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We show the existence of the twisted stacked central configurations for the 9-body problem. More precisely, the position vectors
𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, and 𝑥

5
are at the vertices of a square pyramid Σ; the position vectors 𝑥

6
, 𝑥
7
, 𝑥
8
, and 𝑥

9
are at the vertices of a square

Π.

1. Introduction and Main Results

The classical 𝑛-body problem [1, 2] concerns the motion of 𝑛
mass points moving in space according to Newton’s law:

𝑚
𝑖
𝑥̈
𝑖
= −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑚
𝑖
𝑚
𝑗
(𝑥
𝑖
− 𝑥
𝑗
)

𝑟
3

𝑖𝑗

, 𝑖 = 1, 2, . . . , 𝑛. (1)

Here, 𝑥
𝑖
∈ R𝑑 is the position of mass𝑚

𝑖
> 0, the gravitational

constant is taken equal to 1, and 𝑟
𝑖𝑗
= |𝑥
𝑖
−𝑥
𝑗
| is the Euclidean

distance between 𝑥
𝑖
and 𝑥

𝑗
.

The space of configuration is defined by

𝑋 = {(𝑥
1
, . . . , 𝑥

𝑛
) ∈ (R

𝑑
)

𝑛

: 𝑥
𝑖
̸= 𝑥
𝑗
∀𝑖 ̸= 𝑗} , (2)

while the center of mass is given by

𝑐 =

𝑚
1
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑚

𝑛
𝑥
𝑛

𝑀

, (3)

where𝑀 = 𝑚
1
+ ⋅ ⋅ ⋅ + 𝑚

𝑛
is the total mass.

A configuration 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑋 is called a central

configuration [2, 3] if there exists a constant 𝜆, called the
multiplier, such that

−𝜆 (𝑥
𝑖
− 𝑐) =

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑚
𝑗
(𝑥
𝑗
− 𝑥
𝑖
)

𝑟
3

𝑖𝑗

, 𝑖 = 1, 2, . . . , 𝑛. (4)

It is easy to see that a central configuration remains a
central configuration after a rotation in R𝑑 and a scalar
multiplication. More precisely, let 𝐴 ∈ SO(𝑑) and 𝑎 > 0,
if 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) is a central configuration, so are 𝐴𝑥 =

(𝐴𝑥
1
, . . . , 𝐴𝑥

𝑛
) and 𝑎𝑥 = (𝑎𝑥

1
, . . . , 𝑎𝑥

𝑛
).

Two central configurations are said to be equivalent if one
can be transformed to the other by a scalarmultiplication and
a rotation. In this paper, when we say a central configuration,
we mean a class of central configurations as defined by the
above equivalent relation.

Central configurations of the 𝑛-body problem are impor-
tant because they allow the computation of homographic
solutions; if the 𝑛 bodies are heading for a simultaneous
collision, then the bodies tend to a central configuration (see
[3, 4]); there is a relation between central configurations and
the bifurcations of the hypersurfaces of constant energy and
angular momentum (see [5]).

In this paper, we are interested in spatial central con-
figurations, that is, 𝑑 = 3. In 2005, Hampton [6] provides
a new family of planar central configurations for the 5-
body problem with an interesting property: the central
configuration has a subset of three bodies forming a central
configuration of the 3-body problem. The authors [7] find
new classes of central configurations of the 5-body problem
which are the ones studied by Hampton [6] having three
bodies in the vertices of an equilateral triangle, but the other
two, instead of being located symmetrically with respect to a
perpendicular bisector, are on the perpendicular bisector.The
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stacked central configurations studied by Hampton [6] were
completed by Llibre et al. [8] (see also [9]).

Zhang and Zhou [10] showed the existence of double
pyramidal central configurations of 𝑁 + 2-body problem.
The authors [11–13] provided new examples of stacked central
configurations for the spatial 7-body problem where four
bodies are at the vertices of a regular tetrahedron and the
other three bodies are located at the vertices of an equilateral
triangle.

In this paper, we find new classes of stacked spatial
central configurations for the 9-body problemwhich have five
bodies at the vertices of a square pyramid, and the other four
bodies are located at the vertices of a square. More precisely,
the spatial central configurations considered here satisfy the
following (see Figure 1): the position vectors 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
,

and 𝑥
5
are at the vertices of a square pyramid Σ; the position

vectors 𝑥
6
, 𝑥
7
, 𝑥
8
, and 𝑥

9
are at the vertices of a square Π.

Without loss of generality, we can assume that

𝑥
1
= (1, 0, 0) , 𝑥

2
= (0, 1, 0) , 𝑥

3
= (−1, 0, 0) ,

𝑥
4
= (0, −1, 0) , 𝑥

5
= (0, 0, ℎ) , 𝑥

6
= (𝑥, 0, 𝑦) ,

𝑥
7
= (0, 𝑥, 𝑦) , 𝑥

8
= (−𝑥, 0, 𝑦) , 𝑥

9
= (0, −𝑥, 𝑦) ,

(5)

where 𝑥 > 0,𝑦 ∈ R, and𝑦 ̸= 0; the positive constant ℎ satisfies
the equation

2

𝑟
3

15

=

1

𝑟
3

12

+

1

𝑟
3

13

, (6)

(see [10] and the references therein); that is, ℎ = 1.26276522.
The main results of this paper are the following.

Theorem 1. Consider the spatial configurations according to
Figure 1, in order that the nine mass points are in a central
configuration, the following statements are necessary:

(1) the masses𝑚
1
, 𝑚
2
, 𝑚
3
, and𝑚

4
must be equal;

(2) the masses𝑚
6
, 𝑚
7
, 𝑚
8
, and𝑚

9
must be equal.

Theorem 2. There exist points (𝑥
0
, 𝑦
0
) ∈ 𝑇

−1
(0) ∩ 𝐷 (see

Figure 2) such that the nine bodies take the coordinates

𝑥
1
= (1, 0, 0) , 𝑥

2
= (0, 1, 0) ,

𝑥
3
= (−1, 0, 0) , 𝑥

4
= (0, −1, 0) ,

𝑥
5
= (0, 0, ℎ) , 𝑥

6
= (𝑥
0
, 0, 𝑦
0
) ,

𝑥
7
= (0, 𝑥

0
, 𝑦
0
) , 𝑥

8
= (−𝑥

0
, 0, 𝑦
0
) ,

𝑥
9
= (0, −𝑥

0
, 𝑦
0
) .

(7)

Then, there are positive solutions of 𝑚
1
, 𝑚
5
, 𝑚
6
such that

these bodies form a spatial central configuration according to
Figure 1.

The proofs of the theorems are given in the next sections.

x1

x4

x6

x9

Π

x5

x7

x8

x2

x3

Σ

Figure 1: The configuration for the 9-body problem.
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Figure 2: The region𝐷.

2. Proof of Theorem 1

For the spatial central configurations, instead of workingwith
(4), we consider the Dziobek-Laura-Andoyer equations (see
[9, 11–13] and the references therein):

𝑓
𝑖𝑗𝑘
=

𝑛

∑

𝑙=1,𝑙 ̸= 𝑖,𝑗,𝑘

𝑚
𝑙
(𝑑
𝑖𝑙
− 𝑑
𝑗𝑙
) Δ
𝑖𝑗𝑘𝑙

= 0 (8)

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑘 = 1, . . . , 𝑛, 𝑘 ̸= 𝑖, 𝑗. Here, 𝑑
𝑖𝑗
= 1/𝑟

3

𝑖𝑗

and Δ
𝑖𝑗𝑘𝑙

= (𝑥
𝑖
− 𝑥
𝑗
) ∧ (𝑥

𝑖
− 𝑥
𝑘
) ⋅ (𝑥
𝑖
− 𝑥
𝑙
). Thus, Δ

𝑖𝑗𝑘𝑙
gives

six times the signed volume of the tetrahedron formed by the
bodies with positions 𝑥

𝑖
, 𝑥
𝑗
, 𝑥
𝑘
, and 𝑥

𝑙
; (8) is a system of

𝑛(𝑛 − 1) (𝑛 − 2)/2 equations.
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For the 9-body problem, (8) is a system of 252 equations.
According to Figure 1, our class of configurations with nine
bodies must satisfy

𝑟
12
= 𝑟
23
= 𝑟
34
= 𝑟
14
= √2, 𝑟

13
= 𝑟
24
= 2,

𝑟
67
= 𝑟
78
= 𝑟
89
= 𝑟
69
= √2𝑥, 𝑟

68
= 𝑟
79
= 2𝑥,

𝑟
16
= 𝑟
27
= 𝑟
38
= 𝑟
49
= √(𝑥 − 1)

2
+ 𝑦
2
,

𝑟
17
= 𝑟
19
= 𝑟
26
= 𝑟
28
= 𝑟
37
= 𝑟
39
= 𝑟
46

= 𝑟
48
= √𝑥
2
+ 1 + 𝑦

2
,

𝑟
18
= 𝑟
29
= 𝑟
36
= 𝑟
47
= √(𝑥 + 1)

2
+ 𝑦
2
,

𝑟
15
= 𝑟
25
= 𝑟
35
= 𝑟
45
= √1 + ℎ

2
,

𝑟
56
= 𝑟
57
= 𝑟
58
= 𝑟
59
= √𝑥
2
+ (𝑦 − ℎ)

2

.

(9)

Due to assumption (5) and the definition of Δ
𝑖𝑗𝑘𝑙

, we have
several symmetries in the signed volumes.

By using the symmetries and the properties of Δ
𝑖𝑗𝑘𝑙

, we
obtain the following results.

Lemma 3. In order to have a spatial central configuration
according to Figure 1, a necessary condition is that the masses
𝑚
1
,𝑚
2
,𝑚
3
, and𝑚

4
must be equal.

Proof. It is sufficient to consider the equations 𝑓
687

= 0 and
𝑓
796

= 0:

𝑓
687

= (𝑚
1
− 𝑚
3
) (𝑑
16
− 𝑑
18
) Δ
6871

= 0,

𝑓
796

= (𝑚
2
− 𝑚
4
) (𝑑
16
− 𝑑
18
) Δ
7962

= 0.

(10)

For our class of central configurations, we have 𝑑
16
− 𝑑
18

̸= 0,
Δ
6871

̸= 0, and Δ
7962

̸= 0. So the above equations hold if and
only if𝑚

1
= 𝑚
3
,𝑚
2
= 𝑚
4
. Consider the expression of 𝑓

678
=

0:

𝑓
678

= (𝑚
1
− 𝑚
2
) (𝑑
16
− 𝑑
17
) Δ
6781

+ (𝑚
3
− 𝑚
4
) (𝑑
18
− 𝑑
17
) Δ
6783

= 0.

(11)

Substituting 𝑚
1
= 𝑚
3
, 𝑚
2
= 𝑚
4
into the above equation, we

have

𝑓
678

= (𝑚
1
− 𝑚
2
) (𝑑
16
+ 𝑑
18
− 2𝑑
17
) Δ
6781

= 0. (12)

For our class of central configurations, we have 𝑑
16
+ 𝑑
18
−

2𝑑
17

̸= 0, since the function 𝑔(𝑥) = 𝑥−3/2 is convex for all 𝑥 >
0, and Δ

6781
̸= 0. So the above equation holds if and only if

𝑚
1
= 𝑚
2
. So statement 1 of Theorem 1 is proved.

Lemma 4. If the configuration, according to Figure 1, is a
central configuration, a necessary condition is that the masses
𝑚
6
,𝑚
7
,𝑚
8
, and𝑚

9
must be equal.

Proof. It is sufficient to consider the equations 𝑓
132

= 0 and
𝑓
241

= 0:

𝑓
132

= (𝑚
6
− 𝑚
8
) (𝑑
16
− 𝑑
18
) Δ
1326

= 0,

𝑓
241

= (𝑚
7
− 𝑚
9
) (𝑑
16
− 𝑑
18
) Δ
2417

= 0.

(13)

For our class of central configurations, we have 𝑑
16
− 𝑑
18

̸= 0,
Δ
1326

̸= 0, and Δ
2417

̸= 0. So the above equations hold if and
only if𝑚

6
= 𝑚
8
,𝑚
7
= 𝑚
9
. Consider the expression of 𝑓

123
=

0:

𝑓
123

= (𝑚
6
− 𝑚
7
) (𝑑
16
− 𝑑
17
) Δ
1236

+ (𝑚
8
− 𝑚
9
) (𝑑
18
− 𝑑
17
) Δ
1238

= 0.

(14)

Substituting 𝑚
6
= 𝑚
8
, 𝑚
7
= 𝑚
9
into the above equation, we

have

𝑓
123

= (𝑚
6
− 𝑚
7
) (𝑑
16
+ 𝑑
18
− 2𝑑
17
) Δ
1236

= 0. (15)

For our class of central configurations, we have 𝑑
16
+ 𝑑
18
−

2𝑑
17

̸= 0, and Δ
1236

̸= 0. So the above equation holds if and
only if𝑚

6
= 𝑚
7
. Hence, statement 2 of Theorem 1 is proved.

The proof Theorem 1 is completed.

We restrict the set of admissible masses to 𝑚
1
= 𝑚
2
=

𝑚
3
= 𝑚
4
= 𝛼 and 𝑚

6
= 𝑚
7
= 𝑚
8
= 𝑚
9
= 𝛽. Substituting

𝑚
1
= 𝑚
2
= 𝑚
3
= 𝑚
4
= 𝛼 and 𝑚

6
= 𝑚
7
= 𝑚
8
= 𝑚
9
= 𝛽 into

(8), they reduce to the following 4 equations:

𝑓
152

= 𝛽 ((𝑑
16
+ 𝑑
17
− 2𝑑
56
) Δ
1526

+ (𝑑
17
+ 𝑑
18
− 2𝑑
56
) Δ
1528

) = 0,

(16)

𝑓
162

= 𝛼 (𝑑
12
+ 𝑑
13
− 𝑑
17
− 𝑑
18
) Δ
1623

+ 𝑚
5
(𝑑
15
− 𝑑
56
) Δ
1625

+ 𝛽 (𝑑
17
+ 𝑑
18
− 𝑑
67
− 𝑑
68
) Δ
1628

= 0,

(17)

𝑓
175

= 𝛼 ((𝑑
12
− 𝑑
16
) Δ
1752

+ (𝑑
13
− 𝑑
17
) Δ
1753

+ (𝑑
12
− 𝑑
18
) Δ
1754

)

+ 𝛽 ((𝑑
16
− 𝑑
67
) Δ
1756

+ (𝑑
18
− 𝑑
67
) Δ
1758

+ (𝑑
17
− 𝑑
68
) Δ
1759

) = 0,

(18)

𝑓
562

= 𝛼 ((𝑑
15
− 𝑑
16
) Δ
5621

+ (𝑑
15
− 𝑑
18
) Δ
5623

+ (𝑑
15
− 𝑑
17
) Δ
5624

)

+ 𝛽 ((𝑑
56
− 𝑑
67
) Δ
5627

+ (𝑑
56
− 𝑑
68
) Δ
5628

+ (𝑑
56
− 𝑑
67
) Δ
5629

) = 0.

(19)

If we write 𝑓
152

= 𝛽𝑇 = 𝛽((𝑑
16
+ 𝑑
17
− 2𝑑
56
)Δ
1526

+

(𝑑
17
+ 𝑑
18
− 2𝑑
56
)Δ
1528

) = 0, it follows that 𝑇 = 0 in order
to have central configurations. So in the following, we restrict
our central configurations to the set 𝑇−1(0).

Lemma 5. According to one’s assumptions and the set 𝑇−1(0),
(8) is satisfied if (17) and (18) are satisfied.
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Figure 3: The curve 𝑎
21
= 0.

Proof. Under the assumptions (5), we have

𝑇 = (𝑑
16
+ 2𝑑
17
+ 𝑑
18
− 4𝑑
56
) (𝑦 − ℎ) + ℎ𝑥 (𝑑

16
− 𝑑
18
) = 0;

(20)

that is,

4 (𝑦 − ℎ) 𝑑
56
= (𝑦 − ℎ) (𝑑

16
+ 2𝑑
17
+ 𝑑
18
) + ℎ𝑥 (𝑑

16
− 𝑑
18
) .

(21)

Substituting (21) into (19), we obtain the equation 𝑓
175

=

0.
Hence in the set 𝑇−1(0), 𝑓

175
= 0 implies 𝑓

562
= 0. This

completes the proof.

From Lemma 5, in order to study central configurations
according to Figure 1 in the set 𝑇−1(0), it is sufficient to study
the following 2 equations:

𝑓
162

= 0, 𝑓
175

= 0. (22)

Denote by 𝐴 = (𝑎
𝑖𝑗
) the matrix of the coefficients of the

homogeneous linear system in the variables 𝛼,𝑚
4
, 𝛽 defined

by (22). Thus,

𝑎
11
= (𝑑
12
+ 𝑑
13
− 𝑑
17
− 𝑑
18
) Δ
1623

= − 2𝑦(

1

2√2

+

1

8

−

1

(𝑥
2
+ 1 + 𝑦

2
)
3/2

−

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2
) ,

0

1

2

3

x

y

+

+

−

0 0.5 1 1.5 2 2.5 3

−1

−2

−3

Figure 4: The curve 𝑎
23
= 0.

𝑎
12
= (𝑑
15
− 𝑑
56
) Δ
1625

= (−𝑦 − ℎ𝑥 + ℎ)

× (

1

(1 + ℎ
2
)
3/2

−

1

(𝑥
2
+ (𝑦 − ℎ)

2

)

3/2
) ,

𝑎
13
= (𝑑
17
+ 𝑑
18
− 𝑑
67
− 𝑑
68
) Δ
1628

= − 2𝑥𝑦(

1

(𝑥
2
+ 1 + 𝑦

2
)
3/2

+

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2

−

1

8𝑥
3
−

1

2√2𝑥
3
) ,

𝑎
21
= (𝑑
12
− 𝑑
16
) Δ
1752

+ (𝑑
13
− 𝑑
17
) Δ
1753

+ (𝑑
12
− 𝑑
18
) Δ
1754

= (𝑦 − ℎ)(

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2

−

1

((𝑥 − 1)
2
+ 𝑦
2
)

3/2
)

+ ℎ𝑥(

1

4

+

1

√2

−

1

((𝑥 − 1)
2
+ 𝑦
2
)

3/2

−

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2
−

2

(𝑥
2
+ 1 + 𝑦

2
)
3/2
) ,
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Figure 5: The region 𝐸.

𝑎
22
= 0,

𝑎
23
= (𝑑
16
− 𝑑
67
) Δ
1756

+ (𝑑
18
− 𝑑
67
) Δ
1758

+ (𝑑
17
− 𝑑
68
) Δ
1759

= ℎ𝑥
2
(

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2
−

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2
)

− 𝑥 (𝑦 − ℎ)

× (

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2
+

1

((𝑥 + 1)
2
+ 𝑦
2
)

3/2

+

2

(𝑥
2
+ 1 + 𝑦

2
)
3/2

−

1

4𝑥
3
−

1

√2𝑥
3
) .

(23)

Let 𝑥 = (

𝛼

𝑚
4

𝛽
). Then in order to get the spatial central

configuration as Figure 1, we need to find a positive solution
𝛼,𝑚
4
, 𝛽 of the following system:

𝐴𝑥 = 0, (24)

where 𝑇 = 0.

3. The Existence of Spatial Central
Configurations

In order to prove the existence of positive solutions of (24) in
the set 𝑇−1(0), it is sufficient to prove that the entries in each
row of 𝐴 change the signs. So if the entries of some row of 𝐴
have the same signs, there are no admissible masses such that
the bodies are in a central configuration according to Figure 1.
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Figure 6: The curve 𝑎
11
= 0.
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Figure 7: The curve 𝑎
12
= 0.

Proof of Theorem 2. Since the rank of matrix 𝐴 is two in the
set 𝑇−1(0), there are nontrivial solutions of (24) in the set
𝑇
−1
(0).
Now we prove the existence of spatial central configura-

tions according to Figure 1 for some points in the set 𝐷 (see
Figure 2). In order to prove the existence of positive solutions
of (24) in the set 𝑇−1(0), the entries 𝑎

21
, 𝑎
23
of the second line

in thematrix𝐴 should have opposite signs.Thus, we consider
the following set 𝐷, where 𝐷 is surrounded by curves 𝑥 = 0,
𝑦 = 0, 𝑎

21
= 0, and 𝑎

23
= 0.

In the set 𝐷, the entries of matrix 𝐴 have the following
signs: 𝑎

21
> 0, 𝑎

23
< 0 (see Figures 3 and 4); 𝑎

11
> 0, 𝑎

12
< 0,

𝑎
13
> 0 because the set 𝐷 is included in the set 𝐸, where 𝐸 is
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= 0.

0

1

2

3

x

y

P2

P0

P1

0 0.5 1 1.5 2 2.5 3

−1

−2

−3

Figure 9: The existence of central configurations for the 9-body
problem.

surrounded by curves 𝑥 = 0, 𝑦 = 0, and 𝑦 = ℎ(1 − 𝑥) (see
Figures 5, 6, 7, and 8). In short, the signs of the entries of the
matrix 𝐴 restricted to the set𝐷 are the following:

𝐴 = (

+ − +

+ 0 −
) . (25)

In the rest of the proof, we show that the set 𝑇−1(0) has
intersection with the set𝐷. We consider the subset of𝐷:

𝐿 = {(𝑥, 𝑦) : 𝑥 = 𝑥
1
, 0 < 𝑦 < 𝑦

1
} , (26)

where 𝑥
1
∈ (0, 1). Obviously 𝐿 is a segment with endpoints

𝑃
1
= (𝑥
1
, 0) , 𝑃

2
= (𝑥
1
, 𝑦
1
) , (27)

(see Figure 9), and the point (𝑥
1
, 𝑦
1
) satisfies the equation

𝑎
21
= 0. Evaluating the function 𝑇 at these points, we have

𝑇 (𝑃
1
) < 0, 𝑇 (𝑃

2
) > 0. (28)

Thus, there exists a point 𝑃
0
= (𝑥
0
, 𝑦
0
) ∈ 𝐿, such that 𝑇(𝑃

0
) =

0. So at the point 𝑃
0
we have nontrivial positive solutions of

(24), since the signs of the entries of thematrix𝐴 at this point
are the following:

𝐴 (𝑃
0
) = (

+ − +

+ 0 −
) . (29)

Thus, the proof of Theorem 2 is completed.
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