

(59)

which implies that

𝑟
𝑚,𝑛

(2𝛼
𝑚
− 𝑟
𝑚,𝑛

)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝜃
𝑛
.

(60)

Since 𝑟
𝑚,𝑛

∈ [𝑐, 𝑑] ⊂ (0, 2𝛼
𝑚
) for each 𝑚 = 1, 2, . . . ,𝑀 and

𝜃
𝑛
→ 0 as 𝑛 → ∞. From (57), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩
= 0, 𝑚 = 1, 2, . . . ,𝑀. (61)

On the other hand, it follows from the nonexpansive 𝐼 −

𝑟
𝑚,𝑛

𝐴
𝑚
and Lemma 1 that

󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑟
𝑚,𝑛

(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐹
𝑟
𝑚,𝑛

(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑚,𝑛
𝐴
𝑚
) 𝑝, Θ

𝑚

𝑛
𝑥
𝑛
− 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑚,𝑛
𝐴
𝑚
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑚,𝑛
𝐴
𝑚
) 𝑝 − (Θ

𝑚

𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

]

≤
1

2
[
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛
− 𝑟
𝑚,𝑛

(𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝)

󵄩󵄩󵄩󵄩󵄩

2

] ,

(62)
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which implies that

󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛
− 𝑟
𝑚,𝑛

(𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝)

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝑟
2

𝑚,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑚,𝑛

⟨Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛
, 𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑚,𝑛

󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩
.

(63)

From (40), (42), and (63), we obtain

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛

=
󵄩󵄩󵄩󵄩󵄩
Θ
𝑀

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝜃
𝑛

≤
󵄩󵄩󵄩󵄩Θ
𝑚

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 + 𝜃
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑚,𝑛

󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩
+ 𝜃
𝑛
,

(64)

which implies that

󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑚,𝑛

󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩
+ 𝜃
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑟
𝑚,𝑛

󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
− 𝐴
𝑚
𝑝
󵄩󵄩󵄩󵄩󵄩
+ 𝜃
𝑛
.

(65)

It follows from (57) and (65) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Θ
𝑚−1

𝑛
𝑥
𝑛
− Θ
𝑚

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑚 = 1, 2, . . . ,𝑀. (66)

Note that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
Θ
1

𝑛
𝑥
𝑛
− Θ
2

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(67)

Therefore,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (68)

Step 6. Finally, we prove that 𝑞 ∈ (⋂
𝑁

𝑖=1
Fix(𝑇
𝑖
)) ∩ (⋂

𝑀

𝑚=1
EP

(𝐹
𝑚
, 𝐴
𝑚
)). To do this, we first show that 𝑞 ∈ ⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
).

Note that
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 .

(69)

From (54) and (68), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (70)

It follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛+𝑖 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0, 𝑖 = 1, 2, . . . , 𝑁. (71)

For any positive integer 𝑛 ≥ 𝑁, note that 𝑛 = [ℎ(𝑛)−1]𝑁+𝑖(𝑛),
where 𝑖 = 𝑖(𝑛) = 1, 2, . . . , 𝑁. By (19) and the conditions 0 <

𝑎 ≤ 𝛼
𝑛
≤ 1 and 0 < 𝑏 ≤ 𝛽

𝑛
≤ 1 − 𝜆, we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
=

1

𝛽
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

=
1

𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

≤
1

𝑎𝑏
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩) .

(72)

From (57) and (68), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (73)

By the fact that ℎ(𝑛) = ℎ(𝑛 − 𝑁) + 1 and 𝑖(𝑛) = 𝑖(𝑛 − 𝑁), we
observe that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)−1

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛−𝑁

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛−𝑁

− 𝑇
ℎ(𝑛−𝑁)

𝑖(𝑛−𝑁)
𝑢
𝑛−𝑁

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
ℎ(𝑛−𝑁)

𝑖(𝑛−𝑁)
𝑢
𝑛−𝑁

− 𝑇
ℎ(𝑛)−1

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(74)

Applying (71), (73), and Lemma 6, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)−1

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (75)

By the uniformly 𝐿-Lipschitzian of 𝑇
𝑖
, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛
− 𝑇
𝑖(𝑛)

𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝐿

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑇
ℎ(𝑛)−1

𝑖(𝑛)
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(76)

It follows from (73) and (75) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (77)
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Since
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇

𝑛+𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛+𝑖

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛+𝑖 − 𝑇

𝑛+𝑖
𝑢
𝑛+𝑖

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇𝑛+𝑖𝑢𝑛+𝑖 − 𝑇

𝑛+𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩

≤ (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛+𝑖

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛+𝑖 − 𝑇

𝑛+𝑖
𝑢
𝑛+𝑖

󵄩󵄩󵄩󵄩 .

(78)

Combining (71) and (77), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇
𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0, 𝑖 = 1, 2, . . . , 𝑁. (79)

Moreover, for each 𝑖 = 1, 2, . . . , 𝑁, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇

𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑖𝑢𝑛 − 𝑇

𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(80)

This implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0, 𝑖 = 1, 2, . . . , 𝑁. (81)

Note that 𝑥
𝑛

→ 𝑞 as 𝑛 → ∞. It follows from (81) and
Lemma 5 that 𝑞 ∈ ⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
).

Next, we show that 𝑞 ∈ ⋂
𝑀

𝑚=1
EP(𝐹
𝑚
, 𝐴
𝑚
). FromLemma 1

and sinceΘ𝑚
𝑛
𝑥
𝑛
= 𝐹
𝑟
𝑚,𝑛

(𝐼 − 𝑟
𝑚,𝑛

𝐴
𝑚
)Θ
𝑚−1

𝑛
𝑥
𝑛
,𝑚 = 1, 2, . . . ,𝑀,

we have

𝐹
𝑚
(Θ
𝑚

𝑛
𝑥
𝑛
, 𝑦) + ⟨𝐴

𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
, 𝑦 − Θ

𝑚

𝑛
𝑥
𝑛
⟩

+
1

𝑟
𝑚,𝑛

⟨𝑦 − Θ
𝑚

𝑛
𝑥
𝑛
, Θ
𝑚

𝑛
𝑥
𝑛
− Θ
𝑚−1

𝑛
𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(82)

By (A2), we have

⟨𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
, 𝑦 − Θ

𝑚

𝑛
𝑥
𝑛
⟩

+
1

𝑟
𝑚,𝑛

⟨𝑦 − Θ
𝑚

𝑛
𝑥
𝑛
, Θ
𝑚

𝑛
𝑥
𝑛
− Θ
𝑚−1

𝑛
𝑥
𝑛
⟩

≥ 𝐹
𝑚
(𝑦, Θ
𝑚

𝑛
𝑥
𝑛
) , ∀𝑦 ∈ 𝐶.

(83)

Let 𝑧
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑞 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. This implies

that 𝑧
𝑡
∈ 𝐶. Then, we have

⟨𝐴
𝑚
𝑧
𝑡
, 𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
⟩

≥ ⟨𝐴
𝑚
𝑧
𝑡
, 𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
⟩ − ⟨𝐴

𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
, 𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
⟩

− ⟨𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
,
Θ
𝑚

𝑛
𝑥
𝑛
− Θ
𝑚−1

𝑛
𝑥
𝑛

𝑟
𝑚,𝑛

⟩ + 𝐹
𝑚
(𝑧
𝑡
, Θ
𝑚

𝑛
𝑥
𝑛
)

≥ ⟨𝐴
𝑚
𝑧
𝑡
− 𝐴
𝑚
Θ
𝑚

𝑛
𝑥
𝑛
, 𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
⟩

+ ⟨𝐴
𝑚
Θ
𝑚

𝑛
𝑥
𝑛
− 𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
, 𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
⟩

− ⟨𝑧
𝑡
− Θ
𝑚

𝑛
𝑥
𝑛
,
Θ
𝑚

𝑛
𝑥
𝑛
− Θ
𝑚−1

𝑛
𝑥
𝑛

𝑟
𝑚,𝑛

⟩ + 𝐹
𝑚
(𝑧
𝑡
, Θ
𝑚

𝑛
𝑥
𝑛
) .

(84)

From (66), we have ‖ 𝐴
𝑚
Θ
𝑚

𝑛
𝑥
𝑛
− 𝐴
𝑚
Θ
𝑚−1

𝑛
𝑥
𝑛
‖→ 0 as 𝑛 →

∞. Moreover, by (A4) and themonotonicity of𝐴
𝑚
, we obtain

⟨𝐴
𝑚
𝑧
𝑡
, 𝑧
𝑡
− 𝑞⟩ ≥ 𝐹

𝑚
(𝑧
𝑡
, 𝑞) , 𝑚 = 1, 2, . . . ,𝑀. (85)

Using (A1), (A4), and (85), we obtain

0 = 𝐹
𝑚
(𝑧
𝑡
, 𝑧
𝑡
) ≤ 𝑡𝐹

𝑚
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) 𝐹

𝑚
(𝑧
𝑡
, 𝑞)

≤ 𝑡𝐹
𝑚
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) ⟨𝐴

𝑚
𝑧
𝑡
, 𝑧
𝑡
− 𝑞⟩

≤ 𝑡𝐹
𝑚
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) 𝑡 ⟨𝐴

𝑚
𝑧
𝑡
, 𝑦 − 𝑞⟩ .

(86)

and hence

𝐹
𝑚
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) ⟨𝐴

𝑚
𝑧
𝑡
, 𝑦 − 𝑞⟩ ≥ 0. (87)

Let 𝑡 → 0, from (A3) and (87), we have

𝐹
𝑚
(𝑞, 𝑦) + ⟨𝐴

𝑚
𝑞, 𝑦 − 𝑞⟩ ≥ 0, ∀𝑦 ∈ 𝐶, 𝑚 = 1, 2, . . . ,𝑀.

(88)

This implies that 𝑞 ∈ EP(𝐹
𝑚
, 𝐴
𝑚
), 𝑚 = 1, 2, . . . ,𝑀. There-

fore, 𝑞 ∈ ⋂
𝑀

𝑚=1
EP(𝐹
𝑚
, 𝐴
𝑚
). Consequently, we obtain that

𝑞 ∈ Ω. This completes the proof.

We also obtain the following results by using the viscosity-
hybrid projection methods, which extend and improve the
hybrid method (CQ) proposed by Sahu et al. [11] and Hu and
Cai [12].

Theorem 11. Let 𝐶 be a nonempty closed convex subset of
Hilbert space 𝐻. Let 𝐹

𝑚
: 𝐶 × 𝐶 → R be a bifunction

satisfying (A1)–(A4), and let 𝐴
𝑚

: 𝐶 → 𝐻 be an 𝛼
𝑚
-

inverse strongly monotone mapping, for each 𝑚 = 1, 2, . . . ,𝑀.
Let 𝑇
𝑖

: 𝐶 → 𝐶 be a uniformly 𝐿
𝑖
-Lipschitz continuous

and asymptotically 𝜆
𝑖
-strict pseudocontractive mapping in the

intermediate sense with the sequences {𝑘
𝑛,𝑖
} and {𝑒

𝑛,𝑖
} for each

𝑖 = 1, 2, . . . , 𝑁. If 𝑓 is a Meir-Keeler contraction of 𝐶 into itself
andΩ = (⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
))∩(⋂

𝑀

𝑚=1
EP(𝐹
𝑚
, 𝐴
𝑚
)) is nonempty and

bounded. Let {𝑥
𝑛
} be a sequence defined by

𝑥
1
∈ 𝐶, 𝑄

1
= 𝐶,

𝑢
𝑛
= 𝐹
𝐴
𝑀

𝑟
𝑀,𝑛

𝐹
𝐴
𝑀−1

𝑟
𝑀−1,𝑛

⋅ ⋅ ⋅ 𝐹
𝐴
2

𝑟
2,𝑛

𝐹
𝐴
1

𝑟
1,𝑛

𝑥
𝑛
,

𝑧
𝑛
= (1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑇
ℎ(𝑛)

𝑖(𝑛)
𝑢
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑧
𝑛
,

𝐶
𝑛
= {𝑤 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
} ,

𝑄
𝑛
= {𝑢 ∈ 𝑄

𝑛−1
: ⟨𝑓 (𝑥

𝑛−1
) − 𝑥
𝑛
, 𝑥
𝑛
− 𝑢⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
⋂𝑄
𝑛

𝑓 (𝑥
𝑛
) ,

(89)

where 𝜃
𝑛
= (𝑘
ℎ(𝑛)

− 1)𝜌
2

𝑛
+ 𝑒
ℎ(𝑛)

→ 0 as 𝑛 → ∞ and 𝜌
𝑛
=

sup{‖ 𝑥
𝑛
− 𝑝 ‖: 𝑝 ∈ Ω} < ∞. Assume that {𝛼

𝑛
} and {𝛽

𝑛
} are

sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛼
𝑛
≤ 1, 0 < 𝑏 ≤ 𝛽

𝑛
≤ 1−𝜆

and {𝑟
𝑚,𝑛

} ⊂ (0,∞) such that 𝑟
𝑚,𝑛

∈ [𝑐, 𝑑] ⊂ (0, 2𝛼
𝑚
), for

each 𝑚 = 1, 2, . . . ,𝑀. Then the sequence {𝑥
𝑛
} generated by

(89) converges strongly to 𝑞 = 𝑃
Ω
𝑓(𝑞).
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Proof. Wehave that𝐶
𝑛
and𝑄

𝑛
are closed convex subsets of𝐻

and Ω ⊂ 𝐶
𝑛
for every 𝑛 ∈ N. We only prove that Ω ⊂ 𝑄

𝑛
for

every 𝑛 ∈ N and that a sequence {𝑥
𝑛
} is well-defined.We have

𝑥
1
∈ 𝐶 andΩ ⊂ 𝑄

1
= 𝐶. Assume that 𝑥

𝑘
∈ 𝐶 andΩ ⊂ 𝑄

𝑘
for

some 𝑘 ∈ N. SinceΩ ⊂ 𝐶
𝑘
∩𝑄
𝑘
, there exists a unique element

𝑥
𝑘+1

= 𝑃
𝐶
𝑘
∩𝑄
𝑘

𝑓(𝑥
𝑘
), and hence

⟨𝑓 (𝑥
𝑘
) − 𝑥
𝑘+1

, 𝑥
𝑘+1

− 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐶
𝑘
∩ 𝑄
𝑘
. (90)

This implies that

⟨𝑓 (𝑥
𝑘
) − 𝑥
𝑘+1

, 𝑥
𝑘+1

− 𝑦⟩ ≥ 0, ∀𝑦 ∈ Ω. (91)

That is,Ω ⊂ 𝑄
𝑘+1

. Therefore, we prove thatΩ ⊂ 𝑄
𝑛
.

On the other hand, 𝑃
⋂
∞

𝑛=1
𝑄
𝑛

𝑓 is a Meir-Keeler contraction
on 𝐶, there exists a unique element 𝑞 = 𝑃

⋂
∞

𝑛=1
𝑄
𝑛

𝑓(𝑞) ∈

⋂
∞

𝑛=1
𝑄
𝑛
by Lemma 7. Let 𝑧

𝑛
= 𝑃
𝑄
𝑛

𝑓(𝑞) for each 𝑛 ∈ N.
Since Ω ⊂ 𝑄

𝑛+1
⊂ 𝑄
𝑛
, it follows from Lemma 9 that 𝑧

𝑛
→

𝑞 = 𝑃
⋂
∞

𝑛=1
𝑄
𝑛

𝑓(𝑞). We also have 𝑥
𝑛

= 𝑃
𝑄
𝑛

𝑓(𝑥
𝑛−1

) by the
definition of𝑄

𝑛
. Therefore, as in the proof ofTheorem 10, we

get 𝑥
𝑛
→ 𝑞, and the desired conclusion follows immediately

fromTheorem 10. This completes the proof.

If 𝑀 = 𝑁 = 1, we obtain the following corollary for a
general equilibrium problem and asymptotically strict pseu-
docontraction in the intermediate sense as a special cases.

Theorem 12. Let 𝐶 be a nonempty closed convex subset of
Hilbert space𝐻. Let 𝐹 : 𝐶×𝐶 → R be a bifunction satisfying
(A1)–(A4) and𝐴 : 𝐶 → 𝐻 be an 𝛼-inverse strongly monotone
mapping. Let 𝑇 : 𝐶 → 𝐶 be a uniformly 𝐿-Lipschitz continu-
ous and asymptotically 𝜆-strict pseudocontractive mapping in
the intermediate sense with the sequences {𝑘

𝑛
} and {𝑒

𝑛
}. If 𝑓 is

a Meir-Keeler contraction of 𝐶 into itself and Ω = Fix(𝑇) ∩
EP(𝐹, 𝐴) is nonempty and bounded. Let {𝑥

𝑛
} be a sequence

defined by

𝑥
1
∈ 𝐶, 𝐶

1
= 𝐶,

𝐹 (𝑢
𝑛
, 𝑦) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑧
𝑛
= (1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑇
𝑛

𝑢
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑧
𝑛
,

𝐶
𝑛+1

= {𝑤 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑓 (𝑥
𝑛
) ,

(92)

where 𝜃
𝑛
= (𝑘
𝑛
−1)𝜌
2

𝑛
+𝑒
𝑛
→ 0 as 𝑛 → ∞ and 𝜌

𝑛
= sup{‖𝑥

𝑛
−

𝑝‖ : 𝑝 ∈ Ω} < ∞. Assume that {𝛼
𝑛
} and {𝛽

𝑛
} are sequences

in [0, 1] such that 0 < 𝑎 ≤ 𝛼
𝑛
≤ 1, 0 < 𝑏 ≤ 𝛽

𝑛
≤ 1 − 𝜆 and

{𝑟
𝑛
} ⊂ (0,∞) such that 𝑟

𝑛
∈ [𝑐, 𝑑] ⊂ (0, 2𝛼).Then the sequence

{𝑥
𝑛
} generated by (92) converges strongly to 𝑞 = 𝑃

Ω
𝑓(𝑞).

If𝑀 = 𝑁 = 1 and 𝐹 = 0, the general equilibrium problem
(1) reduces into the classical variational inequality problem (3),
we obtain the following corollary as a special case of Theorems
10 and 12.

Theorem 13. Let 𝐶 be a nonempty closed convex subset of
Hilbert space 𝐻. Let 𝐴 : 𝐶 → 𝐻 be an 𝛼-inverse strongly
monotonemapping. Let𝑇 : 𝐶 → 𝐶 be a uniformly 𝐿-Lipschitz
continuous and asymptotically𝜆-strict pseudocontractivemap-
ping in the intermediate sense with the sequences {𝑘

𝑛
} and {𝑒

𝑛
}.

If 𝑓 is a Meir-Keeler contraction of 𝐶 into itself and Ω =

Fix(𝑇) ∩ VI(𝐶, 𝐴) is nonempty and bounded. Let {𝑥
𝑛
} be a

sequence defined by

𝑥
1
∈ 𝐶, 𝐶

1
= 𝐶,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
𝑛

𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) ,

𝐶
𝑛+1

= {𝑤 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑓 (𝑥
𝑛
) ,

(93)

where 𝜃
𝑛

= (𝑘
𝑛
− 1)𝜌

2

𝑛
+ 𝑒
𝑛

→ 0 as 𝑛 → ∞ and 𝜌
𝑛

=

sup{‖𝑥
𝑛
− 𝑝‖ : 𝑝 ∈ Ω} < ∞. Assume that {𝛼

𝑛
} is a sequence

in [0, 1] such that 0 < 𝑏 ≤ 𝛼
𝑛
≤ 1 − 𝜆 and {𝑟

𝑛
} ⊂ (0,∞) such

that 𝑟
𝑛
∈ [𝑐, 𝑑] ⊂ (0, 2𝛼). Then the sequence {𝑥

𝑛
} generated by

(93) converges strongly to 𝑞 = 𝑃
Ω
𝑓(𝑞).

Proof. If 𝐹 = 0, the general equilibrium problem (1) reduces
into the classical variational inequality problem (3), and

⟨𝐴𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(94)

which is equivalent to

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
)⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (95)

Therefore, we have 𝑢
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
). The desired con-

clusion follows immediately from Theorem 10 (Set 𝛼
𝑛

= 1,
𝛽
𝑛
= 𝛼
𝑛
). This completes the proof.
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