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We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without
assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces
into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

1. Introduction and Preliminaries

There are a number of generalizations of metric spaces.
One such generalization is obtained by replacing the real
valued metric function with a vector valued metric function.
In the mid-20th century (see [1]), the notions of K-metric
and K-normed spaces were introduced, in such spaces an
ordered Banach space instead of the real numbers was used
as a codomain for metric function. Indeed, this idea of
replacement of real numbers by an ordered “set” can be seen
in [2, 3] (see also references therein). Huang and Zhang [4]
reintroduced such spaces under the name of cone metric
spaces, defining convergent and Cauchy sequence in terms
of interior points of underlying cone. They proved the basic
version of the fixed-point theorem with the assumption that
the cone is normal. Subsequently several authors (see, e.g.,
[5–14]) generalized the results of Huang and Zhang. In [13],
Rezapour and Hamlbarani removed the normality of cone
and proved the results of Huang and Zhang in nonnormal
cone metric spaces.

In [15], Branciari introduced a class of generalized metric
spaces with replacing triangular inequality by similar ones
which involve four or more points instead of three and
improved Banach contraction principle. Azam and Arshad
[16] proved fixed-point result for Kannan-type contraction
in rectangular metric spaces. After the work of Huang and
Zhang [4], Azam et al. [17] introduced the notion of cone

rectangular metric spaces and proved fixed-point result for
Banach-type contraction in cone rectangular space. Samet
and Vetro [18] obtained the fixed-point results in c-chainable
cone rectangular metric spaces.

Ordered normed spaces and cones have applications
in applied mathematics, for instance, in using Newton’s
approximation method [19] and in optimization theory [20].
The existence of fixed point in partially ordered sets was
investigated by Ran and Reurings [21] and then by Nieto and
Rodŕıguez-López [22]. Fixed-point results in ordered cone
metric spaces were obtained by several authors (see, e.g.,
[11, 23–25]). Very recently, Malhotra et al. [26] proved the
fixed-point results in ordered cone rectangular metric spaces
for Reich-type contractions.

The notion of 𝑔-weak contraction is introduced by Vetro
(see [14]) in cone metric spaces. In this paper, we prove some
common fixed point theorems for 𝑔-weak contractions in
ordered cone rectangular metric spaces. Our results gener-
alize and extend the results of Huang and Zhang [4], Azam
et al. [17], Azam and Arshad [16], Malhotra et al. [26], and
the result of Vetro [14] on ordered cone rectangular metric
spaces.

We need the following definitions and results, consistent
with [4, 20].

Definition 1 (see [4]). Let 𝐸 be a real Banach space and 𝑃 a
subset of 𝐸. The set 𝑃 is called a cone if
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(i) 𝑃 is closed, nonempty, and 𝑃 ̸= {𝜃}; here 𝜃 is the zero
vector of 𝐸;

(ii) 𝑎, 𝑏 ∈ R, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 ⇒ 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃;
(iii) 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃.

Given a cone 𝑃 ⊂ 𝐸, we define a partial ordering “⪯” with
respect to 𝑃 by 𝑥 ⪯ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. We write 𝑥 ≺ 𝑦
to indicate that 𝑥 ⪯ 𝑦 but 𝑥 ̸= 𝑦, while 𝑥 ≪ 𝑦 if and only if
𝑦 − 𝑥 ∈ 𝑃

0, where 𝑃0 denotes the interior of 𝑃.
Let 𝑃 be a cone in a real Banach space 𝐸; then 𝑃 is called

normal, if there exists a constant𝐾 > 0 such that for all 𝑥, 𝑦 ∈
𝐸,

𝜃 ⪯ 𝑥 ⪯ 𝑦 implies ‖𝑥‖ ≤ 𝐾 𝑦
 . (1)

The least positive number𝐾 satisfying the above inequality is
called the normal constant of 𝑃.

Definition 2 (see [4]). Let 𝑋 be a nonempty set and 𝐸 a real
Banach space. Suppose that the mapping 𝑑 : 𝑋 × 𝑋 → 𝐸

satisfies

(i) 𝜃 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦;

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(iii) 𝑑(𝑥, 𝑦) ⪯ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a
cone metric space. In the following, we always suppose that
𝐸 is a real Banach space, and 𝑃 is a solid cone in 𝐸; that is,
𝑃
0
̸= 𝜙 and “⪯” is partial ordering with respect to 𝑃.

The concept of cone metric space is more general than
that of a metric space because each metric space is a cone
metric space with 𝐸 = R and 𝑃 = [0, +∞).

For examples and basic properties of normal and nonnor-
mal cones and cone metric spaces, we refer to [4, 13].

The following remark will be useful in sequel.

Remark 3 (see [27]). Let 𝑃 be a cone in a real Banach space
𝐸, and 𝑎, 𝑏, 𝑐 ∈ 𝑃 we then have the following

(a) If 𝑎 ⪯ 𝑏 and 𝑏 ≪ 𝑐 then 𝑎 ≪ 𝑐.
(b) If 𝑎 ≪ 𝑏 and 𝑏 ≪ 𝑐 then 𝑎 ≪ 𝑐.
(c) If 𝜃 ⪯ 𝑢 ≪ 𝑐 for each 𝑐 ∈ 𝑃0, then 𝑢 = 𝜃.
(d) If 𝑐 ∈ 𝑃0 and 𝑎

𝑛
→ 𝜃, then there exist 𝑛

0
∈ N such

that, for all 𝑛 > 𝑛
0
, we have 𝑎

𝑛
≪ 𝑐.

(e) If 𝜃 ⪯ 𝑎
𝑛
⪯ 𝑏
𝑛
for each 𝑛 and 𝑎

𝑛
→ 𝑎, 𝑏

𝑛
→ 𝑏, then

𝑎 ⪯ 𝑏.
(f) If 𝑎 ⪯ 𝜆𝑎, where 0 ≤ 𝜆 < 1, then 𝑎 = 𝜃.

Definition 4 (see [17]). Let𝑋 be a nonempty set. Suppose that
the mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 satisfies

(i) 𝜃 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦;

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

(iii) 𝑑(𝑥, 𝑦) ⪯ 𝑑(𝑥, 𝑤) + 𝑑(𝑤, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦 ∈

𝑋 and for all distinct points 𝑤, 𝑧 ∈ 𝑋 − {𝑥, 𝑦}

(rectangular property).

Then, 𝑑 is called a cone rectangular metric on𝑋, and (𝑋, 𝑑) is
called a cone rectangular metric space. Let {𝑥

𝑛
} be a sequence

in (𝑋, 𝑑) and 𝑥 ∈ 𝑋. If for every 𝑐 ∈ 𝐸, with 𝜃 ≪ 𝑐 there is
𝑛
0
∈ N such that for all 𝑛 > 𝑛

0
, 𝑑(𝑥
𝑛
, 𝑥) ≪ 𝑐, then {𝑥

𝑛
} is said

to be convergent, {𝑥
𝑛
} converges to 𝑥, and 𝑥 is the limit of

{𝑥
𝑛
}. We denote this by lim

𝑛
𝑥
𝑛
= 𝑥 or 𝑥

𝑛
→ 𝑥, as 𝑛 → ∞.

If for every 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐 there is 𝑛
0
∈ N such that for

all 𝑛 > 𝑛
0
and 𝑚 ∈ N we have 𝑑(𝑥

𝑛
, 𝑥
𝑛+𝑚
) ≪ 𝑐, then {𝑥

𝑛
} is

called a Cauchy sequence in (𝑋, 𝑑). If every Cauchy sequence
is convergent in (𝑋, 𝑑), then (𝑋, 𝑑) is called a complete cone
rectangular metric space. If the underlying cone is normal,
then (𝑋, 𝑑) is called normal cone rectangular metric space.

Example 5. Let𝑋 = N, 𝐸 = R2, and 𝑃 = {(𝑥, 𝑦) : 𝑥, 𝑦 ≥ 0}.
Define 𝑑 : 𝑋 × 𝑋 → 𝐸 as follows:

𝑑 (𝑥, 𝑦) =

{{{{

{{{{

{

(0, 0) if 𝑥 = 𝑦,
(3, 9) if 𝑥 and 𝑦 are in {1, 2} , 𝑥 ̸= 𝑦,

(1, 3) if 𝑥 and 𝑦 cannot both at
a time in {1, 2} , 𝑥 ̸= 𝑦.

(2)

Now (𝑋, 𝑑) is a cone rectangularmetric space but (𝑋, 𝑑) is not
a cone metric space because it lacks the triangular property:

(3, 9) = 𝑑 (1, 2) > 𝑑 (1, 3) + 𝑑 (3, 2) = (1, 3) + (1, 3) = (2, 6) ,

(3)

as (3, 9) − (2, 6) = (1, 3) ∈ 𝑃.

Note that in the above example (𝑋, 𝑑) is a normal cone
rectangularmetric space.The following is an example of non-
normal cone rectangular metric space.

Example 6. Let 𝑋 = N, 𝐸 = 𝐶
1

R[0, 1] with ‖𝑥‖ = ‖𝑥‖
∞
+

‖𝑥

‖
∞
, and 𝑃 = {𝑥 ∈ 𝐸 : 𝑥(𝑡) ≥ 0 for 𝑡 ∈ [0, 1]}. Then, this

cone is not normal (see [13]).
Define 𝑑 : 𝑋 × 𝑋 → 𝐸 as follows:

𝑑 (𝑥, 𝑦) =

{{{{

{{{{

{

0 if 𝑥 = 𝑦,
3𝑒
𝑡 if 𝑥 and 𝑦 are in {1, 2} , 𝑥 ̸= 𝑦,

𝑒
𝑡 if 𝑥 and 𝑦 cannot both at

a time in {1, 2} , 𝑥 ̸= 𝑦.

(4)

Then (𝑋, 𝑑) is nonnormal cone rectangular metric space but
(𝑋, 𝑑) is not a conemetric space because it lacks the triangular
property.

Definition 7 (see [5]). Let 𝑓 and 𝑔 be self-mappings of a
nonempty set 𝑋 and 𝐶(𝑓, 𝑔) = {𝑥 ∈ 𝑋 : 𝑓𝑥 = 𝑔𝑥}. The
pair (𝑓, 𝑔) is called weakly compatible if 𝑓𝑔𝑥 = 𝑔𝑓𝑥 for all
𝑥 ∈ 𝐶(𝑓, 𝑔). If 𝑤 = 𝑓𝑥 = 𝑔𝑥 for some 𝑥 in 𝑋, then 𝑥 is
called a coincidence point of 𝑓 and 𝑔, and 𝑤 is called a point
of coincidence of 𝑓 and 𝑔.

Definition 8. If a nonempty set 𝑋 is equipped with a partial
order “⊑” and mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 such that (𝑋, 𝑑)
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is a cone rectangular metric space, then (𝑋, ⊑, 𝑑) is called an
ordered cone rectangular metric space. Let 𝑓, 𝑔 : 𝑋 → 𝑋 be
two mappings. The mapping 𝑓 is called nondecreasing with
respect to “⊑”, if for each 𝑥, 𝑦 ∈ 𝑋, 𝑥 ⊑ 𝑦 implies 𝑓𝑥 ⊑ 𝑓𝑦.
Themapping𝑓 is called 𝑔-nondecreasing if for each 𝑥, 𝑦 ∈ 𝑋,
𝑔𝑥 ⊑ 𝑔𝑦 implies 𝑓𝑥 ⊑ 𝑓𝑦. A subset A of 𝑋 is called well
ordered if for all the elements of A are comparable; that is,
for all 𝑥, 𝑦 ∈ A either 𝑥 ⊑ 𝑦 or 𝑦 ⊑ 𝑥. A is called 𝑔-well
ordered if all the elements ofA are 𝑔-comparable; that is, for
all 𝑥, 𝑦 ∈ A either 𝑔𝑥 ⊑ 𝑔𝑦 or 𝑔𝑦 ⊑ 𝑔𝑥.

In the trivial case, that is, for 𝑔 = 𝐼
𝑋
(the identitymapping

of 𝑋), the 𝑔-well orderedness reduces into well orderedness.
But, for nontrivial cases, that is, when 𝑔 ̸= 𝐼

𝑋
the concepts of

𝑔-well orderedness and well orderedness are independent.

Example 9. Let 𝑋 = {0, 1, 2, 3, 4}, let “⊑” be a partial order
relation on 𝑋 defined by ⊑ = {(0, 0), (1, 1),(2, 2), (3, 3), (4, 4),
(1, 2), (2, 3), (1, 3), (1, 4)}. Let A = {0, 1, 3}, B = {1, 4} and
𝑔 : 𝑋 → 𝑋 be defined by 𝑔0 = 1, 𝑔1 = 2, 𝑔2 = 3, 𝑔3 =
3, 𝑔4 = 0. Then it is clear that A is not well ordered but it
is 𝑔-well ordered, whileB is not 𝑔-well ordered but it is well
ordered.

Let (𝑋, ⊑, 𝑑) be an ordered cone rectangular metric space
𝑓, 𝑔 : 𝑋 → 𝑋 two mappings. The mapping 𝑓 is called
ordered Reich-type contraction if for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⊑
𝑦, 𝜆, 𝜇, 𝛿 ∈ [0, 1) such that 𝜆 + 𝜇 + 𝛿 < 1 and

𝑑 (𝑓𝑥, 𝑓𝑦) ⪯ 𝜆𝑑 (𝑥, 𝑦) + 𝜇𝑑 (𝑥, 𝑓𝑥) + 𝛿𝑑 (𝑦, 𝑓𝑦) . (5)

If (5) is satisfied for all 𝑥, 𝑦 ∈ 𝑋, then 𝑓 is called Reich
contraction.

Themapping𝑓 is called an ordered 𝑔-weak contraction if

𝑑 (𝑓𝑥, 𝑓𝑦) ⪯ 𝜆𝑑 (𝑔𝑥, 𝑔𝑦) + 𝜇𝑑 (𝑔𝑥, 𝑓𝑥) + 𝛿𝑑 (𝑔𝑦, 𝑓𝑦) (6)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑔𝑥 ⊑ 𝑔𝑦, where 𝜆, 𝜇, and 𝛿 are
nonnegative constants such that 𝜆 + 𝜇 + 𝛿 < 1. If inequality
(6) is satisfied for all 𝑥, 𝑦 ∈ 𝑋, then 𝑓 is called a 𝑔-weak
contraction.

Note that for 𝑔 = 𝐼
𝑋
(the identity mapping of 𝑋) the

ordered 𝑔-weak contraction reduces into the ordered Reich
contraction.

Now, we can state our main results.

2. Main Results

Theorem 10. Let (𝑋, ⊑, 𝑑) be an ordered cone rectangular
metric space 𝑓, 𝑔 : 𝑋 → 𝑋 two mappings such that
𝑓(𝑋) ⊂ 𝑔(𝑋) and 𝑔(𝑋) is complete. Suppose that the following
conditions are satisfied:

(i) 𝑓 is an ordered𝑔-weak contraction, that is, satisfies (6);
(ii) 𝑓 is 𝑔-nondecreasing;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝑔𝑥

0
⊑ 𝑓𝑥
0
;

(iv) if {𝑔𝑥
𝑛
}were any nondecreasing sequence in𝑋 converg-

ing to some 𝑔𝑧, then 𝑔𝑥
𝑛
⊑ 𝑔𝑧 for all 𝑛 and 𝑔𝑧 ⊑ 𝑔𝑔𝑧.

Then, 𝑓 and 𝑔 have a coincidence point. Furthermore, if 𝑓 and
𝑔 are weakly compatible then they have a common fixed point.
In addition, the set of common fixed points of 𝑓 and 𝑔 is 𝑔-
well ordered if and only if the common fixed point of 𝑓 and 𝑔
is unique.

Proof. Starting with given 𝑥
0
∈ 𝑋, we define a sequence {𝑦

𝑛
}

as follows: let 𝑓𝑥
0
= 𝑔𝑥
1
= 𝑦
1
(which is possible as 𝑓(𝑋) ⊂

𝑔(𝑋)). As 𝑔𝑥
0
⊑ 𝑓𝑥
0
, we have 𝑔𝑥

0
⊑ 𝑔𝑥
1
, and as 𝑓 is 𝑔-

nondecreasing, we obtain 𝑓𝑥
0
⊑ 𝑓𝑥
1
. Again, 𝑓(𝑋) ⊂ 𝑔(𝑋)

therefore let 𝑓𝑥
1
= 𝑔𝑥

2
= 𝑦
2
. Since 𝑔𝑥

1
⊑ 𝑔𝑥

2
and 𝑓 is

𝑔-nondecreasing, we obtain 𝑔𝑥
1
⊑ 𝑔𝑥

2
. On repeating this

process, we obtain
𝑓𝑥
0
⊑ 𝑓𝑥
1
⊑ ⋅ ⋅ ⋅ ⊑ 𝑓𝑥

𝑛
⊑ 𝑓𝑥
𝑛+1

⊑ ⋅ ⋅ ⋅ ,

𝑔𝑥
1
⊑ 𝑔𝑥
2
⊑ ⋅ ⋅ ⋅ ⊑ 𝑔𝑥

𝑛
⊑ 𝑔𝑥
𝑛+1

⊑ ⋅ ⋅ ⋅ ,

∀𝑛 ∈ N.

𝑓𝑥
𝑛−1

= 𝑔𝑥
𝑛
= 𝑦
𝑛

(7)

Thus, {𝑦
𝑛
} = {𝑔𝑥

𝑛
} is a nondecreasing sequence with respect

to ⊑.
We will show that 𝑓 and 𝑔 have a point of coincidence. If,

𝑦
𝑛
= 𝑦
𝑛+1

for any 𝑛 ∈ N, we have 𝑦
𝑛
= 𝑔𝑥
𝑛
= 𝑓𝑥
𝑛
; therefore,

𝑦
𝑛
is a point of coincidence of𝑓 and 𝑔with coincidence point

𝑥
𝑛
. Therefore, we assume that 𝑦

𝑛
̸= 𝑦
𝑛+1

for all 𝑛 ∈ N.
As, 𝑔𝑥

𝑛
⊑ 𝑔𝑥
𝑛+1

for all 𝑛 ∈ N, it follows from (6) that
𝑑 (𝑦
𝑛
, 𝑦
𝑛+1
) = 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)

⪯ 𝜆𝑑 (𝑔𝑥
𝑛−1
, 𝑔𝑥
𝑛
) + 𝜇𝑑 (𝑔𝑥

𝑛−1
, 𝑓𝑥
𝑛−1
)

+ 𝛿𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
𝑛
)

= 𝜆𝑑 (𝑦
𝑛−1
, 𝑦
𝑛
) + 𝜇𝑑 (𝑦

𝑛−1
, 𝑦
𝑛
) + 𝛿𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
)

= (𝜆 + 𝜇) 𝑑 (𝑦
𝑛−1
, 𝑦
𝑛
) + 𝛿𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
) .

(8)
For simplicity, set 𝑑

𝑛
= 𝑑(𝑦

𝑛
, 𝑦
𝑛+1
) for all 𝑛 ∈ N; then it

follows from above inequality that

𝑑
𝑛
⪯
𝜆 + 𝜇

1 − 𝛿
𝑑
𝑛−1

= 𝛼𝑑
𝑛−1
, ∀𝑛 ∈ N, (9)

where 𝛼 = (𝜆+𝜇)/(1 − 𝛿) < 1 (as 𝜆+𝜇+𝛿 < 1). By repeating
this process, we obtain

𝑑
𝑛
⪯ 𝛼
𝑛
𝑑
0
, ∀𝑛 ∈ N. (10)

If 𝑦
𝑛
= 𝑦
𝑛+𝑝

for any 𝑛 ∈ N and positive integer 𝑝 > 1, then as
𝑦
𝑛
⊑ 𝑦
𝑛+2

, it follows from (6) that

𝑑 (𝑦
𝑛
, 𝑦
𝑛+1
) = 𝑑 (𝑦

𝑛+𝑝
, 𝑦
𝑛+1
) = 𝑑 (𝑓𝑥

𝑛+𝑝−1
, 𝑓𝑥
𝑛
)

⪯ 𝜆𝑑 (𝑔𝑥
𝑛+𝑝−1

, 𝑔𝑥
𝑛
) + 𝜇𝑑 (𝑔𝑥

𝑛+𝑝−1
, 𝑓𝑥
𝑛+𝑝−1

)

+ 𝛿𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
𝑛
)

= 𝜆𝑑 (𝑦
𝑛+𝑝−1

, 𝑦
𝑛
) + 𝜇𝑑 (𝑦

𝑛+𝑝−1
, 𝑦
𝑛+𝑝
)

+ 𝛿𝑑 (𝑦
𝑛
, 𝑦
𝑛+1
)

= 𝜆𝑑 (𝑦
𝑛+𝑝−1

, 𝑦
𝑛+𝑝
) + 𝜇𝑑 (𝑦

𝑛+𝑝−1
, 𝑦
𝑛+𝑝
)

+ 𝛿𝑑 (𝑦
𝑛
, 𝑦
𝑛+1
) ;

(11)
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that is,

𝑑
𝑛
⪯ 𝜆𝑑
𝑛+𝑝−1

+ 𝜇𝑑
𝑛+𝑝−1

+ 𝛿𝑑
𝑛
,

𝑑
𝑛
⪯ 𝛼𝑑
𝑛+𝑝−1

.

(12)

Repeating this process 𝑝 times, we obtain

𝑑
𝑛
⪯ 𝛼
𝑝
𝑑
𝑛
< 𝑑
𝑛

(as 𝛼 =
𝜆 + 𝜇

1 − 𝛿
< 1) , (13)

a contradiction.Therefore, we can assume that 𝑦
𝑛
̸= 𝑦
𝑚
for all

distinct 𝑛,𝑚 ∈ N.
Again, as 𝑦

𝑛
⊑ 𝑦
𝑛+2

, we obtain from (6) and (10) that

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2
) = 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛+1
)

⪯ 𝜆𝑑 (𝑔𝑥
𝑛−1
, 𝑔𝑥
𝑛+1
) + 𝜇𝑑 (𝑔𝑥

𝑛−1
, 𝑓𝑥
𝑛−1
)

+ 𝛿𝑑 (𝑔𝑥
𝑛+1
, 𝑓𝑥
𝑛+1
)

= 𝜆𝑑 (𝑦
𝑛−1
, 𝑦
𝑛+1
) + 𝜇𝑑 (𝑦

𝑛−1
, 𝑦
𝑛
)

+ 𝛿𝑑 (𝑦
𝑛+1
, 𝑦
𝑛+2
)

⪯ 𝜆 [𝑑 (𝑦
𝑛−1
, 𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+2
) + 𝑑 (𝑦

𝑛+2
, 𝑦
𝑛+1
)]

+ 𝜇𝑑 (𝑦
𝑛−1
, 𝑦
𝑛
) + 𝛿𝑑 (𝑦

𝑛+1
, 𝑦
𝑛+2
)

= 𝜆 [𝑑
𝑛−1
+ 𝑑 (𝑦

𝑛
, 𝑦
𝑛+2
) + 𝑑
𝑛+1
]

+ 𝜇𝑑
𝑛−1
+ 𝛿𝑑
𝑛+1
;

(14)

that is,

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2
) ⪯

𝜆 + 𝜇

1 − 𝜆
𝑑
𝑛−1
+
𝜆 + 𝛿

1 − 𝜆
𝑑
𝑛+1

⪯
𝜆 + 𝜇

1 − 𝜆
𝛼
𝑛−1
𝑑
0
+
𝜆 + 𝛿

1 − 𝜆
𝛼
𝑛+1
𝑑
0

⪯
𝜆 + 𝜇 + [𝜆 + 𝛿] 𝛼

2

1 − 𝜆
𝛼
𝑛−1
𝑑
0
.

(15)

As 𝛼 < 1, we have

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2
) ⪯

2𝜆 + 𝜇 + 𝛿

1 − 𝜆
𝛼
𝑛−1
𝑑
0
,

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2
) ⪯ 𝛽𝛼

𝑛−1
𝑑
0
, ∀𝑛 ∈ N,

(16)

where 𝛽 = (2𝜆 + 𝜇 + 𝛿)/(1 − 𝜆) ≥ 0.
For the sequence {𝑦

𝑛
}, we consider 𝑑(𝑦

𝑛
, 𝑦
𝑛+𝑝
) in two

cases.

If 𝑝 is odd say 2𝑚 + 1, then using rectangular inequality
and (10), we obtain

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2𝑚+1

) ⪯ 𝑑 (𝑦
𝑛+2𝑚

, 𝑦
𝑛+2𝑚+1

) + 𝑑 (𝑦
𝑛+2𝑚−1

, 𝑦
𝑛+2𝑚

)

+ 𝑑 (𝑦
𝑛
, 𝑦
𝑛+2𝑚−1

)

= 𝑑
𝑛+2𝑚

+ 𝑑
𝑛+2𝑚−1

+ 𝑑 (𝑦
𝑛
, 𝑦
𝑛+2𝑚−1

)

⪯ 𝑑
𝑛+2𝑚

+ 𝑑
𝑛+2𝑚−1

+ 𝑑
𝑛+2𝑚−2

+ 𝑑
𝑛+2𝑚−3

+ ⋅ ⋅ ⋅ + 𝑑
𝑛

⪯ 𝛼
𝑛+2𝑚

𝑑
0
+ 𝛼
𝑛+2𝑚−1

𝑑
0
+ 𝛼
𝑛+2𝑚−2

𝑑
0

+ ⋅ ⋅ ⋅ + 𝛼
𝑛
𝑑
0

= [𝛼
2𝑚
+ 𝛼
2𝑚−1

+ ⋅ ⋅ ⋅ + 1] 𝛼
𝑛
𝑑
0

⪯
𝛼
𝑛

1 − 𝛼
𝑑
0
.

(17)

Therefore,

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2𝑚+1

) ⪯
𝛼
𝑛

1 − 𝛼
𝑑
0
. (18)

If𝑝 is even, say 2𝑚, then using rectangular inequality and (10)
and (16), we obtain

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2𝑚

) ⪯ 𝑑 (𝑦
𝑛+2𝑚−1

, 𝑦
𝑛+2𝑚

) + 𝑑 (𝑦
𝑛+2𝑚−1

, 𝑦
𝑛+2𝑚−2

)

+ 𝑑 (𝑦
𝑛+2𝑚−2

, 𝑦
𝑛
)

= 𝑑
𝑛+2𝑚−1

+ 𝑑
𝑛+2𝑚−2

+ 𝑑 (𝑦
𝑛+2𝑚−2

, 𝑦
𝑛
)

⪯ 𝑑
𝑛+2𝑚−1

+ 𝑑
𝑛+2𝑚−2

+ 𝑑
𝑛+2𝑚−3

+ 𝑑
𝑛+2𝑚−4

+ ⋅ ⋅ ⋅ + 𝑑
𝑛+2
+ 𝑑 (𝑦

𝑛
, 𝑦
𝑛+2
)

⪯ 𝛼
𝑛+2𝑚−1

𝑑
0
+ 𝛼
𝑛+2𝑚−2

𝑑
0
+ ⋅ ⋅ ⋅ + 𝛼

𝑛+2
𝑑
0

+ 𝛽𝛼
𝑛−1
𝑑
0

= [𝛼
2𝑚−1

+ 𝛼
2𝑚−2

+ ⋅ ⋅ ⋅ + 𝛼
2
] 𝛼
𝑛
𝑑
0
+ 𝛽𝛼
𝑛−1
𝑑
0

⪯
𝛼
𝑛

1 − 𝛼
𝑑
0
+ 𝛽𝛼
𝑛−1
𝑑
0
.

(19)

Therefore,

𝑑 (𝑦
𝑛
, 𝑦
𝑛+2𝑚

) ⪯
𝛼
𝑛

1 − 𝛼
𝑑
0
+ 𝛽𝛼
𝑛−1
𝑑
0
. (20)

As 𝛽 ≥ 0 and 0 ≤ 𝛼 < 1, we have (𝛼𝑛/(1 − 𝛼))𝑑
0
→ 𝜃 and

𝛽𝛼
𝑛−1
𝑑
0
→ 𝜃. So, it follows from (18), (20), and (a), (d) of

Remark 3 that for every 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐 there exists 𝑛
0
∈ N

such that 𝑑(𝑦
𝑛
, 𝑦
𝑛+2𝑚+1

) ≪ 𝑐 and 𝑑(𝑦
𝑛
, 𝑦
𝑛+2𝑚

) ≪ 𝑐 for all
𝑛 > 𝑛
0
. Thus, {𝑦

𝑛
} = {𝑔𝑥

𝑛
} is a Cauchy sequence in 𝑔(𝑋). As

𝑔(𝑋) is complete, there exist 𝑧, 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑦
𝑛
= lim
𝑛→∞

𝑔𝑥
𝑛
= lim
𝑛→∞

𝑓𝑥
𝑛−1

= 𝑔𝑧 = 𝑢. (21)

We will show that 𝑓𝑧 = 𝑔𝑧 = 𝑢.
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Now,

𝑑 (𝑢, 𝑓𝑧) ⪯ 𝑑 (𝑢, 𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
) + 𝑑 (𝑦

𝑛+1
, 𝑓𝑧)

= 𝑑 (𝑢, 𝑦
𝑛
) + 𝑑
𝑛
+ 𝑑 (𝑦

𝑛+1
, 𝑓𝑧) .

(22)

From (iv), we have 𝑔𝑥
𝑛
⊑ 𝑔𝑧; that is, 𝑦

𝑛
⊑ 𝑢; therefore it

follows from (6) that

𝑑 (𝑦
𝑛+1
, 𝑓𝑧) = 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑧)

⪯ 𝜆𝑑 (𝑔𝑥
𝑛
, 𝑔𝑧) + 𝜇𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) + 𝛿𝑑 (𝑔𝑧, 𝑓𝑧)

= 𝜆𝑑 (𝑦
𝑛
, 𝑢) + 𝜇𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
) + 𝛿𝑑 (𝑢, 𝑓𝑧)

⪯ 𝜆𝑑 (𝑦
𝑛
, 𝑢) + 𝜇𝑑

𝑛

+ 𝛿 [𝑑 (𝑢, 𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+1
) + 𝑑 (𝑦

𝑛+1
, 𝑓𝑧)]

= [𝜆 + 𝛿] 𝑑 (𝑦𝑛, 𝑢) + [𝜇 + 𝛿] 𝑑𝑛 + 𝛿𝑑 (𝑦𝑛+1, 𝑓𝑧) ;

(23)

that is,

𝑑 (𝑦
𝑛+1
, 𝑓𝑧) ⪯

𝜆 + 𝛿

1 − 𝛿
𝑑 (𝑦
𝑛
, 𝑢) +

𝜇 + 𝛿

1 − 𝛿
𝑑
𝑛
. (24)

In view of (10), (21), and (a), (d) of Remark 3, for every 𝑐 ∈ 𝐸
with 𝜃 ≪ 𝑐, there exists 𝑛

1
∈ N such that 𝑑(𝑦

𝑛
, 𝑢) ≪ 𝑐(1 −

𝛿)/2(𝜆 + 𝛿), 𝑑
𝑛
≪ 𝑐(1 − 𝛿)/2(𝜇 + 𝛿) for all 𝑛 > 𝑛

1
. Therefore,

it follows from above inequality that

𝑑 (𝑦
𝑛+1
, 𝑓𝑧) ≪ 𝑐 ∀𝑛 > 𝑛

1
and every 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐.

(25)

Therefore, again with same arguments, from (22) and (c) of
Remark 3, we obtain that 𝑑(𝑢, 𝑓𝑧) = 𝜃; that is, 𝑓𝑧 = 𝑔𝑧 = 𝑢.
Thus, 𝑧 is a coincidence point and 𝑢 is point of coincidence of
𝑓 and 𝑔.

Now suppose that 𝑓 and 𝑔 are weakly compatible; then
we have 𝑓𝑢 = 𝑓𝑔𝑧 = 𝑔𝑓𝑧 = 𝑔𝑢. As 𝑔𝑧 ⊑ 𝑔𝑔𝑧, therefore using
(6) we obtain

𝑑 (𝑢, 𝑓𝑢) = 𝑑 (𝑓𝑧, 𝑓𝑓𝑧)

⪯ 𝜆𝑑 (𝑔𝑧, 𝑔𝑓𝑧) + 𝜇𝑑 (𝑔𝑧, 𝑓𝑧) + 𝛿𝑑 (𝑔𝑓𝑧, 𝑓𝑓𝑧)

= 𝜆𝑑 (𝑔𝑧, 𝑓𝑔𝑧) + 𝜇𝑑 (𝑔𝑧, 𝑔𝑧) + 𝛿𝑑 (𝑓𝑔𝑧, 𝑓𝑔𝑧)

= 𝜆𝑑 (𝑢, 𝑓𝑢) .

(26)

As 𝜆 ∈ [0, 1), it follows from (f) of Remark 3 and the above
inequality that 𝑑(𝑢, 𝑓𝑢) = 𝜃; that is, 𝑓𝑢 = 𝑢 = 𝑔𝑢. Thus, 𝑢 is a
common fixed point of 𝑓 and 𝑔.

Suppose the set of common fixed points of 𝑓 and 𝑔, that
is,F, is 𝑔-well ordered and 𝑢, V ∈ F. AsF is 𝑔-well ordered,
let, for example, 𝑔𝑢 ⊑ 𝑔V. Then, it follows from (6) that

𝑑 (𝑢, V) = 𝑑 (𝑓𝑢, 𝑓V)

⪯ 𝜆𝑑 (𝑔𝑢, 𝑔V) + 𝜇𝑑 (𝑔𝑢, 𝑓𝑢) + 𝛿𝑑 (𝑔V, 𝑓V)

= 𝜆𝑑 (𝑢, V) + 𝜇𝑑 (𝑢, 𝑢) + 𝛿𝑑 (V, V)

= 𝜆𝑑 (𝑢, V) .

(27)

As 𝜆 ∈ [0, 1), it follows from (f) of Remark 3 that 𝑑(𝑢, V) = 𝜃;
that is, 𝑢 = V. Therefore, the common fixed point of 𝑓 and
𝑔 is unique. For converse, let common fixed point be unique,
thenF will be singleton and therefore 𝑔-well ordered.

Remark 11. For the existence of common fixed point of 𝑓 and
𝑔, Vetro [14] used the condition

𝑓𝑔𝑥 = 𝑔𝑔𝑥 whenever 𝑓𝑥 = 𝑔𝑥. (28)

Here, we have used theweak compatibility ofmappings𝑓 and
𝑔, and it is obvious that the condition used by Vetro implies
the weak compatibility of mappings 𝑓 and 𝑔.

Taking 𝑔 = 𝐼
𝑋
(identity mapping of 𝑋), we obtain the

main result of [26].

Corollary 12. Let (𝑋, ⊑, 𝑑) be an ordered complete cone
rectangular metric space and 𝑓 : 𝑋 → 𝑋 a mapping such
that the following conditions are satisfied:

(i) 𝑓 is an ordered Reich-type contraction, that is, satisfies
(5);

(ii) 𝑓 is nondecreasing with respect to “⊑”;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
⊑ 𝑓𝑥
0
;

(iv) if {𝑥
𝑛
} is any nondecreasing sequence in 𝑋 converging

to some 𝑧 then 𝑥
𝑛
⊑ 𝑧, for all 𝑛.

Then, 𝑓 has a fixed point. In addition, the set of fixed points of
𝑓 is well ordered if and only if the fixed point of 𝑓 is unique.

With suitable values of control constants 𝜆, 𝜇, and 𝛿, we
obtain the following generalizations of Theorems 2.1 and 2.3
of Abbas and Jungck [5] on ordered cone rectangular metric
spaces.

Corollary 13. Let (𝑋, ⊑, 𝑑) be an ordered cone rectangular
metric space 𝑓, 𝑔 : 𝑋 → 𝑋 two mappings such that
𝑓(𝑋) ⊂ 𝑔(𝑋) and 𝑔(𝑋) is complete. Suppose that the following
conditions are satisfied:

(i) 𝑑(𝑓𝑥, 𝑓𝑦) ⪯ 𝜆𝑑(𝑔𝑥, 𝑔𝑦) for all 𝑥, 𝑦 ∈ 𝑋with 𝑔𝑥 ⊑ 𝑔𝑦,
where 𝜆 ∈ [0, 1);

(ii) 𝑓 is 𝑔-nondecreasing;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝑔𝑥

0
⊑ 𝑓𝑥
0
;

(iv) if {𝑔𝑥
𝑛
}were any nondecreasing sequence in𝑋 converg-

ing to some 𝑔𝑧 then 𝑔𝑥
𝑛
⊑ 𝑔𝑧, for all 𝑛 and 𝑔𝑧 ⊑ 𝑔𝑔𝑧.

Then, 𝑓 and 𝑔 have a coincidence point. Furthermore, if 𝑓 and
𝑔 are weakly compatible then they have a common fixed point.
In addition, the set of common fixed points of 𝑓 and 𝑔 is 𝑔-
well ordered if and only if the common fixed point of 𝑓 and 𝑔
is unique.

Corollary 14. Let (𝑋, ⊑, 𝑑) be an ordered cone rectangular
metric space and 𝑓, 𝑔 : 𝑋 → 𝑋 two mappings such that
𝑓(𝑋) ⊂ 𝑔(𝑋) and 𝑔(𝑋) is complete. Suppose that the following
conditions are satisfied:

(i) 𝑑(𝑓𝑥, 𝑓𝑦) ⪯ 𝜆[𝑑(𝑔𝑥, 𝑓𝑦) + 𝑑(𝑔𝑦, 𝑓𝑦)] for all 𝑥, 𝑦 ∈ 𝑋
with 𝑔𝑥 ⊑ 𝑔𝑦, where 𝜆 ∈ [0, 1/2);
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(ii) 𝑓 is 𝑔-nondecreasing;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝑔𝑥

0
⊑ 𝑓𝑥
0
;

(iv) if {𝑔𝑥
𝑛
}were any nondecreasing sequence in𝑋 converg-

ing to some 𝑔𝑧, then 𝑔𝑥
𝑛
⊑ 𝑔𝑧 for all 𝑛 and 𝑔𝑧 ⊑ 𝑔𝑔𝑧.

Then, 𝑓 and 𝑔 have a coincidence point. Furthermore, if 𝑓 and
𝑔 are weakly compatible then they have a common fixed point.
In addition, the set of common fixed points of 𝑓 and 𝑔 is 𝑔-
well ordered if and only if the common fixed point of 𝑓 and 𝑔
is unique.

The following example shows that the results of this paper
are a proper generalization of the results of Malhotra et al.
[26] and Vetro [14].

Example 15. Let 𝑋 = {1, 2, 3, 4} and 𝐸 = 𝐶1R[0, 1] with ‖𝑥‖ =
‖𝑥‖
∞
+ ‖𝑥

‖
∞
, 𝑃 = {𝑥(𝑡) : 𝑥(𝑡) ≥ 0 for 𝑡 ∈ [0, 1]}. Define

𝑑 : 𝑋 × 𝑋 → 𝐸 as follows:

𝑑 (1, 2) = 𝑑 (2, 1) = 3𝑒
𝑡
,

𝑑 (2, 3) = 𝑑 (3, 2) = 𝑑 (1, 3) = 𝑑 (3, 1) = 𝑒
𝑡
,

𝑑 (1, 4) = 𝑑 (4, 1) = 𝑑 (2, 4) = 𝑑 (4, 2) = 𝑑 (3, 4)

= 𝑑 (4, 3) = 4𝑒
𝑡
,

𝑑 (𝑥, 𝑦) = 𝜃 if 𝑥 = 𝑦.

(29)

Then, (𝑋, 𝑑) is a complete nonnormal cone rectangular
metric space but not cone metric space. Define mappings
𝑓, 𝑔 : 𝑋 → 𝑋 and partial order “⊑” on𝑋 as follows:

𝑓 = (
1 2 3 4

1 3 3 1
) ,

𝑔 = (
1 2 3 4

1 2 2 3
) ,

⊑= {(1, 1) , (2, 2) , (3, 3) , (4, 4) , (1, 2) , (1, 3)} .

(30)

Then it is easy to verify that 𝑓 is an ordered 𝑔-weak
contraction in (𝑋, ⊑, 𝑑) with 𝜆 ∈ [1/3, 1), 𝜇 = 𝛿 = 0.
Indeed, we have to check the validity of (6) only for (𝑥, 𝑦) =
(1, 2), (1, 4). Then,

𝑑 (𝑓1, 𝑓2) = 𝑑 (1, 3) = 𝑒
𝑡
,

𝜆𝑑 (𝑔1, 𝑔2) + 𝜇𝑑 (𝑔1, 𝑓1) + 𝛿𝑑 (𝑔2, 𝑓2) = 𝑒
𝑡
[3𝜆 + 𝛿] ;

(31)

therefore, (6) holds for 𝜆 ∈ [1/3, 1), 𝜇 = 𝛿 = 0. Again,

𝑑 (𝑓1, 𝑓4) = 𝑑 (1, 1) = 𝜃; (32)

therefore, (6) holds for arbitrary 𝜆, 𝛿, and 𝜇 such that 𝜆 + 𝜇 +
𝛿 < 1.

All other conditions of Theorem 10 are satisfied and 1 is
the unique common fixed point of𝑓 and 𝑔. Note that𝑓 is not
an ordered Reich-type contraction. Indeed, for point (𝑥, 𝑦) =
(1, 3) there are no 𝜆, 𝜇, 𝛿 ∈ [0, 1) such that condition (5) is
satisfied. Therefore, the results of Malhotra et al. [26] are not
applicable here.

The following example illustrates the crucial role of weak
compatibility of mappings for the existence of common fixed
point inTheorem 10.

Example 16. Let (𝑋, 𝑑) be the cone rectangular metric space
as in Example 15. Then, (𝑋, 𝑑) is a complete nonnormal cone
rectangular metric space but not cone metric space. Define
mappings 𝑓, 𝑔 : 𝑋 → 𝑋 and partial order “⊑” on 𝑋 as
follows:

𝑓 = (
1 2 3 4

2 2 2 3
) ,

𝑔 = (
1 2 3 4

1 3 2 4
) ,

⊑= {(1, 1) , (2, 2) , (3, 3) , (4, 4) , (2, 4) , (2, 3) , (1, 3)} .

(33)

Then, it is easy to verify that 𝑓 is an ordered 𝑔-weak
contraction in (𝑋, ⊑, 𝑑) with 𝜆 = 𝛿 ∈ [1/8, 1/2), 𝜇 = 0.
Indeed, we have to check the validity of (6) only for (𝑥, 𝑦) =
(3, 4), (3, 2), (1, 2). Then,

𝑑 (𝑓3, 𝑓4) = 𝑑 (2, 3) = 𝑒
𝑡
,

𝜆𝑑 (𝑔3, 𝑔4) + 𝜇𝑑 (𝑔3, 𝑓3) + 𝛿𝑑 (𝑔4, 𝑓4) = 4𝑒
𝑡
[𝜆 + 𝛿] ;

(34)

Therefore, (6) holds for 𝜆 = 𝛿 ∈ [1/8, 1/2), 𝜇 = 0. Again,

𝑑 (𝑓3, 𝑓2) = 𝑑 (2, 2) = 𝜃; (35)

Therefore, (6) holds for arbitrary 𝜆, 𝛿, and 𝜇 such that 𝜆+𝜇+
𝛿 < 1.

Similarly, for (𝑥, 𝑦) = (1, 2), and condition (6) holds for
arbitrary 𝜆, 𝛿, and 𝜇 such that 𝜆 + 𝜇 + 𝛿 < 1.

All other conditions of Theorem 10 (except 𝑓 and 𝑔 are
weakly compatible) are satisfied and 3 is a coincidence point
of 𝑓 and 𝑔. Note that 𝑓3 = 𝑔3 = 2; that is, 3 is a coincidence
point of 𝑓 and 𝑔 but 𝑓𝑔3 ̸= 𝑔𝑓3; therefore, 𝑓 and 𝑔 are not
weakly compatible and have no common fixed point.

In the following theorem, the conditions on 𝑓, “non-
decreasing” and “completeness of space,” are replaced by
another condition.

Theorem 17. Let (𝑋, ⊑, 𝑑) be an ordered cone rectangular
metric space and 𝑓, 𝑔 : 𝑋 → 𝑋 is two mappings such
that 𝑓(𝑋) ⊂ 𝑔(𝑋). Suppose that the following conditions are
satisfied:

(A) 𝑓 is an ordered 𝑔-weak contraction that satisfies (6);
(B) there exists 𝑢 ∈ 𝑋 such that 𝑔𝑢 ⊑ 𝑓𝑢 and 𝑑(𝑔𝑢, 𝑓𝑢) ⪯

𝑑(𝑔𝑥, 𝑓𝑥) for all 𝑥 ∈ 𝑋.

Then, 𝑓 and 𝑔 have a coincidence point. Furthermore, if 𝑓 and
𝑔 are weakly compatible, then they have a common fixed point.
In addition, the set of common fixed points of 𝑓 and 𝑔 is 𝑔-
well ordered if and only if the common fixed point of 𝑓 and 𝑔
is unique.
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Proof. Let 𝐹(𝑥) = 𝑑(𝑔𝑥, 𝑓𝑥) for all 𝑥 ∈ 𝑋 and 𝑔𝑧 = 𝑓𝑢 for
some 𝑧 ∈ 𝑋 (which is possible, since 𝑓(𝑋) ⊂ 𝑔(𝑋)); then
𝐹(𝑢) ⪯ 𝐹(𝑥) for all 𝑥 ∈ 𝑋. If 𝐹(𝑢) = 𝜃, then 𝑔𝑢 = 𝑓𝑢; that
is, 𝑢 is a coincidence point of 𝑓 and 𝑔. If 𝜃 ≺ 𝐹(𝑢), then by
assumption (B) 𝑔𝑢 ⊑ 𝑓𝑢, so 𝑔𝑢 ⊑ 𝑔𝑧, and by (A), we obtain

𝐹 (𝑧) = 𝑑 (𝑔𝑧, 𝑓𝑧) = 𝑑 (𝑓𝑢, 𝑓𝑧)

⪯ 𝜆𝑑 (𝑔𝑢, 𝑔𝑧) + 𝜇𝑑 (𝑔𝑢, 𝑓𝑢) + 𝛿𝑑 (𝑔𝑧, 𝑓𝑧)

= 𝜆𝑑 (𝑔𝑢, 𝑓𝑢) + 𝜇𝑑 (𝑔𝑢, 𝑓𝑢) + 𝛿𝑑 (𝑔𝑧, 𝑓𝑧)

= 𝜆𝐹 (𝑢) + 𝜇𝐹 (𝑢) + 𝛿𝐹 (𝑧) ,

𝐹 (𝑧) ⪯
𝜆 + 𝜇

1 − 𝛿
𝐹 (𝑢) ≺ 𝐹 (𝑢) (as 𝜆 + 𝜇 + 𝛿 < 1) ,

(36)

a contradiction. Therefore, we must have 𝐹(𝑢) = 𝜃; that
is, 𝑔𝑢 = 𝑓𝑢, and so 𝑢 is a coincidence point of 𝑓 and 𝑔.

The existence, necessary and sufficient condition for
uniqueness of common fixed point follows from a similar
process as used inTheorem 10.
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