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Abstract. 
The authors find some new inequalities of Jordan type for the sine function. These newly established inequalities are of new form and are applied to deduce some known results.


1. Introduction
For 
	
		
			
				𝑥
				∈
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
, we have 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				≥
				2
			

			
				
			
			
				𝜋
				.
			

		
	

					The inequality is sharp with equality if and only if 
	
		
			
				𝑥
				=
				𝜋
				/
				2
			

		
	
. This inequality is known in the literature as Jordan’s inequality for the sine function. See [1, page 33] and other references cited in the first page of [2]. 
In [3, 4], it was obtained that
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝜋
			

			

				3
			

			
				
				𝜋
			

			

				2
			

			
				−
				4
				𝑥
			

			

				2
			

			
				
				+
				2
			

			
				
			
			
				𝜋
				≤
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				≤
				2
			

			
				
			
			
				𝜋
				+
				𝜋
				−
				2
			

			
				
			
			

				𝜋
			

			

				3
			

			
				
				𝜋
			

			

				2
			

			
				−
				4
				𝑥
			

			

				2
			

			
				
				,
			

		
	

					for 
	
		
			
				𝑥
				∈
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
. The equalities hold if and only if 
	
		
			
				𝑥
				=
				𝜋
				/
				2
			

		
	
. This refines Jordan’s inequality (1).
Motivated by [3], it was established in [5] that 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				𝜋
			

			

				5
			

			
				
				𝜋
			

			

				4
			

			
				−
				1
				6
				𝑥
			

			

				4
			

			
				
				+
				2
			

			
				
			
			
				𝜋
				≤
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				≤
				2
			

			
				
			
			
				𝜋
				+
				𝜋
				−
				2
			

			
				
			
			

				𝜋
			

			

				5
			

			
				
				𝜋
			

			

				4
			

			
				−
				1
				6
				𝑥
			

			

				4
			

			
				
				,
			

		
	

					for 
	
		
			
				𝑥
				∈
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
. The equalities are valid if and only if 
	
		
			
				𝑥
				=
				𝜋
				/
				2
			

		
	
. This also refines Jordan’s inequality (1). Also, see the double inequality (3.10) in the survey article [2, page 17]. 
In recent years, the above inequalities have been refined, extended, generalized, and applied by many mathematicians in a large amount of papers. See, for example, [3–19]. For a systematic review on this topic, please refer to the expository paper [2]. 
The aim of this paper is to further refine and generalize these inequalities of Jordan type for the sine function. 
Our main results may be stated as in the following theorems.
Theorem 1.  If 
	
		
			
				𝑛
				≥
				0
			

		
	
 and 
	
		
			
				𝑚
				≥
				2
			

		
	
 are integers, then
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				2
			

			
				𝑚
				+
				2
			

			
				
			
			
				(
				2
				𝑚
				+
				𝑛
				𝜋
				)
				𝜋
			

			
				𝑚
				+
				1
			

			
				𝜋
				
				
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
				𝑛
				
				𝜋
				e
				x
				p
				𝑥
				−
			

			
				
			
			
				2
				+
				2
				
				
				
			

			
				
			
			
				𝜋
				≤
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				≤
				2
			

			
				
			
			
				𝜋
				+
				2
			

			

				𝑚
			

			
				(
				𝜋
				−
				2
				)
			

			
				
			
			

				𝜋
			

			
				𝑚
				+
				1
			

			
				𝜋
				
				
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
				𝑛
				
				𝜋
				e
				x
				p
				𝑥
				−
			

			
				
			
			
				2
				,
				
				
				
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
.
Theorem 2.  Suppose that 
	
		
			

				𝑔
			

		
	
 is a 
	
		
			

				3
			

		
	
-time differentiable function on 
	
		
			
				[
				0
				,
				𝜋
				/
				2
				]
			

		
	
. If the function 
	
		
			

				𝑔
			

		
	
 satisfies 
	
		
			
				𝑔
				(
				𝜋
				/
				2
				)
				≠
				𝑔
				(
				0
				)
			

		
	
 and 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑔
			

			

				
			

			
				(
				𝑥
				)
				>
				0
				,
				3
				𝑔
			

			
				
				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
				
			

			
				(
				𝑥
				)
				>
				0
				,
				2
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				≤
				2
				𝑥
				𝑔
			

			
				
				
			

			
				(
				𝑥
				)
				+
				𝑥
			

			

				2
			

			

				𝑔
			

			
				
				
				
			

			
				(
				𝑥
				)
				,
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
, then
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				4
			

			
				
			
			

				𝜋
			

			

				2
			

			

				𝑔
			

			

				
			

			
				
				𝑔
				
				𝜋
				(
				𝜋
				/
				2
				)
			

			
				
			
			
				2
				
				
				+
				2
				−
				𝑔
				(
				𝑥
				)
			

			
				
			
			
				𝜋
				≤
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				≤
				2
			

			
				
			
			
				𝜋
				+
				𝜋
				−
				2
			

			
				
			
			
				𝜋
				[
				]
				
				𝑔
				
				𝜋
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				0
				)
			

			
				
			
			
				2
				
				
				.
				−
				𝑔
				(
				𝑥
				)
			

		
	

Remark 3. Taking 
	
		
			
				𝑛
				=
				0
			

		
	
 in Theorem 1 yields 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				2
			

			
				𝑚
				+
				1
			

			
				
			
			
				𝑚
				𝜋
			

			
				𝑚
				+
				1
			

			
				𝜋
				
				
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
				+
				2
			

			
				
			
			
				𝜋
				≤
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				≤
				2
			

			
				
			
			
				𝜋
				+
				2
			

			

				𝑚
			

			
				(
				𝜋
				−
				2
				)
			

			
				
			
			

				𝜋
			

			
				𝑚
				+
				1
			

			
				𝜋
				
				
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
				,
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
 for 
	
		
			
				𝑚
				≥
				2
			

		
	
. The equalities in (7) are valid if and only if 
	
		
			
				𝑥
				=
				𝜋
				/
				2
			

		
	
. Putting 
	
		
			
				𝑚
				=
				2
				,
				4
			

		
	
 in (7) results in (2) and (3), respectively. This means that Theorem 1 generalizes the inequalities (2) and (3). 
Remark 4. Let the function 
	
		
			
				𝑔
				(
				𝑥
				)
			

		
	
 in Theorem 2 be 
	
		
			

				𝑥
			

			

				𝑚
			

		
	
 for 
	
		
			
				𝑚
				≥
				2
			

		
	
. A straightforward computation gives 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑔
				
				𝜋
			

			
				
			
			
				2
				
				=
				
				𝜋
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				𝑔
				≠
				0
				=
				𝑔
				(
				0
				)
				,
			

			

				
			

			
				(
				𝑥
				)
				=
				𝑚
				𝑥
			

			
				𝑚
				−
				1
			

			
				>
				0
				,
				3
				𝑔
			

			
				
				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
				
			

			
				(
				𝑥
				)
				=
				3
				𝑚
				(
				𝑚
				−
				1
				)
				𝑥
			

			
				𝑚
				−
				2
			

			
				+
				𝑥
				𝑚
				(
				𝑚
				−
				1
				)
				(
				𝑚
				−
				2
				)
				𝑥
			

			
				𝑚
				−
				2
			

			
				>
				0
				,
				2
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				−
				2
				𝑥
				𝑔
			

			
				
				
			

			
				(
				𝑥
				)
				+
				𝑥
			

			

				2
			

			

				𝑔
			

			
				
				
				
			

			
				4
				(
				𝑥
				)
				=
				−
				𝑚
				(
				𝑚
				−
				1
				)
				(
				𝑚
				−
				2
				)
				≤
				0
				,
			

			
				
			
			

				𝜋
			

			

				2
			

			

				𝑔
			

			

				
			

			
				
				𝑔
				
				𝜋
				(
				𝜋
				/
				2
				)
			

			
				
			
			
				2
				
				
				=
				2
				−
				𝑔
				(
				𝑥
				)
			

			
				𝑚
				+
				1
			

			
				
			
			
				𝑚
				𝜋
			

			
				𝑚
				+
				1
			

			
				𝜋
				
				
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
				+
				2
			

			
				
			
			
				𝜋
				,
				𝜋
				−
				2
			

			
				
			
			
				𝜋
				[
				]
				
				𝑔
				
				𝜋
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				0
				)
			

			
				
			
			
				2
				
				
				=
				2
				−
				𝑔
				(
				𝑥
				)
			

			
				
			
			
				𝜋
				+
				2
			

			

				𝑚
			

			
				(
				𝜋
				−
				2
				)
			

			
				
			
			

				𝜋
			

			
				𝑚
				+
				1
			

			
				𝜋
				
				
			

			
				
			
			
				2
				
			

			

				𝑚
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
				.
			

		
	

						This implies inequality (7). Hence, Theorem 2 generalizes Theorem 1. 
In the final section of this paper, we will apply Theorem 1 to refine and generalize Yang’s inequality and construct some integral inequalities.
2. A Lemma
In order to prove Theorems 1 and 2, the following lemma is necessary.
Lemma 5.  Let 
	
		
			
				𝑓
				,
				𝑔
				∶
				[
				𝑎
				,
				𝑏
				]
				→
				ℝ
			

		
	
 be differentiable on 
	
		
			
				(
				𝑎
				,
				𝑏
				)
			

		
	
. If 
	
		
			

				𝑔
			

			

				
			

			
				≠
				0
			

		
	
 and 
	
		
			

				𝑓
			

			

				
			

			
				/
				𝑔
			

			

				
			

		
	
 are decreasing on 
	
		
			
				(
				𝑎
				,
				𝑏
				)
			

		
	
, then the functions 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑏
				)
			

			
				
			
			
				,
				𝑔
				(
				𝑥
				)
				−
				𝑔
				(
				𝑏
				)
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑎
				)
			

			
				
			
			
				,
				𝑔
				(
				𝑥
				)
				−
				𝑔
				(
				𝑎
				)
			

		
	

						are also decreasing on 
	
		
			
				(
				𝑎
				,
				𝑏
				)
			

		
	
. 
Remark 6. Lemma 5 can be found in many papers such as [10, 12, 13, 20]. 
3. Proofs of Theorems
We are now in a position to prove our theorems.
Proof of Theorem 1. Let 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑥
				)
				=
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				,
				𝑓
			

			

				2
			

			
				(
				𝑥
				)
				=
				−
				𝑥
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝑥
			

			
				,
				𝑓
			

			

				3
			

			
				(
				𝑥
				)
				=
				s
				i
				n
				𝑥
				−
				𝑥
				c
				o
				s
				𝑥
				,
				𝑓
			

			

				4
			

			
				
				(
				𝑥
				)
				=
				𝑚
				𝑥
			

			
				𝑚
				+
				1
			

			
				+
				𝑛
				𝑥
			

			
				𝑚
				+
				2
			

			
				
				𝑒
			

			
				𝑛
				𝑥
			

			

				,
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
. A direct calculation gives
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑓
			

			
				
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				2
			

			
				(
				=
				𝑥
				)
				s
				i
				n
				𝑥
				−
				𝑥
				c
				o
				s
				𝑥
			

			
				
			
			
				
				𝑚
				𝑥
			

			
				𝑚
				+
				1
			

			
				+
				𝑛
				𝑥
			

			
				𝑚
				+
				2
			

			
				
				𝑒
			

			
				𝑛
				𝑥
			

			
				=
				𝑓
			

			

				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			

				4
			

			
				,
				𝑓
				(
				𝑥
				)
			

			
				
				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				4
			

			
				=
				(
				𝑥
				)
				s
				i
				n
				𝑥
			

			
				
			
			
				
				𝑚
				(
				𝑚
				+
				1
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				2
				𝑛
				(
				𝑚
				+
				1
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				2
			

			

				𝑥
			

			
				𝑚
				+
				1
			

			
				
				𝑒
			

			
				𝑛
				𝑥
			

			
				,
				
				𝑓
			

			
				
				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				4
			

			
				
				(
				𝑥
				)
			

			

				
			

			
				=
				ℎ
			

			

				𝑚
			

			
				(
				𝑥
				)
			

			
				
			
			
				
				s
				e
				c
				𝑥
				𝑚
				(
				𝑚
				+
				1
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				2
				𝑛
				(
				𝑚
				+
				1
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				2
			

			

				𝑥
			

			
				𝑚
				+
				1
			

			

				
			

			

				2
			

			

				𝑒
			

			
				𝑛
				𝑥
			

			

				,
			

		
	

						where
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				ℎ
			

			

				𝑚
			

			
				(
				𝑥
				)
				=
				𝑚
				(
				𝑚
				+
				1
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				2
				𝑛
				(
				𝑚
				+
				1
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				2
			

			

				𝑥
			

			
				𝑚
				+
				1
			

			
				−
				
				𝑚
				(
				𝑚
				+
				1
				)
				(
				𝑚
				−
				1
				)
				𝑥
			

			
				𝑚
				−
				2
			

			
				+
				3
				𝑛
				𝑚
				(
				𝑚
				+
				1
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				3
				𝑛
			

			

				2
			

			
				(
				𝑚
				+
				1
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				3
			

			

				𝑥
			

			
				𝑚
				+
				1
			

			
				
				t
				a
				n
				𝑥
				.
			

		
	

						Utilizing 
	
		
			
				t
				a
				n
				𝑥
				>
				𝑥
			

		
	
 on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
 leads to
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				ℎ
			

			

				𝑚
			

			
				(
				𝑥
				)
				≤
				𝑚
				(
				𝑚
				+
				1
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				2
				𝑛
				(
				𝑚
				+
				1
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				2
			

			

				𝑥
			

			
				𝑚
				+
				1
			

			
				
				−
				𝑥
				𝑚
				(
				𝑚
				+
				1
				)
				(
				𝑚
				−
				1
				)
				𝑥
			

			
				𝑚
				−
				2
			

			
				+
				3
				𝑛
				𝑚
				(
				𝑚
				+
				1
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				3
				𝑛
			

			

				2
			

			
				(
				𝑚
				+
				1
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				3
			

			

				𝑥
			

			
				𝑚
				+
				1
			

			
				
				
				=
				−
				𝑚
				(
				𝑚
				+
				1
				)
				(
				𝑚
				−
				2
				)
				𝑥
			

			
				𝑚
				−
				1
			

			
				+
				𝑛
				(
				𝑚
				+
				1
				)
				(
				3
				𝑚
				−
				2
				)
				𝑥
			

			

				𝑚
			

			
				+
				𝑛
			

			

				2
			

			
				(
				3
				𝑚
				−
				2
				)
				𝑥
			

			
				𝑚
				+
				1
			

			
				+
				𝑛
			

			

				3
			

			

				𝑥
			

			
				𝑚
				+
				2
			

			
				
				≤
				0
				,
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
 for 
	
		
			
				𝑚
				≥
				2
			

		
	
 and 
	
		
			
				𝑛
				≥
				0
			

		
	
. As a result, the function 
	
		
			

				𝑓
			

			
				
				3
			

			
				(
				𝑥
				)
				/
				𝑓
			

			
				
				4
			

			
				(
				𝑥
				)
			

		
	
 is decreasing on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
. In virtue of Lemma 5, it follows that the functions
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			

				4
			

			
				=
				𝑓
				(
				𝑥
				)
			

			

				3
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				3
			

			
				(
				0
				)
			

			
				
			
			

				𝑓
			

			

				4
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				4
			

			
				,
				𝑓
				(
				0
				)
			

			
				
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				2
			

			
				(
				,
				𝑓
				𝑥
				)
				𝐻
				(
				𝑥
				)
				=
			

			

				1
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				1
			

			
				(
				𝜋
				/
				2
				)
			

			
				
			
			

				𝑓
			

			

				2
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				2
			

			
				(
				𝜋
				/
				2
				)
			

		
	

						are all decreasing on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
. Since 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑥
				→
				0
			

			

				+
			

			
				2
				𝐻
				(
				𝑥
				)
				=
			

			

				𝑚
			

			
				(
				𝜋
				−
				2
				)
			

			
				
			
			

				𝜋
			

			
				𝑚
				+
				1
			

			

				𝑒
			

			
				−
				𝑛
				𝜋
				/
				2
			

			
				,
				l
				i
				m
			

			
				𝑥
				→
				(
				𝜋
				/
				2
				)
			

			

				−
			

			
				2
				𝐻
				(
				𝑥
				)
				=
			

			
				𝑚
				+
				2
			

			
				
			
			
				(
				2
				𝑚
				+
				𝑛
				𝜋
				)
				𝜋
			

			
				𝑚
				+
				1
			

			

				𝑒
			

			
				−
				𝑛
				𝜋
				/
				2
			

			

				,
			

		
	

						we have 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				2
			

			
				𝑚
				+
				2
			

			
				
			
			
				(
				2
				𝑚
				+
				𝑛
				𝜋
				)
				𝜋
			

			
				𝑚
				+
				1
			

			

				𝑒
			

			
				−
				𝑛
				𝜋
				/
				2
			

			
				2
				≤
				𝐻
				(
				𝑥
				)
				≤
			

			

				𝑚
			

			
				(
				𝜋
				−
				2
				)
			

			
				
			
			

				𝜋
			

			
				𝑚
				+
				1
			

			

				𝑒
			

			
				−
				𝑛
				𝜋
				/
				2
			

			

				,
			

		
	

						which can be reformulated as the inequality (4). Theorem 1 is thus proved. 
Proof of Theorem 2. Let 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑥
				)
				=
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				,
				𝑓
			

			

				2
			

			
				𝑓
				(
				𝑥
				)
				=
				−
				𝑔
				(
				𝑥
				)
				,
			

			

				3
			

			
				(
				𝑥
				)
				=
				s
				i
				n
				𝑥
				−
				𝑥
				c
				o
				s
				𝑥
				,
				𝑓
			

			

				4
			

			
				(
				𝑥
				)
				=
				𝑥
			

			

				2
			

			

				𝑔
			

			

				
			

			
				(
				𝑥
				)
				,
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
. It is easy to see that 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑓
			

			
				
				2
			

			
				(
				𝑥
				)
				=
				−
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				<
				0
				,
				𝑓
			

			
				
				2
			

			
				𝑓
				(
				𝑥
				)
				≠
				0
				,
			

			
				
				4
			

			
				𝑓
				(
				𝑥
				)
				≠
				0
				,
			

			
				
				4
			

			
				(
				𝑥
				)
				=
				2
				𝑥
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				+
				𝑥
			

			

				2
			

			

				𝑔
			

			
				
				
			

			
				
				(
				𝑥
				)
				=
				𝑥
				2
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
			

			
				
				(
				𝑥
				)
				>
				0
				,
			

		
	

						on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
. Furthermore, we have 
							
	
 		
 			
				(
				1
				9
				)
			
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑓
			

			
				
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				2
			

			
				(
				=
				𝑥
				)
				s
				i
				n
				𝑥
				−
				𝑥
				c
				o
				s
				𝑥
			

			
				
			
			

				𝑥
			

			

				2
			

			

				𝑔
			

			

				
			

			
				=
				𝑓
				(
				𝑥
				)
			

			

				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			

				4
			

			
				,
				𝑓
				(
				𝑥
				)
			

			
				
				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				4
			

			
				=
				(
				𝑥
				)
				s
				i
				n
				𝑥
			

			
				
			
			
				2
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
			

			
				,
				
				𝑓
				(
				𝑥
				)
			

			
				
				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				4
			

			
				
				(
				𝑥
				)
			

			

				
			

			
				=
				2
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
			

			
				
				(
				𝑥
				)
				−
				3
				𝑔
			

			
				
				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
				
			

			
				
				(
				𝑥
				)
				t
				a
				n
				𝑥
			

			
				
			
			
				[
				2
				𝑔
			

			

				
			

			
				(
				𝑥
				)
				+
				𝑥
				𝑔
			

			
				
				
			

			
				]
				(
				𝑥
				)
			

			

				2
			

			
				.
				s
				e
				c
				𝑥
			

		
	

						Employing 
	
		
			
				t
				a
				n
				𝑥
				>
				𝑥
			

		
	
 and the conditions in (5), it is not difficult to show that the numerator of 
	
		
			
				[
				𝑓
			

			
				
				3
			

			
				(
				𝑥
				)
				/
				𝑓
			

			
				
				4
			

			
				(
				𝑥
				)
				]
			

			

				
			

		
	
 is negative on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
. This means that the function 
	
		
			

				𝑓
			

			
				
				3
			

			
				(
				𝑥
				)
				/
				𝑓
			

			
				
				4
			

			
				(
				𝑥
				)
			

		
	
 is decreasing on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
. Consequently, making use of Lemma 5 consecutively, it is revealed that the functions 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			

				4
			

			
				=
				𝑓
				(
				𝑥
				)
			

			

				3
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				3
			

			
				(
				0
				)
			

			
				
			
			

				𝑓
			

			

				4
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				4
			

			
				,
				𝑓
				(
				0
				)
			

			
				
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑓
			

			
				
				2
			

			
				(
				,
				𝑓
				𝑥
				)
				𝐻
				(
				𝑥
				)
				=
			

			

				1
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				1
			

			
				(
				𝜋
				/
				2
				)
			

			
				
			
			

				𝑓
			

			

				2
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				2
			

			
				=
				(
				𝜋
				/
				2
				)
				(
				s
				i
				n
				𝑥
				/
				𝑥
				)
				−
				(
				2
				/
				𝜋
				)
			

			
				
			
			
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				𝑥
				)
			

		
	

						are all decreasing on 
	
		
			
				(
				0
				,
				𝜋
				/
				2
				)
			

		
	
. Since 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑥
				→
				0
			

			

				+
			

			
				𝐻
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				0
			

			

				+
			

			

				𝑓
			

			

				1
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				1
			

			
				(
				𝜋
				/
				2
				)
			

			
				
			
			

				𝑓
			

			

				2
			

			
				(
				𝑥
				)
				−
				𝑓
			

			

				2
			

			
				=
				(
				𝜋
				/
				2
				)
				1
				−
				(
				2
				/
				𝜋
				)
			

			
				
			
			
				=
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				0
				)
				𝜋
				−
				2
			

			
				
			
			
				𝜋
				[
				]
				,
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				0
				)
				l
				i
				m
			

			
				𝑥
				→
				(
				𝜋
				/
				2
				)
			

			

				−
			

			
				𝐻
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				(
				𝜋
				/
				2
				)
			

			

				−
			

			
				(
				(
				s
				i
				n
				𝑥
				)
				/
				𝑥
				)
				−
				(
				2
				/
				𝜋
				)
			

			
				
			
			
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				(
				𝜋
				/
				2
				)
			

			

				−
			

			
				s
				i
				n
				𝑥
				−
				(
				2
				/
				𝜋
				)
				𝑥
			

			
				
			
			
				𝑥
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑥
				𝑔
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				(
				𝜋
				/
				2
				)
			

			

				−
			

			
				c
				o
				s
				𝑥
				−
				(
				2
				/
				𝜋
				)
			

			
				
			
			
				𝑔
				(
				𝜋
				/
				2
				)
				−
				𝑔
				(
				𝑥
				)
				−
				𝑥
				𝑔
			

			

				
			

			
				=
				(
				𝑥
				)
				−
				(
				2
				/
				𝜋
				)
			

			
				
			
			
				−
				(
				𝜋
				/
				2
				)
				𝑔
			

			

				
			

			
				=
				4
				(
				𝜋
				/
				2
				)
			

			
				
			
			

				𝜋
			

			

				2
			

			

				𝑔
			

			

				
			

			
				,
				(
				𝜋
				/
				2
				)
			

		
	

						from 
	
		
			
				𝐻
				(
				𝜋
				/
				2
				)
				≤
				𝐻
				(
				𝑥
				)
				≤
				𝐻
				(
				0
				)
			

		
	
, the inequality (6) follows. The proof of Theorem 2 is complete.
4. Applications of Theorem 1
After proving Theorems 1 and 2, we now start off to apply them to construct some new inequalities. 
Let 
	
		
			
				0
				≤
				𝜆
				≤
				1
			

		
	
 and 
	
		
			
				𝐴
				,
				𝐵
				>
				0
			

		
	
 with 
	
		
			
				𝐴
				+
				𝐵
				≤
				𝜋
			

		
	
. Then,
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				c
				o
				s
			

			

				2
			

			
				(
				𝜆
				𝐴
				)
				+
				c
				o
				s
			

			

				2
			

			
				(
				𝜆
				𝐵
				)
				−
				2
				c
				o
				s
				(
				𝜆
				𝐴
				)
				c
				o
				s
				(
				𝜆
				𝐵
				)
				c
				o
				s
				(
				𝜆
				𝜋
				)
				≥
				s
				i
				n
			

			

				2
			

			
				(
				𝜆
				𝜋
				)
				.
			

		
	

					This inequality is known in the literature as Yang’s inequality. Since paper [16], many mathematicians mistakenly referred this inequality to [21, pages 116–118]. Indeed, the paper we should refer to is [22] or an even earlier paper in Chinese.
The first application of Theorem 1 is to refine and generalize Yang’s inequality (23) as follows.
Theorem 7.  For 
	
		
			
				𝑘
				≥
				2
			

		
	
, let 
	
		
			

				𝐴
			

			

				𝑖
			

			
				>
				0
			

		
	
 and 
	
		
			

				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝑖
			

			
				≤
				𝜋
			

		
	
. If 
	
		
			
				0
				≤
				𝜆
				≤
				1
			

		
	
, then 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				𝑅
				(
				𝜆
				)
				≤
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑘
			

			

				𝐻
			

			
				𝑖
				𝑗
			

			
				≤
				𝑇
				(
				𝜆
				)
				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝐻
			

			
				𝑖
				𝑗
			

			
				=
				c
				o
				s
			

			

				2
			

			
				
				𝜆
				𝐴
			

			

				𝑖
			

			
				
				+
				c
				o
				s
			

			

				2
			

			
				
				𝜆
				𝐴
			

			

				𝑗
			

			
				
				
				−
				2
				c
				o
				s
				𝜆
				𝐴
			

			

				𝑖
			

			
				
				
				c
				o
				s
				𝜆
				𝐴
			

			

				𝑗
			

			
				
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				
				c
				o
				s
				(
				𝜆
				𝜋
				)
				,
				𝑇
				(
				𝜆
				)
				=
				4
				𝜆
				+
				(
				𝜋
				−
				2
				)
				𝜆
			

			
				
			
			
				2
				
				1
				−
				𝜆
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝜋
				(
				𝜆
				−
				1
				)
				/
				2
			

			
				
				
			

			

				2
			

			
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				
				𝑅
				(
				𝜆
				)
				=
				4
				𝜆
				+
				2
				𝜆
			

			
				
			
			
				
				2
				𝑚
				+
				𝑛
				𝜋
				1
				−
				𝜆
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝜋
				(
				𝜆
				−
				1
				)
				/
				2
			

			
				
				
			

			

				2
			

			
				c
				o
				s
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				,
			

		
	

						and 
	
		
			
				𝑛
				≥
				0
			

		
	
 and 
	
		
			
				𝑚
				≥
				2
			

		
	
 are integers. 
Proof. Substituting 
	
		
			
				𝑥
				=
				𝜆
				𝜋
				/
				2
			

		
	
 in the inequality (4) reveals that 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				s
				i
				n
				𝜆
				𝜋
			

			
				
			
			
				2
				≥
				𝜆
				+
				2
				𝜆
			

			
				
			
			
				
				2
				𝑚
				+
				𝑛
				𝜋
				1
				−
				𝜆
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝜋
				/
				2
				(
				𝜆
				−
				1
				)
			

			
				
				,
				s
				i
				n
				𝜆
				𝜋
			

			
				
			
			
				2
				≤
				𝜆
				+
				(
				𝜋
				−
				2
				)
				𝜆
			

			
				
			
			
				2
				
				1
				−
				𝜆
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝜋
				/
				2
				(
				𝜆
				−
				1
				)
			

			
				
				.
			

		
	

						Using 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				s
				i
				n
			

			

				2
			

			
				(
				𝜆
				𝜋
				)
				=
				4
				s
				i
				n
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				c
				o
				s
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				,
			

		
	

						the inequality 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				s
				i
				n
			

			

				2
			

			
				(
				𝜆
				𝜋
				)
				≤
				𝐻
			

			
				𝑖
				𝑗
			

			
				≤
				4
				s
				i
				n
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				,
			

		
	

						see either [22], [16, 
	
		
			
				(
				2
				.
				1
				3
				)
			

		
	
], or [2, page 17, 
	
		
			
				(
				3
				.
				4
				)
			

		
	
], becomes
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				4
				
				𝜆
				+
				2
				𝜆
			

			
				
			
			
				
				2
				𝑚
				+
				𝑛
				𝜋
				1
				−
				𝜆
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝜋
				/
				2
				(
				𝜆
				−
				1
				)
			

			
				
				
			

			

				2
			

			
				c
				o
				s
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				≤
				𝐻
			

			
				𝑖
				𝑗
			

			
				
				(
				≤
				4
				𝜆
				+
				𝜋
				−
				2
				)
				𝜆
			

			
				
			
			
				2
				
				1
				−
				𝜆
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝜋
				/
				2
				(
				𝜆
				−
				1
				)
			

			
				
				
			

			

				2
			

			

				.
			

		
	

						Finally, taking the sum of the above inequality for all 
	
		
			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑛
			

		
	
 results in (24). The required proof is complete. 
Corollary 8.  Under the conditions of Theorem 7, one has 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑅
			

			

				1
			

			
				
				(
				𝜆
				)
				≤
			

			
				1
				≤
				𝑖
				<
				𝑗
				≤
				𝑘
			

			

				𝐻
			

			
				𝑖
				𝑗
			

			
				≤
				𝑇
			

			

				1
			

			
				(
				𝜆
				)
				,
			

		
	

						where 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑇
			

			

				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜋
				(
				𝜆
				)
				=
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				,
				𝑅
			

			

				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜆
				(
				𝜆
				)
				=
				4
			

			

				2
			

			
				c
				o
				s
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				.
			

		
	

Proof. When 
	
		
			
				0
				≤
				𝜆
				<
				1
			

		
	
 and 
	
		
			
				𝑛
				=
				0
			

		
	
, we have 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑚
				→
				∞
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜋
				𝑇
				(
				𝜆
				)
				=
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				,
				l
				i
				m
			

			
				𝑚
				→
				∞
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑘
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				𝜆
				𝑅
				(
				𝜆
				)
				=
				4
			

			

				2
			

			
				c
				o
				s
			

			

				2
			

			
				𝜆
				𝜋
			

			
				
			
			
				2
				.
			

		
	

						This implies the required result. 
The second application of Theorem 1 is to construct some new integral inequalities for 
	
		
			
				s
				i
				n
				𝑥
				/
				𝑥
			

		
	
.
Theorem 9.  For 
	
		
			
				𝑥
				∈
				(
				0
				,
				𝜋
				/
				2
				]
			

		
	
, if 
	
		
			
				𝑛
				≥
				0
			

		
	
 and 
	
		
			
				𝑚
				≥
				2
			

		
	
 are integers, then
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				
			

			
				0
				𝜋
				/
				2
			

			
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				2
				𝑑
				𝑥
				+
			

			
				𝑚
				+
				2
			

			

				𝑒
			

			
				−
				𝑛
				𝜋
				/
				2
			

			
				
			
			
				(
				2
				𝑚
				+
				𝑛
				𝜋
				)
				𝜋
			

			
				𝑚
				+
				1
			

			

				
			

			
				0
				𝜋
				/
				2
			

			

				𝑥
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝑥
			

			
				2
				𝑑
				𝑥
				≥
				1
				+
			

			
				
			
			
				,
				
				(
				2
				𝑚
				+
				𝑛
				𝜋
				)
			

			
				0
				𝜋
				/
				2
			

			
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				2
				𝑑
				𝑥
				+
			

			

				𝑚
			

			
				(
				𝜋
				−
				2
				)
				𝑒
			

			
				−
				𝑛
				𝜋
				/
				2
			

			
				
			
			

				𝜋
			

			
				𝑚
				+
				1
			

			

				
			

			
				0
				𝜋
				/
				2
			

			

				𝑥
			

			

				𝑚
			

			

				𝑒
			

			
				𝑛
				𝑥
			

			
				≤
				𝜋
				𝑑
				𝑥
			

			
				
			
			
				2
				.
			

		
	

Proof. This follows from integrating on all sides of the double inequality (4). 
Remark 10. Applying Theorem 9 to 
	
		
			
				𝑛
				=
				0
			

		
	
 gives 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				𝑚
				+
				1
				+
				1
				≤
			

			
				0
				𝜋
				/
				2
			

			
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				𝑑
				𝑥
				≤
				1
				+
				(
				𝜋
				−
				2
				)
			

			
				
			
			
				2
				𝑚
			

			
				
			
			
				.
				𝑚
				+
				1
			

		
	

						Applying Theorem 9 to 
	
		
			
				𝑛
				=
				0
			

		
	
 and 
	
		
			
				𝑚
				=
				2
			

		
	
 yields 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				4
			

			
				
			
			
				3
				≤
				
			

			
				0
				𝜋
				/
				2
			

			
				s
				i
				n
				𝑥
			

			
				
			
			
				𝑥
				𝑑
				𝑥
				≤
				𝜋
				+
				1
			

			
				
			
			
				3
				.
			

		
	

						This is a recovery of an inequality established in [3, page 101]. It was also collected in [2, 
	
		
			
				(
				2
				.
				1
				4
				)
			

		
	
]. Such a kind of inequalities can be found in [23]. 
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