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In continuation of the recent developments on extended reversibilities on rings, we initiate here a study on reversible rings with
involutions, or, in short, ∗-reversible rings. These rings are symmetric, reversible, reflexive, and semicommutative. In this note we
will study some properties and examples of ∗-reversible rings. It is proved here that the polynomial rings of ∗-reversible rings may
not be ∗-reversible. A criterion for rings which cannot adhere to any involution is developed and it is observed that a minimal
noninvolutary ring is of order 4 and that a minimal noncommutative ∗-reversible ring is of order 16.

1. Introduction

Throughout this note we assume that rings are associative
may be without identity.We will specifically mention if a ring
is with the identity. Inmost of the cases the rings are equipped
with an involution that we refer to by ∗.

A ring 𝑅 is termed as a reversible ring by Cohn in [1] if
for any pair of elements 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑦 = 0, then 𝑦𝑥 = 0.
Anderson and Camillo used the notation 𝑍𝐶

2
for the same

type of rings in [2]. Recently, the notion of reversibility is
extended to 𝛼-reversibility in [3] and strong 𝛼-reversibility in
[4], where 𝛼 : 𝑅 → 𝑅 is an endomorphism.Thus, if 𝑥, 𝑦 ∈ 𝑅,
such that 𝑥𝑦 = 0 ⇒ 𝑦𝛼(𝑥) = 0, then 𝛼 is termed as right
reversible in [3] and if the converse holds in the sense that
𝑥𝛼(𝑦) = 0 ⇒ 𝑦𝑥 = 0, then 𝛼 is termed as right strong 𝛼-
reversible in [4]. The ring 𝑅 is called right 𝛼-reversible and
right strong 𝛼-reversible, respectively. Analogously, the terms
𝛼-reversible and strong 𝛼-reversible are defined.

In this note we replace the endomorphism 𝛼 by an invo-
lution ∗ which is an anti-automorphism on 𝑅 of order two.
Thus, the𝛼-reversibility is replaced by∗-reversibility that will
be defined in Section 2. Note that neither 𝛼-reversibility is
∗-reversibility nor ∗-reversibility is 𝛼-reversibility, because
clearly, in general, an anti-automorphism cannot be an
endomorphism, and, conversely, an endomorphism cannot
be an anti-automorphism. Though some results of these

notions may go parallel, we will work on ∗-reversibility from
scratch.

A ring 𝑅 is zero ring if 𝑅2 = 0 and a domain if 𝑅
is a no-zero-divisors ring (see [5]), that is, without non-
zero zero divisors. 𝑅 is called reduced if 𝑅 has no non-
zero nilpotent elements and symmetric if for any triple
𝑎
1
, 𝑎
2
, 𝑎
3
∈ 𝑅, 𝑎

1
𝑎
2
𝑎
3
= 0, then 𝑎

𝑠(1)
𝑎
𝑠(2)

𝑎
𝑠(3)

= 0, where
𝑠 : {1, 2, 3} → {1, 2, 3} is a permutation. Symmetric rings
were introduced by Lambek in [6]. In [2], the notation 𝑍𝐶

3

is used for a symmetric ring. It is known that every reduced
ring is symmetric [2, 6] and neither a symmetric ring is
reversible nor a reversible ring is symmetric (for this debate
and examples and counterexamples, see [2, 7–9]). For a ring
with identity, it is clear that every symmetric ring is reversible.
All these types of rings are semicommutative, where a ring 𝑅
is semicommutative, in the sense of Bell [10], if for any pair
of elements 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑦 = 0 ⇒ 𝑥𝑟𝑦 = 0, for all 𝑟 ∈ 𝑅.
Semicommutative rings have many names in the literature.
For details and examples and counter examples, see [11]. A
ring𝑅 is reflexive if for any pair of elements 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑅𝑦 = 0

then 𝑦𝑅𝑥 = 0. Symmetric and reversible rings are reflexive.
In Section 2, we have given some properties and several

examples and counter examples related to ∗-reversible rings.
In Section 3, we have modified an example [12, Example 2]
to verify that the polynomial rings of ∗-reversible rings may
not be ∗-reversible. Section 4 deals with identifying minimal
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left or right symmetric, symmetric, reflexive, reversible, and
∗-reversible rings. In particular, a criterion is developed for
rings which are noninvolutary; that is, a ring which cannot
adhere to involutions.

For elementary notions about ringswe refer to [13, 14] and
for rings with involution to [15–18].

2. ∗-Reversible Rings

Definitions 1. Let 𝑅 be a ring with the involution ∗. We say
that an element 𝑥 ∈ 𝑅 is right ∗-reversible if there is a non-
zero element𝑦 ∈ 𝑅, such that 𝑥𝑦 = 0, then 𝑦𝑥∗ = 0. Similarly,
let us call an element 𝑥 ∈ 𝑅 right ∗-inverse-reversible if there
is a non-zero element 𝑦 ∈ 𝑅, such that 𝑥𝑦∗ = 0, then 𝑦𝑥 = 0.
Analogously, we define left ∗-reversible, ∗-reversible, left ∗-
inverse-reversible, and ∗-inverse-reversible elements.

If all elements of the ring 𝑅 are right (left, two-sided) ∗-
reversible or ∗-inverse-reversible, then we use the same term
for the ring 𝑅.

Proposition 2. For any ring 𝑅 with the involution ∗, the
following are equivalent:

(1) 𝑅 is right ∗-reversible,
(2) 𝑅 is left ∗-reversible,
(3) 𝑅 is right ∗-inverse-reversible,
(4) 𝑅 is left ∗-inverse-reversible.

Proof. (1) ⇒ (2) Let for any pair of non-zero elements 𝑥, 𝑦 ∈

𝑅 and 𝑥 and 𝑦 annihilate each other in the direction 𝑥𝑦 =

0, which implies by definition that 𝑦𝑥∗ = 0 and then again
𝑥
∗
𝑦
∗
= 0. Hence, finally, 𝑦∗𝑥∗∗ = 𝑦

∗
𝑥 = 0. The rest can be

proved analogously.

In the light of the above proposition if all elements of
a ring which annihilate each other are left (or right) ∗-
reversible (or left or right ∗-inverse-reversible), then they are
∗-reversible. Hence, we have the following.

Definition 3. If 𝑅 satisfies any one of the conditions of
Proposition 2, then we say that 𝑅 is a reversible ring with the
involution ∗ or that 𝑅 is a ∗-reversible ring.

Example 4. (1) All domains with some involution ∗ are ∗-
reversible. For instance, the commutative ring𝑅 = Z[√−5] =

{𝑥 + √−5𝑦 : 𝑥, 𝑦 ∈ Z} is reversible with the involution
∗ defined by (𝑥 + √−5𝑦)

∗
= 𝑥 − √−5𝑦. The ring of real

quaternions H is reversible with the natural involution ∗

defined on its elements by (𝑎+𝑏𝑖+𝑐𝑗+𝑑𝑘)∗ = 𝑎−𝑏𝑖−𝑐𝑗−𝑑𝑘.
(2) Among the nondomains, if, for some involution ∗,

a domain 𝐷 is ∗-reversible, then the cartesian product 𝐷 ×

𝐷 under the induced involuton is ∗-reversible, where the
induced involution on 𝐷 × 𝐷 is defined by (𝑑

1
, 𝑑
2
)
∗

=

(𝑑
∗

1
, 𝑑
∗

2
), for all 𝑑

1
, 𝑑
2
∈ 𝐷.

Consider the product 𝑅 = Z
10

⊕ Z
10

which is a
commutative ring under usual multiplication. Let ∗ be an
involution on 𝑅 defined by (𝑎, 𝑏)∗ = (𝑏, 𝑎), for all (𝑎, 𝑏) ∈

𝑅. Now, if we let 𝑥 = (6, 0), 𝑦 = (5, 2); then we see that
𝑥𝑦 = 0 while 𝑦∗𝑥 = (2, 5)(6, 0) = (2, 0) ̸= 0. Hence, 𝑅 is
not ∗-reversible. Clearly, 𝑅 is reduced. Hence, one concludes

that a ring with some involution ∗may be commutative and
reduced but not ∗-reversible.

Note that Z
4
is not reduced but Z

4
is reversible with the

trivial involution.
(3) For any ring 𝑅 the ring of strictly upper triangular

matrices SUTM
3
(𝑅) (or strictly lower triangular matrices

SLTM
3
(𝑅)) is not ∗-reversible for any involution ∗ on 𝑅 (see

details in Example 23).
(4) An involution ∗ on a ring 𝑅 is an anisotropic

involution if there exists no 𝑥 ∈ 𝑅 \ 0, such that 𝑥𝑥∗ = 0;
otherwise it is called isotropic [17, 19]. Let us say that a ring
𝑅 is anisotropic (isotropic) if it adheres to an anisotropic
(isotropic) involution.

For example, the ringsZ[√−5] andH in Example 4(1) are
anisotropic.

On the other hand, the noncommutative quaternion
algebra 𝑄 (see [17, page 25]) over any field F with char(F) ̸= 2

and with a basis {1, 𝑖, 𝑗, 𝑘},

𝑄 := {𝑥 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 :

𝑎, 𝑏, 𝑐, 𝑑, ∈ F , 𝑖
2
, 𝑗
2
∈ F
×
, 𝑖𝑗 = 𝑘 = −𝑗𝑖} ,

(1)

and with a natural involution defined by 𝑥∗ = 𝑎− 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘

may not be ∗-reversible. For instance, if F = F
3
, and 𝑖2 = 𝑗

2
=

−1 then (1 + 𝑖 + 𝑗)(1 − 𝑖 − 𝑗) = 0 but (1 + 𝑖 + 𝑗)2 ̸= 0.
The group ring Z

2
(𝑄
8
) (where 𝑄

8
is the group of real

quaternions), as discussed in [8, Example 7], is reversible and
is not symmetric. Let us define an involution on its elements

𝑥 = 𝑎
1
+ 𝑎
2
𝑥
−1
+ 𝑎
3
𝑥
𝑖
+ 𝑎
4
𝑥
−𝑖
+ 𝑎
5
𝑥
𝑗
+ 𝑎
6
𝑥
−𝑗

+ 𝑎
7
𝑥
𝑘
+ 𝑎
8
𝑥
−𝑘
, ∀𝑎

𝑖
∈ Z
2

(2)

by

𝑥
∗
= 𝑎
1
+ 𝑎
2
𝑥
−1
+ 𝑎
3
𝑥
−𝑖
+ 𝑎
4
𝑥
𝑖
+ 𝑎
5
𝑥
−𝑗
+ 𝑎
6
𝑥
𝑗

+ 𝑎
7
𝑥
−𝑘
+ 𝑎
8
𝑥
𝑘
, ∀𝑎

𝑖
∈ Z
2
.

(3)

Then 𝑥𝑥
∗
= 0 if and only if ∑8

𝑖=1
𝑎
2

𝑖
= 0. This holds even

though 𝑥 ̸= 0. For instance, if 𝑥 = 1 + 𝑥
𝑖
+ 𝑥
𝑗
+ 𝑥
𝑘
, then one

calculates that 𝑥𝑥∗ = 0. Hence, Z
2
(𝑄
8
) is not ∗-reversible

and it is isotropic under ∗.
(5) See [19, Example 2]. Consider the group ring C[𝑆

3
],

where 𝑆
3

= {1, 𝜎, 𝜎
2
, 𝜏, 𝜏𝜎, 𝜏𝜎

2
} is the symmetric group

on three letters. C[𝑆
3
] adheres to an involution ∗ defined

by (∑
𝑔∈𝑆3

𝑟
𝑔
𝑔)
∗

= (∑
𝑔∈𝑆3

𝑟
𝑔
𝑔
−1
). Assume that 𝛼 =

(1/6)(∑
𝑔∈𝑆3

𝑔), 𝛽 = (1/6)(1 + 𝜎 + 𝜎
2
− 𝜏 − 𝜏𝜎 − 𝜏𝜎

2
), and 𝛾 =

(1/3)(2−𝜎−𝜎
2
).ThenC[𝑆

3
]𝛼 andC[𝑆

3
]𝛽 are anisotropic and

∗-reversible whileC[𝑆
3
]𝛾 is isotropic and not ∗-reversible, so

the ring C[𝑆
3
] = C[𝑆

3
]𝛼 ⊕ C[𝑆

3
]𝛽 ⊕ C[𝑆

3
]𝛾 is isotropic and

not ∗-reversible.
(6) Examples of left or right ∗-reversible elements of a ring.

In Proposition 2, though it is determined that a one-sided ∗-
reversible or∗-inverse-reversible ring is just∗-reversible, this
criterion does not hold for individual elements. For example,
consider the ring of matrices 𝑀

𝑛
(𝑅) over any ring 𝑅, with

or without 1. Then 𝑀
𝑛
(𝑅) is an involution ring with the
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involution ∗, where, if 𝐴 ∈ 𝑀
𝑛
(𝑅), then 𝐴∗ ∈ 𝑀

𝑛
(𝑅) is the

transpose of 𝐴. If 𝐴∗ = 𝐴, then 𝐴 is a symmetric matrix.
Now, let 𝐴, 𝐵 ∈ 𝑀

𝑛
(𝑅), such that 𝐵 is symmetric and

that 𝐴𝐵 = 0. Then (𝐴𝐵)
∗
= 𝐵𝐴

∗
= 0. Hence, 𝐴 is right ∗-

reversible.
Note that, a right (or left) ∗-reversible element may not

be a left (or right) ∗-reversible. For instance, in case of
elementary matrices in 𝑀

2
(Z), 𝑒

11
𝑒
21

= 0 ⇒ 𝑒
12
𝑒
11

= 0,
but 𝑒
21
𝑒
11

= 𝑒
21

̸= 0. So 𝑀
2
(Z) is not ∗-reversible, but it is

anisotropic, because, for all 𝐴 ∈ 𝑀
2
(Z), 𝐴𝐴∗ = 0 ⇒ 𝐴 = 0.

A criterion for the equality of different ∗-reversible
elements is the following.

Proposition 5. For any reversible ring 𝑅 with the involution ∗
and for any element 𝑥 ∈ 𝑅, the following are equivalent:

(1) 𝑥 is right ∗-reversible,
(2) 𝑥 is left ∗-reversible,
(3) 𝑥 is right ∗-inverse-reversible,
(4) 𝑥 is left ∗-inverse-reversible.

Proof. Proofs can be obtained directly by Definitions 1.

By the above proposition we conclude that if 𝑅 is
reversible, then any left or right ∗-reversible or ∗-inverse-
reversible element is simply termed as a ∗-reversible element.

If a ring is ∗-reversible, then we have the following.

Proposition 6. Every ∗-reversible ring is (1) symmetric, (2)
reversible, (3) reflexive, and (4) semicommutative.

Proof. (1) Let 𝑅 be a ∗-reversible ring. Assume that for any
𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑥𝑦𝑧 = 0, then 𝑦𝑧𝑥∗ = 0 or 𝑧𝑥∗𝑦∗ = 0 or that
𝑥
∗
𝑦
∗
𝑧
∗
= 0. Using the double involutions we get 𝑧𝑦𝑥 = 0.

Again, 𝑥𝑦𝑧 = 0 means that 𝑧∗𝑦∗𝑥∗ = 0 or that
(𝑦
∗
𝑥
∗
)
∗
𝑧
∗
= (𝑥𝑦)𝑧

∗
= 0 implies 𝑧𝑥𝑦 = 0.

Using 𝑧𝑥𝑦 = 0, by the similar arguments as above, 𝑦𝑥𝑧 =
0. Finally, by symmetry we get 𝑦𝑧𝑥 = 0 and 𝑥𝑧𝑦 = 0. Hence,
𝑅 is symmetric.

(2) It is proved in the first line of the proof of
Proposition 2.

(3) and (4)These are obvious.

For any subset𝑋 of a ring𝑅, the right and left annihilators
of 𝑋 in 𝑅 are denoted by 𝑟

𝑅
(𝑋) and 𝑙

𝑅
(𝑋), respectively. In

particular, if 𝑋 = {𝑥}, then we use the terminologies 𝑟
𝑅
(𝑥)

and 𝑙
𝑅
(𝑥).

Let𝑅 be an involution ring with the involution∗. Because
a ∗-reversible ring 𝑅 is semicommutative, so every left or
right annihilator of 𝑅 is an ideal (see [20, Lemma 1.1]). We
restate here Proposition 2.3 of [4] in terms of ∗-reversible
rings which provides some additional information.The proof
of each equivality is elementary.

Proposition 7. Let 𝑅 be an involution ring with an involution
∗. Then the following are equivalent:

(1) 𝑅 is a ∗-reversible ring;
(2) 𝑟
𝑅
(𝑥
∗
) = 𝑟
𝑅
(𝑥) for each element 𝑥 ∈ 𝑅;

(3) 𝑙
𝑅
(𝑥
∗
) = 𝑙
𝑅
(𝑥) for each element 𝑥 ∈ 𝑅;

(4) 𝑙
𝑅
(𝑥
∗
) = 𝑟
𝑅
(𝑥) for each element 𝑥 ∈ 𝑅;

(5) 𝑟
𝑅
(𝑥
∗
) = 𝑙
𝑅
(𝑥) for each element 𝑥 ∈ 𝑅;

(6)–(9) replace 𝑥
∗ and 𝑥 by subsets 𝑆

∗ and 𝑆 of 𝑅,
respectively, in (2)–(5);

(10) for any two non-empty subsets 𝐴 and 𝐵 of 𝑅,𝐴𝐵 = 0

if and only if 𝐵𝐴∗ = 0 if and only if 𝐵∗𝐴 = 0.

An element 𝑎 ∈ 𝑅 is called symmetric with respect to ∗ if
𝑎
∗
= 𝑎.

Proposition 8. Let 𝑅 be a ring with 1 and with an involution
∗.

(1) If 𝑅 is ∗-reversible, then every idempotent in 𝑅 is
symmetric with respect to ∗. In particular, 1∗ = 1.

(2) Let 𝑒 be a central idempotent. Then 𝑒𝑅 and (1 − 𝑒)𝑅 are
∗-reversible if and only if 𝑅 is ∗-reversible.

(3) 𝑅 is ∗-reversible if and only if, for every central
idempotent 𝑒 ∈ 𝑅, 𝑒𝑅 is ∗-reversible.

(4) Let 𝑅 be abelian (i.e., every idempotent of 𝑅 is central).
Then 𝑅 is ∗-reversible if and only if, for every idempotent 𝑒 ∈
𝑅, 𝑒𝑅 is ∗-reversible.

Proof. (1) Indeed, if 𝑒2 = 𝑒, then 𝑒(1 − 𝑒) = 0 implies that
(1 − 𝑒)𝑒

∗
= 0, or 𝑒

∗
= 𝑒𝑒
∗
= 𝑒. Hence, in particular, 1∗ = 1.

(2) Let 𝑅 be ∗-reversible. Let 𝑒 ∈ 𝑅 be an idempotent.
Then by (1) 𝑒∗ = 𝑒, and so 𝑒𝑅 and (1 − 𝑒)𝑅 are ∗-subrings of
𝑅. Hence, these are ∗-reversible.

Conversely, let 𝑒𝑅 and (1−𝑒)𝑅 be ∗-reversible. Let 𝑥𝑦 = 0

for some 𝑥, 𝑦 ∈ 𝑅. Then 𝑒𝑥𝑒𝑦 = 0. So, by hypothesis, 𝑒𝑦𝑒𝑥∗ =
𝑒𝑦𝑥
∗
= 0.

Again by hypothesis,

(1 − 𝑒) 𝑥 (1 − 𝑒) 𝑦 = (1 − 𝑒) 𝑥𝑦 = 0, (4)

which implies that

(1 − 𝑒) 𝑦 (1 − 𝑒) 𝑥
∗
= (1 − 𝑒) 𝑦𝑥

∗
= 0. (5)

Hence, we conclude that 𝑦𝑥∗ = 𝑒𝑦𝑥
∗
= 0.

(3) and (4) follow from (2).

Proposition 9. Let 𝑅 and 𝑆 be rings and let 𝑡 : 𝑅 → 𝑆 be an
isomorphism. Then we have the following.

(1) ∗- is an involution on 𝑅 if and only if 𝑡(∗) := 𝑡 ∘∗ ∘ 𝑡
−1

is an involution on 𝑆.
(2) An element 𝑥 ∈ 𝑅 is right (left, two-sided) ∗-reversible

if and only if its image 𝑡(𝑥) ∈ 𝑆 is right (left, two-sided) 𝑡(∗)-
reversible.

(3) An element 𝑥 ∈ 𝑅 is right (left, two-sided) ∗-inverse-
reversible if and only if its image 𝑡(𝑥) ∈ 𝑆 is right (left, two-
sided) 𝑡(∗)-inverse-reversible.

(4) 𝑅 is ∗-reversible if and only if 𝑆 is 𝑡(∗)-reversible.
(5) 𝑅 is ∗-inverse-reversible if and only if 𝑆 is 𝑡(∗)-inverse-

reversible.

Proof. (1) Clearly, 𝑡 ∘ ∗ ∘ 𝑡−1 := 𝑡(∗) is an anti-automorphism
on 𝑆 of order two and conversely 𝑡−1 ∘ 𝑡(∗) ∘ 𝑡 = ∗ is an anti-
automorphism on𝑅 of order two. It is a routine work to check
that if ∗ is an involution on 𝑅 then 𝑡(∗) is an involution on
𝑆 and conversely if 𝑡(∗) is an involution on 𝑆 then ∗ is an
involution on 𝑅.
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(2) Let 0 ̸= 𝑥 ∈ 𝑅 be right ∗-reversible and for some
0 ̸= 𝑦 ∈ 𝑅, 𝑥𝑦 = 0. Then 𝑦𝑥

∗
= 0. The image of 𝑥 in 𝑆

is 𝑡(𝑥), and, naturally, the image of 𝑥∗ in 𝑆 is 𝑡(𝑥)𝑡(∗). Thus,
𝑡(𝑥𝑦) = 𝑡(𝑥)𝑡(𝑦) = 0 in which both products are non-zero
and this implies that

𝑡 (𝑦𝑥
∗
) = 𝑡 (𝑦) 𝑡 (𝑥

∗
) = 𝑡 (𝑦) 𝑡(𝑥)

𝑡(∗)
= 0. (6)

Hence, 𝑡(𝑥) ∈ 𝑆 is right 𝑡(∗)-reversible.
Conversely, if 0 ̸= 𝑥


∈ 𝑆 is 𝑡(∗)-reversible, then there is

0 ̸= 𝑦

∈ 𝑆, such that 𝑥𝑦 = 0 which gives 𝑦𝑥𝑡(∗) = 0. But

there exist 0 ̸= 𝑥 ∈ 𝑅 and 0 ̸= 𝑦 ∈ 𝑅 such that 𝑡−1(𝑥) = 𝑥 and
𝑡
−1
(𝑦

) = 𝑦. So 𝑡(𝑥) = 𝑥

 and

𝑡 (𝑥
∗
) = 𝑡(𝑥)

𝑡(∗)
= 𝑥
𝑡(∗)

⇒ 𝑡
−1
(𝑥
𝑡(∗)

) = 𝑥
∗
. (7)

This means that

𝑡
−1
(𝑥

𝑦

) = 𝑡
−1
(𝑥

) 𝑡
−1
(𝑦

) = 𝑥𝑦 = 0, (8)

which implies that

𝑡
−1
(𝑦

𝑥
𝑡(∗)

) = 𝑡
−1
(𝑦

) 𝑡
−1
(𝑥
𝑡(∗)

) = 𝑦𝑥
∗
= 0. (9)

Hence, 𝑥 ∈ 𝑅 is right ∗-reversible.
The proofs of the remaining parts of (2) and that of (3),

(4), and (5) are analogous.

Central idempotents play important role in a direct sum
decomposition of a ring. If 𝑅 is a ring with involution and 𝑅

1

is a direct summand of 𝑅, then 𝑅
1
can be given a structure

of an involution ring [15, Lemma 2.3] and the converse also
holds naturally.Then it follows fromPropositions 8 and 9 and
from Section 7 of [13] the following.

Theorem 10. All direct sums and direct summands of ∗-
reversible rings are ∗-reversible.

Examples 11 (trivial extensions). Let 𝑅 be any ring; a trivial
extension 𝑇(𝑅, 𝑅) of 𝑅 is a subring of the upper triangular
matrix ring over 𝑅 and is defined as

𝑇 (𝑅, 𝑅) = {[

𝑟 𝑠

0 𝑟

] : 𝑟, 𝑠 ∈ 𝑅} . (10)

Define an involution ∗ on the ring

𝑇 (Z
𝑝
,Z
𝑝
) = {[

𝑥 𝑦

0 𝑥

] : 𝑥, 𝑦 ∈ Z
𝑝
} , (11)

where 𝑝 is a prime, by

[

𝑥 𝑦

0 𝑥

]

∗

= [

𝑥 −𝑦

0 𝑥

] . (12)

Clearly, 𝑇 is ∗-reversible.
Note that for any prime 𝑝,Z

𝑝
is reduced. If we replace

𝑝 by a composite number such that Z
𝑝
is not reduced,

then 𝑇 may not be ∗-reversible. For instance, one can check
that 𝑇(Z

4
,Z
4
) is not ∗-reversible; however, 𝑇(Z

6
,Z
6
) is ∗-

reversible. We further have the following.

Theorem12. If𝑅 has an involution∗, then the involution𝑇(∗)
on 𝑇(𝑅, 𝑅) defined by

[

𝑟 𝑠

0 𝑟

]

𝑇(∗)

= [

𝑟
∗
𝑠
∗

0 𝑟
∗] , ∀ [

𝑟 𝑠

0 𝑟

] ∈ 𝑇 (𝑅, 𝑅) (13)

is an involution. If𝑅 is reduced and∗-reversible, then the trivial
extension 𝑇(𝑅, 𝑅) is 𝑇(∗)-reversible.

Proof. It is a routine work to check that 𝑇(∗) is an involution
on 𝑇(𝑅, 𝑅).

Assume that 𝑅 is reduced and ∗-reversible. Let

[

𝑟 𝑠

0 𝑟

] [

𝑟

𝑠


0 𝑟
] = 0. (14)

Then

𝑟𝑟

= 0 = 𝑟𝑠


+ 𝑠𝑟

. (15)

By the ∗-reversible property, 𝑟𝑟∗ = 0. Moreover, because
every reduced ring is symmetric and semicommutative, so
by (15) 𝑠𝑟𝑟 = 𝑟𝑠𝑟


= 0 which implies that 𝑟2𝑠 = 0. Then

(𝑟𝑠

)
2
= 0 which gives 𝑟𝑠 = 0 or that 𝑠𝑟∗ = 0. Again by (15)

and 𝑟𝑠 = 0, we get 𝑠𝑟 = 0; hence, 𝑟𝑠∗ = 0. Combining these
we conclude that

[

𝑟

𝑠


0 𝑟
] [

𝑟 𝑠

0 𝑟

]

𝑇(∗)

= [

𝑟

𝑠


0 𝑟
] [

𝑟
∗
𝑠
∗

0 𝑟
∗]

= [

𝑟

𝑟
∗
𝑟

𝑠
∗
+ 𝑠

𝑟
∗

0 𝑟

𝑟
∗ ] = 0.

(16)

The Dorroh Extension. Let 𝐴 be an algebra over a commuta-
tive ring 𝐶. The Dorroh extension of 𝐴 by 𝐶 is a ring 𝐷 =

𝐴 × 𝐶 in which sum of elements is defined componentwise
and the product is defined by the rule

(𝑎
1
, 𝑐
1
) (𝑎
2
, 𝑐
2
) = (𝑎

1
𝑎
2
+ 𝑎
1
𝑐
2
+ 𝑎
2
𝑐
1
, 𝑐
1
𝑐
2
) . (17)

If the algebra 𝐴 adheres to an involution ∗, then an
induced involution ∗

𝐷
on 𝐷 is (𝑎, 𝑐)∗𝐷 := (𝑎

∗
, 𝑐) for every

(𝑎, 𝑐) ∈ 𝐷. We prove the following.

Theorem 13. Let 𝐶, be an integral domain and 𝐴 an algebra
with 1 over 𝐶. Then 𝐴 with an involution ∗ is ∗-reversible if
and only if its Dorroh extension𝐷 is ∗

𝐷
-reversible.

Proof. Let𝐴,𝐶 and𝐷 be as given in the hypothesis with𝐴 as
∗-reversible. Consider two non-zero elements (𝑎

1
, 𝑐
1
), (𝑎
2
, 𝑐
2
)

of 𝐷 such that (𝑎
1
, 𝑐
1
)(𝑎
2
, 𝑐
2
) = 0. Then we prove that

(𝑎
2
, 𝑐
2
)(𝑎
1
, 𝑐
1
)
∗𝐷

= 0. Clearly, 𝑐
1
𝑐
2
= 0 implies that either

𝑐
1
= 0 or 𝑐

2
= 0. Assume first that 𝑐

2
= 0. Then

𝑎
1
𝑎
2
+ 𝑎
2
𝑐
1
= (𝑎
1
+ 1 ⋅ 𝑐

1
) 𝑎
2
= 0 (18)

and so

𝑎
2
(𝑎
1
+ 1 ⋅ 𝑐

1
)

∗

= 0 = 𝑎
2
𝑎
∗

1
+ 𝑎
2
𝑐
1
, (19)
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where 1∗ = 1 (see Proposition 8(1)) and (𝑎𝑐)∗ = 𝑎
∗
𝑐 (by the

definition of an involution on an algebra over a ring). Thus,
we get

𝑎
2
𝑎
∗

1
+ 𝑎
∗

1
𝑐
2
+ 𝑎
2
𝑐
1
= 0 (20)

which means that

(𝑎
2
, 𝑐
2
) (𝑎
1
, 𝑐
1
)

∗𝐷
= 0. (21)

same conclusion can be obtained if we take 𝑐
1
= 0. The

converse is obvious.

3. The Polynomial Rings of ∗-Reversible Rings

Note that if a ring is commutative, reduced, or Armendariz,
then so is 𝑅[𝑥]. But if 𝑅 is semicommutative, reversible,
or symmetric, then 𝑅[𝑥] may not be either semicommu-
tative, reversible, or symmetric. These were established in
[12, Example 2], [20, Example 2.1], and [21, Example 3.1],
respectively, by providing the same counterexample. We
continue this example to prove that if 𝑅 is ∗-reversible with
some involution ∗, then 𝑅[𝑥]may not be ∗-reversible. To get
the goal we will make some modification in the example.

Example 14. A noncommutative ring with (or without) iden-
tity is symmetric and reversible but not ∗-reversible with
some involution ∗.

Let 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, 𝑏
2
, and 𝑐 be some mutually noncom-

mutative indeterminates and let 𝑇 = Z
2
[𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, 𝑏
2
, 𝑐]

be a free polynomial algebra. Consider the ring Z
2
+ 𝑇, and

define an ideal 𝐼 generated by the expressions

𝑎
0
𝑏
0
, 𝑎
0
𝑏
1
+ 𝑎
1
𝑏
0
, 𝑎
0
𝑏
2
+ 𝑎
1
𝑏
1
+ 𝑎
2
𝑏
0
, 𝑎
1
𝑏
2

+ 𝑎
2
𝑏
1
, 𝑎
2
𝑏
2
, 𝑎
0
𝑟𝑏
0
, 𝑎
2
𝑟𝑏
2
,

𝑏
0
𝑎
0
, 𝑏
0
𝑎
1
+ 𝑏
1
𝑎
0
, 𝑏
0
𝑎
2
+ 𝑏
1
𝑎
1
+ 𝑏
2
𝑎
0
, 𝑏
1
𝑎
2

+ 𝑏
2
𝑎
1
, 𝑏
2
𝑎
2
, 𝑏
0
𝑟𝑎
0
, 𝑏
2
𝑟𝑎
2
,

(𝑎
0
+ 𝑎
1
+ 𝑎
2
) 𝑟 (𝑏
0
+ 𝑏
1
+ 𝑏
2
) ,

(𝑏
0
+ 𝑏
1
+ 𝑏
2
) 𝑟 (𝑎
0
+ 𝑎
1
+ 𝑎
2
) , 𝑟
1
𝑟
2
𝑟
3
𝑟
4
,

(22)

where 𝑟, 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
∈ 𝑇. The factor ring 𝑅

1
= (Z
2
+ 𝑇)/𝐼 is

reversible [20, Example 2.1] and symmetric [21, Example 3.1].
Define an involution onZ

2
+𝑇 by 0∗ = 0, 1

∗
= 1, 𝑎

∗

𝑖
= 𝑏
𝑖
,

and 𝑏∗
𝑖
= 𝑎
𝑖
; for all 𝑖 = 0, 1, 2 and 𝑐∗ = 𝑐. This is a routine

work to check that this is an involution on Z
2
+ 𝑇 and that

𝐼
∗
⊆ 𝐼 and obviously 𝑇4 ⊆ 𝐼. Define the induced involution

on 𝑅
1
by setting (𝑥)∗ = 𝑥

∗, for all 𝑥 ∈ 𝑅
1
. Now 𝑎

0
𝑏
0
= 0, but

𝑏
0
𝑎
0

∗
= 𝑏
0
𝑏
0

̸= 0. Hence, 𝑅
1
is not ∗-reversible.

For the without identity part, one may notice that, in
Z
2
+ 𝑇,Z

2
seems to be a superfluous part just to bring the

identity in the system. 𝐼 is still an ideal of 𝑇 and the ring
𝑅


1
= 𝑇/𝐼 satisfies all claims as stated in [20, Example 2.1] and

[12, Example 3.1]. The involution 𝑇 can be defined by setting
𝑎
∗

𝑖
= 𝑏
𝑖
, 𝑏
∗

𝑖
= 𝑎
𝑖
; for all 𝑖 = 0, 1, 2 and 𝑐∗ = 𝑐, and the induced

involution on 𝑅


1
can be obtained as previously done. With

this involution 𝑅
1
is not ∗-reversible.

Note that (Z
2
+𝑇)[𝑥] or just𝑇[𝑥] are domains, so these are

symmetric, reversible, and ∗-reversible, but the factor rings
𝑅
1
[𝑥] and 𝑅

1
[𝑥] are not.

Example 15. A noncommutative ring is symmetric, rever-
sible, and ∗-reversible for some involution ∗.

We make some modification in Example 14. Let the ring
𝑇 be as in Example 14, and let the ideal 𝐽 be generated by the
set

{𝑎
2

0
, 𝑏
2

0
, 𝑎
2

2
, 𝑏
2

2
, 𝑎
0
𝑏
0
, 𝑏
0
𝑎
0
, 𝑎
2
𝑏
2
, 𝑏
2
𝑎
2
, 𝑎
0
𝑟𝑎
0
,

𝑏
0
𝑟𝑏
0
, 𝑎
0
𝑟𝑏
0
, 𝑎
2
𝑟𝑏
2
, 𝑏
0
𝑟𝑎
0
, 𝑏
2
𝑟𝑎
2
, 𝑎
2
𝑟𝑎
2
,

𝑏
2
𝑟𝑏
2
, 𝑏
0
𝑎
1
+ 𝑏
1
𝑎
0
, 𝑎
0
𝑏
1
+ 𝑎
1
𝑏
0
, 𝑎
1
𝑏
2

+ 𝑎
2
𝑏
1
, 𝑎
0
𝑎
1
+ 𝑎
1
𝑎
0
, 𝑎
1
𝑎
2
+ 𝑎
2
𝑎
1
, 𝑏
0
𝑏
1

+ 𝑏
1
𝑏
0
, 𝑏
1
𝑏
2
+ 𝑏
2
𝑏
1
, 𝑏
1
𝑎
2
+ 𝑏
2
𝑎
1
, 𝑎
0
𝑎
2

+ 𝑎
2

1
+ 𝑎
2
𝑎
0
, 𝑎
0
𝑏
2
+ 𝑎
1
𝑏
1
+ 𝑎
2
𝑏
0
, 𝑏
0
𝑎
2

+ 𝑏
1
𝑎
1
+ 𝑏
2
𝑎
0
, 𝑏
0
𝑏
2
+ 𝑏
2

1
+ 𝑏
2
𝑏
0
,

(𝑏
0
+ 𝑏
1
+ 𝑏
2
) 𝑟 (𝑎
0
+ 𝑎
1
+ 𝑎
2
) ,

(𝑎
0
+ 𝑎
1
+ 𝑎
2
) 𝑟 (𝑏
0
+ 𝑏
1
+ 𝑏
2
) ,

(𝑎
0
+ 𝑎
1
+ 𝑎
2
) 𝑟 (𝑎
0
+ 𝑎
1
+ 𝑎
2
) ,

(𝑏
0
+ 𝑏
1
+ 𝑏
2
) 𝑟 (𝑏
0
+ 𝑏
1
+ 𝑏
2
) , 𝑟
1
𝑟
2
𝑟
3
𝑟
4
} ,

(23)

where 𝑟, 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
∈ 𝑇.

Theorem16. (i)The factor ring𝑅
2
= 𝑇/𝐽 (or𝑅

2
= (Z
2
+𝑇)/𝐽)

is (1) reversible, (2) symmetric, (3) semicommutative, and (4)
∗-reversible for some involution ∗.

(ii) 𝑅
2
[𝑥] (or 𝑅

2
[𝑥]) does not satisfy any of (1), (2), (3), or

(4).

Proof. If (4) holds, then (1), (2) and (3), by default, followed
fromProposition 6.We only prove (4) for𝑅

2
; such a proof for

𝑅
2
follows automatically.
First define the involution on 𝑇 and the induced involu-

tion on 𝑅
2
as in Example 14. Clearly, 𝑇4 ⊆ 𝐽 and 𝐽∗ ⊆ 𝐽.

So, for (4), assume that ∗ is an involution on 𝑅


2
which

is induced from 𝑇. As previously stated, in [12, 20, 21], let us
call each product of the indeterminates 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, 𝑏
2
, 𝑐 a

monomial and say that 𝑓 ∈ 𝑇 is a monomial of degree 𝑛 if it
is a product of exactly 𝑛 number of these indeterminates. Let
𝐻
𝑛
be the set of all linear combinations of such monomials of

degree 𝑛. 𝐻
𝑛
is finite and the ideal 𝐽 is homogeneous in the

sense that if ∑𝑘
𝑖=1

𝑟
𝑖
∈ 𝐽, with 𝑟

𝑖
∈ 𝐻
𝑖
, then every 𝑟

𝑖
∈ 𝐽.

We will prove first that if 𝑓
1
𝑔
1
∈ 𝐽 with 𝑓

1
, 𝑔
1
∈ 𝐻
1
, then

𝑔
1
𝑓
∗

1
∈ 𝐽. The different cases for this situation are as under

(𝑓
1
= 𝑎
0
, 𝑔
1
= 𝑎
0
) , (𝑓

1
= 𝑏
0
, 𝑔
1
= 𝑏
0
) ,

(𝑓
1
= 𝑏
2
, 𝑔
1
= 𝑏
2
) , (𝑓

1
= 𝑎
2
, 𝑔
1
= 𝑎
2
) ,
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(𝑓
1
= 𝑎
0
, 𝑔
1
= 𝑏
0
) , (𝑓

1
= 𝑎
2
, 𝑔
1
= 𝑏
2
) ,

(𝑓
1
= 𝑏
0
, 𝑔
1
= 𝑎
0
) , (𝑓

1
= 𝑏
2
, 𝑔
1
= 𝑎
2
) ,

(𝑓
1
= 𝑎
0
+ 𝑎
1
+ 𝑎
2
, 𝑔
1
= 𝑏
0
+ 𝑏
1
+ 𝑏
2
) ,

(𝑓
1
= 𝑏
0
+ 𝑏
1
+ 𝑏
2
, 𝑔
1
= 𝑎
0
+ 𝑎
1
+ 𝑎
2
) .

(24)

First four are identical; so, if 𝑎
0
𝑎
0
∈ 𝐽, then we see that

𝑎
0
𝑎
∗

0
= 𝑎
0
𝑏
0
∈ 𝐽. The same holds for the remaining.

Second four are also identical: so if 𝑎
0
𝑏
0
∈ 𝐽, then we see

that 𝑏
0
𝑎
∗

0
= 𝑏
0
𝑏
0
∈ 𝐽. Same holds for the remaining.

For the second last we have:

𝑓
1
𝑔
1
= 𝑎
0
𝑏
0
+ (𝑎
0
𝑏
1
+ 𝑎
1
𝑏
0
) + (𝑎

0
𝑏
2
+ 𝑎
1
𝑏
1
+ 𝑎
2
𝑏
0
)

+ (𝑎
1
𝑏
2
+ 𝑎
2
𝑏
1
) + 𝑎
2
𝑏
2
∈ 𝐽;

(25)

then,

𝑔
1
𝑓
∗

1
= 𝑏
0
𝑏
0
+ (𝑏
0
𝑏
1
+ 𝑏
1
𝑏
0
) + (𝑏
0
𝑏
2
+ 𝑏
1
𝑏
1
+ 𝑏
2
𝑏
0
)

+ (𝑏
1
𝑏
2
+ 𝑏
2
𝑏
1
) + 𝑏
2
𝑏
2
∈ 𝐽,

(26)

and the same holds for the last one.
Now let 𝑓, 𝑔 ∈ 𝑇, such that 𝑓𝑔 ∈ 𝐽. Then we will prove

that 𝑔𝑓∗ ∈ 𝐽. Assume that 𝑓 = ∑
𝑘

𝑖=1
𝑓
𝑖
and 𝑔 = ∑

𝑙

𝑗=1
𝑔
𝑗
.

Then𝑓𝑔 = 𝑓
1
𝑔
1
+𝑓
1
𝑔
2
+𝑓
2
𝑔
1
+𝑘, where all monomial in 𝑘 are

of degree 4, so 𝑘 ∈ 𝐽. By the above𝑓
1
𝑔
1
∈ 𝐽, so𝑓

1
𝑔
2
+𝑓
2
𝑔
1
∈

𝐽. Then

𝑔𝑓
∗
= 𝑔
1
𝑓
∗

1
+ 𝑔
1
𝑓
∗

2
+ 𝑔
2
𝑓
∗

1
+ 𝑘
∗
. (27)

Again, from the above𝑔
1
𝑓
∗

1
∈ 𝐽 and as 𝑘∗ ∈ 𝐽, we only need to

prove that𝑔
1
𝑓
∗

2
+𝑔
2
𝑓
∗

1
∈ 𝐽. With the option𝑓

1
= 𝑎
0
, 𝑔
1
= 𝑎
0
,

let us pick 𝑓
2
= 𝑟 ∈ 𝐽 and 𝑔

2
= 𝑏
0
𝑡where 𝑡 is somemonomial.

Then

𝑔
1
𝑓
∗

2
+ 𝑔
2
𝑓
∗

1
= 𝑎
0
𝑟
∗
+ 𝑏
0
𝑡𝑎
∗

0
= 𝑎
0
𝑟
∗
+ 𝑏
0
𝑡𝑏
0
∈ 𝐽. (28)

For the option 𝑓
1
= 𝑏
0
+ 𝑏
1
+ 𝑏
2
, 𝑔
1
= 𝑎
0
+ 𝑎
1
+ 𝑎
2
, let us

pick 𝑔
2
= 𝑟 ∈ 𝐽 and 𝑓

2
= 𝑠(𝑎
0
+ 𝑎
1
+ 𝑎
2
). Then

𝑔
1
𝑓
∗

2
+ 𝑔
2
𝑓
∗

1
= (𝑎
0
+ 𝑎
1
+ 𝑎
2
) (𝑠 (𝑎

0
+ 𝑎
1
+ 𝑎
2
))

∗

+ 𝑟(𝑏
0
+ 𝑏
1
+ 𝑏
2
)

∗

= (𝑎
0
+ 𝑎
1
+ 𝑎
2
) (𝑎
0
+ 𝑎
1
+ 𝑎
2
) 𝑠
∗

+ 𝑟 (𝑎
0
+ 𝑎
1
+ 𝑎
2
) ∈ 𝐽.

(29)

Similarly, the remaining options and the possible combina-
tions such that𝑓𝑔 ∈ 𝐽 can be simplified to prove that 𝑔𝑓∗ ∈ 𝐽.
Hence, we conclude that 𝑅

2
is ∗-reversible.

(ii) The common argument which everyone poses is the
following. Let 𝑓(𝑥) = 𝑎

0
+ 𝑎
1
𝑥 + 𝑎

2
𝑥
2
, 𝑔(𝑥) = 𝑏

0
+ 𝑏
1
𝑥 +

𝑏
2
𝑥
2
∈ 𝑅


2
[𝑥]. Then 𝑓(𝑥)𝑔(𝑥) ∈ 𝐽 but 𝑓(𝑥)𝑐𝑔(𝑥) ∉ 𝐽. So,

𝑅


2
[𝑥] is not semicommutative. Hence, it is neither reversible

nor symmetric.There is no question of ∗-reversibility as well.
The same holds for 𝑅

2
[𝑥].

A ring 𝑅 is Armendariz, as introduced in [22], if,
for any commuting indeterminate 𝑥, the polynomials

𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅[𝑥] are such that 𝑓𝑔 = 0, and if 𝑎
𝑖
∈ Coef(𝑓)

and 𝑏
𝑗
∈ Coef(𝑔), then 𝑎

𝑖
𝑏
𝑗
= 0. For instance, if𝑅 is reduced,

then 𝑅 is Armendariz. A favourable conditional case is the
following.

Theorem 17. If𝑅 is an Armendariz ring, then𝑅 is ∗-reversible
if and only if 𝑅[𝑥] is ∗-reversible under the induced involution
defined by 𝑓∗(𝑥) = ∑

𝑚

𝑖=0
𝑎
∗

𝑖
𝑥
𝑖, for every polynomial 𝑓(𝑥) =

∑
𝑚

𝑖=0
𝑎
𝑖
𝑥
𝑖
∈ 𝑅[𝑥].

Proof. If part is trivial.
For only if, let 𝑅 be Armendariz and is ∗-reversible, and

let for some 𝑔(𝑥) = ∑
𝑚

𝑖=0
𝑏
𝑖
𝑥
𝑖
∈ 𝑅[𝑥], 𝑓𝑔 = 0. Then for any

pair of coefficient 𝑎
𝑖
∈ Coef(𝑓) and 𝑏

𝑗
∈ Coef(𝑔), we have

𝑎
𝑖
𝑏
𝑗
= 0, which implies that 𝑏

𝑗
𝑎
∗

𝑖
= 0 with 𝑎∗

𝑖
∈ Coef(𝑓∗) and

𝑏
𝑗
∈ Coef(𝑔). Hence, we plainly get 𝑔𝑓∗ = 0.

4. The Story of Some Minimalities

In [9] a ring 𝑅 is defined to be right (respectively left)
symmetric if for any triple 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎𝑏𝑐 = 0, then 𝑎𝑐𝑏 =

0 (respectively 𝑏𝑎𝑐 = 0). If 1 ∈ 𝑅, then every right (or
left) symmetric ring becomes symmetric, which returns the
original definition of Lambek [6] of a symmetric ring.

Clearly, all commutative rings are left or right symmetric,
symmetric, reversible, reflexive, duo (every right or left
ideal is an ideal), semicommutative, and at least have a
trivial involution. In this section, first we have obtained a
criterion for rings to be noninvolutary and then we will find
minimal (cardinality-wise) right and left symmetric, sym-
metric, reversible, reflexive, noninvolutary, and ∗-reversible
noncommutative rings.

The following theorem is a criterion for rings to be nonin-
volutary.

Theorem 18. A right (or left) symmetric ring which is not
symmetric cannot adhere to an involution.

Proof. Let 𝑅 be a right symmetric ring which is not symmet-
ric. Assume on contradiction that 𝑅 adheres to an involution
∗. If 𝑎𝑏𝑐 = 0 for some 𝑎, 𝑏, 𝑐 ∈ 𝑅, then, because 𝑅 is right
symmetric, 𝑎𝑐𝑏 = 0. Then (𝑎𝑐𝑏)∗ = 𝑏

∗
𝑐
∗
𝑎
∗
= 0 or 𝑏∗𝑎∗𝑐∗ =

0. Doubling the involution gives 𝑐𝑎𝑏 = 0 which means that
𝑐𝑏𝑎 = 0. Again, 𝑎𝑏𝑐 = 0 gives 𝑐∗𝑏∗𝑎∗ = 𝑐

∗
𝑎
∗
𝑏
∗
= 0, and

by the doubling of involution one gets 𝑏𝑎𝑐 = 0 and so the
right symmetry gives 𝑏𝑐𝑎 = 0. Hence, we conclude that 𝑅 is
symmetric, which is a clear contradiction. Similarly, one can
prove that if 𝑅 is left symmetric and it is not symmetric, then
it cannot have an involution.

One can deduce from above the following:

Corollary 19. A right (or left) symmetric ring with an involu-
tion is symmetric.

Example 20. Consider the, so called, Klein-4 ring : 𝑉 =

{0, 𝑎, 𝑏, 𝑐} which is a Klein 4-group with respect to addition.



The Scientific World Journal 7

The characteristic of this ring is 2 and the relations among its
elements are

𝑐 = 𝑎 + 𝑏, 𝑎
2
= 𝑎𝑏 = 𝑎, 𝑏

2
= 𝑏𝑎 = 𝑏 (30)

(see [8, Example 1]. Erroneously it is considered symmetric
there). This ring is not symmetric, simply because 𝑎𝑏𝑐 =

𝑎𝑐𝑏 = 0 but 𝑐𝑎𝑏 = 𝑐 ̸= 0. Similarly, 𝑏𝑎𝑐 = 𝑏𝑐𝑎 = 0, but
𝑐𝑏𝑎 = 𝑐 ̸= 0. Hence, this ring is right symmetric only. By
Theorem 18, it is clear that 𝑉 is not agreed to adhere to any
involution.

The same is the case for 𝑉op which is left symmetric but
not right symmetric and so is not symmetric. Hence, 𝑉op is
also free from any involution.

Under these situations there is no question of ∗-rever-
sibility on 𝑉 and 𝑉op.

Note that, up to isomorphism, the only noncommutative
rings of order four are 𝑉 and 𝑉

op. Hence, 𝑉 and 𝑉
op are

the smallest (up to isomorphism) noncommutative right and
left symmetric rings (as in Example 20), respectively. These
rings are the smallest nonreduced (because 𝑐 ̸= 0 is nilpotent),
nonsymmetric, nonreversible, nonreflexive (𝑎𝑅𝑐 = 0, but
𝑐𝑅𝑎 ̸= 0), nonabelian (𝑎2 = 𝑎, 𝑎𝑐 = 0, 𝑐𝑎 = 𝑐), nonduo ({0, 𝑎}
is a right ideal of 𝑉 which is not an ideal) and noninvolutary,
so they are not ∗-reversible as well.

Example 21. The ring of strictly upper triangular matrices
over Z

2
, namely, SUTM

3
[Z
2
] has only eight elements. It

is noncommutative and is clearly symmetric, and, for the
same reason, it is reflexive. But it is not reversible, because
𝑒
23
𝑒
12
= 0 but 𝑒

12
𝑒
23
= 𝑒
13

̸= 0. This ring is minimal with such
properties. It adheres to an involution defined on its elements
by

∗ :
[

[

0 𝑎 𝑏

0 0 𝑐

0 0 0

]

]

→
[

[

0 𝑐 𝑏

0 0 𝑎

0 0 0

]

]

(31)

but the ring is not ∗-reversible. In fact it is not ∗-reversible
for any involution on it, because it is not reversible (see
Proposition 5(2)).

The claim that it is minimal noncommutative symmetric
and reflexive is clear, because all rings of order less than
eight are commutative other than the two rings of order four,
namely 𝑉 and 𝑉

op, which we already have proved that are
neither symmetric nor reversible. Hence, we conclude the
following.

Theorem 22. A minimal noncommutative reflexive and sym-
metric ring is of order eight and is isomorphic to the
ring of strictly upper triangular matrices over Z

2
, namely,

SUTM
3
[Z
2
].This ring is neither ∗-reversible nor reversible.

The same holds for the ring of strictly lower triangular
matrices over Z

2
, namely, SLTM

3
[Z
2
].

The above rings are without one; for a ring with one we
have a different minimal situation.

Example 23. [21, Example 2.5 andTheorem 2.6] states that if a
ring𝑅with identity is aminimal noncommutative symmetric

ring, then 𝑅 is of order 16 and is isomorphic to the ring
𝑈𝑀
2
[𝐺𝐹(4)]; especially, 𝑅 is a duo ring, where

𝑈𝑀
2 [
𝐺𝐹 (4)] := {[

𝑎 𝑏

0 𝑎
2] : 𝑎, 𝑏 ∈ 𝐺𝐹 (4)} . (32)

Moreover, in [23,Theorem 5] it states that if 𝑅 (with identity)
is a minimal noncommutative reflexive ring, then 𝑅 is a ring
of order 16 such that 𝑅 is isomorphic to𝑈𝑀

2
[𝐺𝐹(4)] when 𝑅

is abelian and to𝑀
2
[Z
2
] when 𝑅 is nonabelian.

We will prove that𝑈𝑀
2
[𝐺𝐹(4)] is a minimal ∗-reversible

ring. For this we only prove that 𝑈𝑀
2
[𝐺𝐹(4)] is ∗-reversible

under some involution ∗. The rest follows from [21, Example
2.5 andTheorem 2.6], [23, Theorem 5] and Proposition 6.

Let us define an involution on the elements of
𝑈𝑀
2
[𝐺𝐹(4)] by

[

𝑎 𝑏

0 𝑎
2]

∗

= [

𝑎
2
𝑏

0 𝑎

] . (33)

Note that [ 𝑎2 𝑏
0 𝑎

] ∈ 𝑈𝑀
2
[𝐺𝐹(4)] because 𝑎4 = 𝑎, for all 𝑎 ∈

𝐺𝐹(4).
This is an involution on 𝑈𝑀

2
[𝐺𝐹(4)]. Indeed,

[

𝑎 𝑏

0 𝑎
2]

∗

+ [

𝑐 𝑑

0 𝑐
2]

∗

= [

𝑎 + 𝑐 𝑏 + 𝑑

0 (𝑎 + 𝑐)
2]

∗

,

([

𝑎 𝑏

0 𝑎
2] [

𝑐 𝑑

0 𝑐
2])

∗

= [

𝑎𝑐 𝑎𝑑 + 𝑏𝑐
2

0 (𝑎𝑐)
2 ]

∗

= [

(𝑎𝑐)
2
𝑎𝑑 + 𝑏𝑐

2

0 𝑎𝑐

]

= [

𝑐 𝑏

0 𝑐
2]

∗

[

𝑎 𝑑

0 𝑎
2]

∗

.

(34)

We claim that this involution is ∗-reversible.
Note that𝑈𝑀

2
[𝐺𝐹(4)] is local and its only nontrivial ideal

is its Jacobson radical

𝐽 (𝑅) = {[

0 𝑏

0 0

] : 𝑏 ∈ 𝐺𝐹 (4)} ≅ 𝐺𝐹 (4) , (35)

so all other elements outside this maximal ideal are units.
Thus, for any pair of non-zero elements 𝛼, 𝛽 ∈ 𝑈𝑀

2
[𝐺𝐹(4)],

𝛼𝛽 = 0 if and only if 𝛼 and 𝛽 both belong to 𝐽(𝑅); otherwise
𝛼𝛽 ̸= 0. Hence, 𝐽(𝑅) is a zero ring and so 𝛼𝛽 = 0 implies that
𝛽𝛼
∗
= 𝛽𝛼 = 0. Hence, the claim is confirmed. This ring is

obviously reversible as well. Hence, the following is proved.

Theorem 24. A minimal noncommutative ∗-reversible ring is
of order sixteen and is isomorphic to the ring 𝑈𝑀

2
[𝐺𝐹(4)].

Example 25. A ring is reversible but neither symmetric nor
∗-reversible.

Consider the group ring Z
2
(𝑄
8
) := {𝑥

𝑡
: 𝑡 ∈ 𝑄

8
} where

𝑄
8
= {±1, ±𝑖, ±𝑗, ±𝑘} is the group of quaternions. It is

discussed in detail in [8, Example 7] that this group ring is
reversible but not symmetric. A natural involution induced
on Z
2
(𝑄
8
) is the involution on 𝑄

8
defined by ∗ : 𝑔 → 𝑔

−1,
for all 𝑔 ∈ 𝑄

8
. In Example 4(4) it is verified thatZ

2
(𝑄
8
) is not



8 The Scientific World Journal

∗-reversible. In fact, Z
2
(𝑄
8
) is not symmetric, so it cannot

be ∗-reversible for any involution ∗ (by Proposition 6). The
order of the ring Z

2
(𝑄
8
) is 256.

A Comment on an Open Problem by Marks. Marks in
[8] posed a problem that whether there is any ring with the
identity which has smaller size than Z

2
(𝑄
8
) and is reversible

but not symmetric. We add here our comment that such
a ring is not reversible with any involution as well (by
Proposition 6).
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