
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 946768, 10 pages
http://dx.doi.org/10.1155/2013/946768

Research Article
Vulnerability Assessment of IPv6 Websites to SQL Injection and
Other Application Level Attacks

Ying-Chiang Cho and Jen-Yi Pan

Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan

Correspondence should be addressed to Ying-Chiang Cho; silvergun@mail2000.com.tw

Received 14 October 2013; Accepted 2 December 2013

Academic Editors: S. K. Bhatia and A. K. Misra

Copyright © 2013 Y.-C. Cho and J.-Y. Pan. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Given the proliferation of internet connected devices, IPv6 has been proposed to replace IPv4. Aside from providing a larger
address space which can be assigned to internet enabled devices, it has been suggested that the IPv6 protocol offers increased
security due to the fact that with the large number of addresses available, standard IP scanning attacks will no longer become
feasible. However, given the interest in attacking organizations rather than individual devices, most initial points of entry onto an
organization’s network and their attendant devices are visible and reachable throughweb crawling techniques, and, therefore, attacks
on the visible application layer may offer ways to compromise the overall network. In this evaluation, we provide a straightforward
implementation of a web crawler in conjunction with a benign black box penetration testing system and analyze the ease at which
SQL injection attacks can be carried out.

1. Introduction

IPv6was developed by Engineering Task Force [1] to solve the
issue of insufficient number of addresses provided by the IPv4
protocol [2].With the proliferation of internet enabled devise,
the limits of IPv4 have been reached. IPv6 is composed of
128 bits, generating a total of 3.4 × 1038 addresses, which is
7.9 × 1028 times the address space of IPv4. Because of this
greatly increased address space, most normal “war-dialing”
type attacks [3, 4] are not feasible, and thus IPv6 offers
an increased level of security versus IPv4. Therefore, most
information security research with regard to IPv6 focuses
mainly on the discussion of IP layer [5, 6] seeking to show
that the underlying protocol is resistant to attack. However,
this research ignores the overall nature of the Internet; that
is, devices are inherently interconnected, and that once a
vulnerable device can be identified linking information exists
that allows one to identify other devices on the network.
Therefore, it is trivial to traverse the links to attack the device
of interest.

More specifically, most attacks are against organization
rather than individual devices. Most of these organizations
are connected to the internet in such a way where they can be

searched via publically available search engines or a hyperlink
structure can be traversed to reach them. After the initial web
server or database has been identified and breached, other
devices belonging to the organization can then be identified
and compromised in turn, with the increased address space
of IPv6 not making a difference. Thus, the increased address
space provided by IPv6 does not offer any practical barriers
to finding targets to attack.

To demonstrate this vulnerability, we will utilize the key-
word search of publically available search engines such as
Google, Bing, and Yahoo in conjunction with a web crawler
with a black box penetration testing kit [7–9] to show how
this can be done in principle.

2. Algorithm Principle

Briefly, the overall component of this system is a web crawler
[10, 11] that takes an initial website, traverses the links on the
front page, and tries to identify vulnerable links that can be
exploited.This system also has a secondary component which
utilizes search engines such as Google, Bing, and Yahoo to
search for specificURLs thatmight be vulnerable to injection.



2 The Scientific World Journal

2.1. Web Crawling Algorithm. An effective web crawler needs
to implement four key elements, a selection policy, a revisi-
tation policy, a politeness policy, and parallelization scheme
[12–15]. Briefly, the selection policy defines which sites that
one will visit and includes aspects such as whether a link
has been previously visited. A revisitation policy defines
how often a link should be refreshed in order to detect
changes. Politeness reflects the scheme by which a server is
not overloaded with requests, and finally the parallelization
scheme defines how the process can be parallelized for
efficient searching.

The typical web crawler works via breadth first search
[16], in which a frontier of unvisited links is first presented.
These nodes are traversed, and a new frontier of unvis-
ited sites is found after which the process repeats. One
complication, however, is that to mark a site as visited,
we normally rely upon a hashing protocol that functions on a
canonical web address rather than just storing the address in
its entirety. The overall process is given in Figure 1. However,
one complication that needs to be addressed is that malicious
websites or “spider traps” can be crafted so that web crawlers
are trapped in an infinite loop [17]. Therefore, the hashing
strategy must also take into account some of the content
associated with the page.

2.2. Dynamic Analysis. Dynamic analysis identifies security
problems by directly interacting with a functioning website.
In other words, dynamic analysis relies on simulating user
interactions with web pages, including interactions designed
with potentially malicious intent. Because dynamic analysis
uses a real website to find vulnerabilities in real time, found
vulnerabilities are much more likely to be real than with
static analysis, which has problems with detecting false
positives [18, 19]. Black box testing determines whether a web
application has a vulnerability by inputting testing data to
the application and analyzing its response [9], as opposed
to white box testing which focuses on source code parsing
and analysis. White box testing tends to have lower efficiency
because it does not factor in the dynamic interplay between
the web server, application server, and database server [20].
Therefore, it is more common to use black box testing to
more holistically analyze web application’s vulnerability [21].
Penetration testing is a method to estimate the security of
computer system or internet security by actively simulating
attacks [22, 23]. This method analyzes all possible security
weakness in the system, so the testing result is very valuable
and convincing. The end product is not simply potential vul-
nerabilities but verified vulnerabilities and exploits. Honest
testing result can form a bridge between developer and
information security communities [24, 25].

2.3. Testing for SQL Injection. SQL injection [26–28] takes
advantage of the process of web applications accessing
databases with queries based on improperly validated user
input.Thewebsite securitymining systemfinds SQL injection
attacks which can bypass firewall and identity authorization
to control the database [29]. SQL injection can penetrate any
type of database that relies on SQL, regardless of whether

Initialize
frontier

frontier

frontier

with seed
URLs

Crawling loop

Add URLs to
Is

termination
checked?

Yes

Yes

No

No

Pick URL from

Does URL
exist?

Fetch page

End

Parse page

Figure 1: Web crawling flow chart.

the underlying web application is written in ASP, PHP, or
JSP as long as the program has a severe yet common logic
error. Although there are well-known techniques to combat
SQL injection attacks [30, 31], they are still quite common,
and, therefore, there has been much interest in developing
methods to inspect web applications and detect these vulner-
abilities [29, 32, 33].

2.4. Testing for Brute Force. A complete dictionary file is
important to our research. The web crawler we designed will
detect the pages with weak password [34], and hence the
detection ability [35, 36] will be decided on quality of the
dictionary file. In particular in case of crawling database
form, ineffective dictionary file causes slow crawling while
insufficient dictionary file fails to determinewhether theweb-
page’s password detected reaches the information security
standards [37, 38]. With thousands of real experiments, our
system refers to many related literatures [9, 39–43] and web
vulnerability scanners practically applied. We provide func-
tion of adjustable parameters to handle different environment
through flexible adjustment (for instance, Http versus FTP,
whether complying with protocol of robots.txt, priority of
attacks facing numerous database, the depth of crawling a
webpage and whether detecting broken links, etc.). However,
we do not focus on these issues here.

2.5. The Security Issues from IPv4 to IPv6. There are three
techniques to transform IPv4 to IPv6 addresses which are
dual stack, tunneling, and translation [44]. Most of the secu-
rity research with respect to IPv6 has focused upon these
translation layers as well as in the authentication and encryp-
tion of the individual data packets [45–48]. The primary



The Scientific World Journal 3

<?xml version=“1.0” encoding=“utf-8”?>
<config>
<name>Name of Vulnerability</name>
<date>Releasing Date of Vulnerability</date>
<author>Author</author>
<version>Version Number</version>
<type>Type of Vulnerability</type>
<description>Description of Vulnerability</description>
<file>File of Causing Vulnerability </file>
<bugfile>The URL that used for Vulnerability Testing</bugfile>
<successkeyword>Successful keyword shown on the page after
error appears</successkeyword>
</config>

Algorithm 1: XML format.

concern that security researchers have tried to address is
the problem of incorrect redirection and spoofing. However,
it should be noted that the majority of attacks against the
current IPv4 infrastructure do not occur at the transport layer
but rather at the application layer [49] and that these attacks
still apply to IPv6. For instance, attacks such as sniffing,
application layer attacks [50], rogue devices, man-in-the-
middle attacks, and flooding are still applicable. Both IPv4
and IPv6 are vulnerable when facing application layer attacks
[51], as shown in Figure 2 [52].

Among many application level attacks methods, SQL
injection is the most well known. Furthermore, because it
attacks databases which may store information related to
accounts and authentication, they are an attractive target to
hit. In our evaluation we combine the discovery module
which utilizes web crawling with black box penetration
methods [53] to implement a system which is called website
securitymining system. It has twomodules and six functions.
The modules are the dynamic scanning module and static
mining module. The functions are the syntax analysis func-
tion, search engine assistant function, hidden page search-
ing function, vulnerability updating function, specific file
searching function, and multidomain lookup with single IP
function. The experimental targets are each country’s IPv6
official website. We use the system to crawl each website 24
hours and gather statistics to each site’s found e-mails and
injectable URLs to compare the security protection done in
each country’s IPv4 website.

3. System Implementation

In order to inspect if information stored on the web presents
a security risk, this research combines a web crawler, like
those used in search engines, with the concept of appli-
cation vulnerability inspection, specifically black box and
penetration testing. The end product is the website security
mining system, a tool to evaluate a website’s security. This
system can be separated into two main modules which are
the Static Mining module and the Dynamic Scanning mod-
ule. The Static Mining module inspects a specific website’s
robots.txt, E-mails, potential SQL injection URLs, files, and

Being immersed by attacker

Application layer

TCP UDP

IP
Transport layer

Logical link control
layer

Physical layer

Application layer

TCP UDP

IP
Transport layer

Logical link control
layer

Physical layer

Figure 2: Application attack.

broken links. The Dynamic Scanning module uses the sys-
tem’s vulnerability-inspecting function by typing keywords
into a search engine’s query box to inspect many websites.

Both the Static Mining and Dynamic Scanning modules
leverage the system’s vulnerability inspecting function, which
has two parts: known website vulnerability inspection and
SQL injection inspection. The former compiles a database of
open source website vulnerabilities into an XML file which
is used to inspect the website to see whether it has the same
vulnerability. Algorithm 1 is the format of an XML file. The
bug file parameter is a base64 hash and other parameters
are converted from the open source website vulnerabilities
database. Our system updates its vulnerability database by
adopting new vulnerabilities that have been announced on
the Exploit Database regularly [54]. By updating the vulner-
ability database, we can ensure that the vulnerability samples
are always updated, similar to how antivirus software regu-
larly updates its virus database.

The website security mining system can find vulnerabil-
ities in a variety of database engines, specifically MS-SQL,
MySQL, Access, Oracle, Postgresql, and Sqlite. The steps to
identify SQL injection vulnerabilities are as follows. First, an
injectable point must be identified by inspecting the website
for places where user input may be used in SQL queries. If
such an injectable point is found, then further tests are



4 The Scientific World Journal

conducted to identify the specific type of database engine.
To do this, we take advantage of how different databases
use different function names for certain tasks. For example,
MS-SQL and MySQL use len( ) to calculate length; however,
Oracle uses length( ) to do it. In other words, when you use
len(“s”) = 1 to test and receive a normal response, that means
the target website uses MS-SQL or MySQL. On the other
hand, if this does not work, then the databasemight beOracle
or other types of database. There are several other functions
that can help us determine what the database is. After getting
the database’s type, we find table and column names and
finally get the database’s data.

The website security mining system can run on any oper-
ating systems that are supported by Java.We describe the two
basic modules in more detail below.

3.1. Static Mining Module. The Static Mining module runs
depth mining on a specific website. There is an option to
determine whether you want to follow the website’s robot.txt
rules. Robot.txt [55] is an ASCII-encoded file stored in the
website’s root directory that lists files that can and cannot be
accessed by search engine crawlers. There is no official stan-
dards body or RFC for the robots.txt format. It was created by
consensus and ultimately serves only as a recommendation
for crawlers, so it cannot protect the website’s private data
completely [56]. Other functions of the StaticMiningmodule
are identifying e-mail information, potentially injectable
URLs, downloadable files, and broken links, which may
contain private information.

The Static Mining module starts with a specific web site
and then collects all the related pages from it using a breath-
first search algorithm. The system assumes that web pages
have close relations to the original web page if the link
distance is within a certain range [57–59], so it will fetch
all links inside the original page then iterate through all
of those URLs to fetch all links within them. This type of
method can be easily parallelized to improve fetching speed.
After files are downloaded by the web crawler, an HTML
parser process extracts pages’ URLs and then adds it into the
URL queue. Also, the systemwill call vulnerability inspecting
process to inspect URLs, checking whether it has potential
vulnerabilities or not.

Figure 3 shows the process of mining a college’s website
[60] by our system. Several injectable URLs were found and
by exploiting these vulnerabilities we were able to retrieve the
database information shown in Figure 4.

Additionally, we determined that the operating system
(OS) of the host was “Microsoft Windows XP Professional,”
as shown in Figure 5, which could open up the possibility for
further OS-based exploits.

3.2. Dynamic Scanning Module. The most popular search
engines today are Google, Yahoo, Baidu, Microsoft Bing,
NHN, eBay, Ask.com, Yandex, and Alibaba. With the help of
search engines, we can find billions of web pages and their
URLs. Our system inspects these websites to determine
whether they have vulnerabilities by analyzing the results
retrieved from search engines. Our system supports the kinds

Figure 3: Static Mining module.

Figure 4: Database content found by injectable URLs.

of query syntaxes used in modern search engines. After you
input the keywords, the system can find all related web pages
and inspect whether they are at risk for vulnerabilities or not.

Figures 6, 7, and 8 show the different query syntaxes
used in different search engines. For Google, it is “inurl:.asp?
site:edu nobel prize”; Yahoo is “inurl:.php? site:edu educa-
tion”; Bing is “inurl:.aspx? site:edu academic”.

This research used the same command, inurl:.asp?
|.jsp?|.php?|.aspx? site:com new, to search the ten most popu-
lar search engines. 800 web pages were retrieved from each
search engine. We found 550 SQL injectable URLs and 21
known website vulnerabilities out of this total of 8000 web
pages, which are shown in Figure 9 below.This highlights the
fact that SQL injection problems are still very severe on the
internet.

Despite SQL queries injection, this system provides func-
tions of backend systems detection [61], session hijacking
[62], Cookie poisoning [63], form manipulation [64], URL
parameter tampering [65], HTTP header modification [66],
bypassing intermediate forms in a multiple-form set [61],



The Scientific World Journal 5

Figure 5: Host operating system.

Figure 6: Work on Google search engine.

cross-site scripting [67], third party software misconfigura-
tion [61], forceful browsing [43], and several security tests
related to application layer.However, we donot focus on these
issues here.

4. Experiments

We designed two experiments to test the security situation
of IPv6’s website on the internet. Experiment 1 uses WSMS’s
Dynamic Scanning module to compare the numbers of
injectable URL in each IPv4 and IPv6 website. Experiment 2
usesWSMS’s Static Mining module to crawl the websites that
have been authorized by IPv6 forum [68], which can help us
realize the situation of e-mail leakage and database leakage in
IPv6’s websites.

4.1. Experiment 1. We constructed WSMS in the pure IPv4
environment; it will show “getaddr info failed URL Error”
message and stop if it crawled IPv6’s website. In the case
where we wish to explore IPv6 addresses, the converse will
be true; that is, getaddr info URL failed will be returned
for IPv4 address. We uses Dynamic Scanning module to
search these four type web pages (asp/aspx/php/jsp) in three

Figure 7: Work on Yahoo search engine.

Figure 8: Work on Bing search engine.

Table 1: Pure IPv4 website detection statistics.

(𝑋, 𝑌, 𝑍) Google Yahoo! Bing
ASP (831, 292, 22) (558, 123, 7) (575, 157, 15)
ASPX (875, 286, 8) (559, 68, 5) (623, 153, 1)
PHP (917, 311, 15) (741, 177, 7) (655, 220, 10)
JSP (866, 290, 12) (501, 171, 13) (571, 152, 12)

different search engines (Google/Yahoo!/Bing) with “world
peace” as the keyword. The statements which we type in
Google, Yahoo!, and Bing are shown as

Google => inurl:asp? world peace
Yahoo! => world peace asp?
Bing => world peace asp?

We assumed that 𝑋 represents the pure IPv4 web pages
that contain world peace, 𝑌 represents the number of URLs
that have been inspected by WSMS, and 𝑍 represents the
number of URLs that are injectable. The operating process
and data results are shown by Tables 1, 2, and 3 (also see
Figure 10).

As shown in Table 4 analyzed through type of website,
results of Analysis of variance (ANOVA) [69] (𝑃 value = 0.873
> 0.05) showed that the type of website has no significant
contribution to the rate of vulnerability in either IPv4 or IPv6.



6 The Scientific World Journal

Figure 9: Dynamic scanning results.

ASP ASPX PHP JSP

IPv4
IPv6

10.00

8.00

6.00

4.00

2.00

0.00

(%
)

Figure 10: Ratio of injectable URL.

Table 2: Pure IPv6 website detection statistics.

(𝑆, 𝑇, 𝑈) Google Yahoo! Bing
ASP (482, 222, 4) (504, 25, 1) (517, 22, 0)
ASPX (368, 97, 2) (502, 31, 1) (506, 18, 2)
PHP (520, 175, 3) (607, 45, 2) (639, 29, 2)
JSP (128, 36, 0) (516, 16, 0) (546, 6, 1)

Table 3: Ratio of injectable URL.

ASP ASPX PHP JSP
IPv4 7.69% 2.76% 4.52% 6.04%
IPv6 1.86% 3.42% 2.81% 1.72%
Average 4.78% 3.09% 3.67% 3.88%

In Tables 5 and 6 analyzed through type of network environ-
ment, we knew that IPv4 and IPv6 have great difference in
the prevalence of URL injection from results of independent

Table 4: ANOVA.

SS DF MS 𝐹 𝑃

Ratio of injectable URL
Between 0.001 3 0.000 0.232 0.873
Inner 0.023 20 0.001
Sum 0.024 23

Table 5: Group statistics.

Web page Number Mean

Ratio of injectable URL IPv4 12 0.05545133
IPv6 12 0.02937988

Table 6: Independent samples test.

Levene’s test for
equality of variances

𝑡-test for equality of
means

𝐹 test 𝑃 𝑡 DF 𝑃 (2-tailed)
The ratio of
injectable URL 0.368 0.550 2.147 22 0.043

Table 7: Page∗ type cross-tabulation.

Type Sum
ASP ASPX PHP JSP

IPv4 page
Amount 44 14 32 37 127
Ratio 34.6% 11.0% 25.2% 29.1% 100.0%

IPv6 page
Amount 5 5 7 1 18
Ratio 27.8% 27.8% 38.9% 5.6% 100.0%

Sum
Amount 49 19 39 38 145
Ratio 33.8% 13.1% 26.9% 26.2% 100.0%

Table 8: Chi-square test.

Value DF Asymp. Sig. (2-tailed)
Pearson Chi-square 10.329𝑎 3 0.016
𝑎: 3 cells (37.5%) have expected count less than 5. The minimum expected
count is 2.24.

samples 𝑡-test. In other words, upon the confident level of
95%, the average prevalence rate of injectable URL of IPv4
(5.55%) is larger than IPv6 (2.94%). However, the reasons for
above statement remain unclear.Wemake hypothesis that the
main reason that IPv6 sites have better security than IPv4
sites is because the IPv6 sites are newer and the programmers
of these sites are more cognizant of vulnerabilities such as
SQL injection and have already taken steps to mitigate these
issues.

The experiment result shows that the number of inspect-
able URLs in Google is the highest above all because it sup-
ports the function of parameter “inurl.” In IPv4’s situation,
ASPX has the least injection problem while ASP gets the
worst outcome. In IPv6’s situation, JSP has the least injection



The Scientific World Journal 7

Table 9: Experiment 2 result output.

Region/country Tags URL MAIL disclosure amount Inject URL amount
Mexico Enterprise site http://arteria.com.mx 91 0
Brazil IT site http://bgp.net.br 169 0
Denmark Other http://mirrors.dotsrc.org 13 0
Russia Other http://rusnavi.org 46 0
Belgium Government site http://www.awt.be 565 3
Argentina Education site http://ipv6solutions.com.ar 0 0
Spain Education site http://www.cba.upc.edu 557 0
Britain Education site http://www.ecs.soton.ac.uk 1697 0
Canada Personal site http://www.ampedcanada.com 0 0
America Not-for-profit cooperative site http://www.fairfaxcirclechurch.org 12 0
Germany Other http://www.das-labor.org 71 0
New Zealand Other http://www.geekzone.co.nz 97 0
Italy Government site http://www.imaa.cnr.it 33 0
India Government site http://www.nixi.in 77 0
Japan Personal site http://www.robata.org 82 0
Taiwan Education site http://www.yfp.ks.edu.tw 3 0
Thailand Education site http://ns6.cpe.rmutt.ac.th 0 0
China Education site http://www.zzrvtc.edu.cn 430 59
Switzerland Other http://www6.itu.int 1691 13
Poland Education site http://zsp6siedlce.pl 3 0

problem while ASPX performs poorly. In general, ASPX has
much fewer problems and ASP has most problems. From
Tables 7 and 8, IPv4 and IPv6 have great difference in the
virus number detected in view of types of website, while from
the result of Chi-square test, we discovered that ASP website
accounts for 34.6% of virus detected in IPv4, followed by
JSP with 29.1%; these two kinds of website perform better in
IPv6 environment. In IPv6, PHP accounts for 38.9% of virus
detected, followed by ASPX with 27.8%, and these two kinds
of website perform better in IPv4.

4.2. Experiment 2. We constructed WSMS on the pure IPv6
environment, using Static Mining module to crawl twenty
websites which were randomly selected from twenty regions
from the IPv6 forum, and then we gathered the amount of
E-mail address and injectable URL again (shown in Table 9);
we see a significant number of websites in both IPv6 and IPv4
that are susceptible to attack, with IPv6 showing a lower level
of vulnerability.

From the above two experiments, we can see that the
migration to IPv6 still leaves a great deal of vulnerabilities
present in the application level infrastructurewith a great deal
of vulnerabilities still existing. These vulnerabilities while
known can represent the initial springboard formore targeted
attacks.

5. Conclusion

One of the messages from this evaluation is that with respect
to the majority of the attacks that are commonly used, IPv6

does not offer any increased level of security versus IPv4.
This is not surprising given the fact that the application layer
attacks bypass themajority of the security infrastructure built
into IPv6. Therefore, the results of this evaluation are hardly
surprising. However, one interesting consequence of IPv6 is
that given the large address space, it becomesmore difficult to
identify where malicious attacks are coming from due to the
fact that an attacker no longer has to be tied to a small number
of IP addresses but instead has a much larger pool with
which to hide.Without the need to be readily discoverable by
the general public, this level of anonymity becomes a much
stronger weapon for the attacker than it is for the defender.
That being said, with a better understanding vulnerability, we
see that newer systems are much more robust than legacy
systems. This perhaps is the most important result of this
paper.

The website figures sampled from the experiment can
prove that, even though the injection problem of IPv6website
is less than the IPv4 one, IPv6’s security protection on the
transport layer does nothing to mitigate shortcomings on
the application layer. Therefore, the programming habit [26,
70, 71] of the programmer is still critical. We all know that
the information stored online is not one-hundred-percent
safe, but one of the measures that an end user can take is to
increase the complexity of its password setting [72, 73]. As for
the server database side, the plain text password should be
encrypted [74] before it is stored in the database, so that the
hacker will not obtain easily authentication tokens when he
breaks in the website and obtains the content of the database.
The empirical measures show that aside from the website



8 The Scientific World Journal

programming logic and database security management, the
encrypted storage of the data is also important.

Acknowledgments

The authors thank the National Science Council, Taiwan, for
partially supporting this research under contract no. NSC
102-2221-E-194-036. The authors also feel grateful to anony-
mous reviewers for their very helpful and constructive criti-
cism. Their suggestions have enabled the authors to improve
the quality of this work.

References

[1] S. Deering and R. Hinden, IETF RFC2460, Internet Protocol,
Version 6, 1998, http://www.ietf.org/rfc/rfc2460.txt.

[2] M. Boucadair, J. Grimault, P. Lévis, A. Villefranque, and P.
Morand, “Anticipate IPv4 address exhaustion: a critical chal-
lenge for internet survival,” inProceedings of the 1st International
Conference on Evolving Internet (INTERNET ’09), pp. 27–32,
Cannes La Bocca, France, August 2009.

[3] M. Gunn, “War dialing,” 2002.
[4] Wikipedia, “War dialing,” 2013, http://en.wikipedia.org/wiki/

War dialing.
[5] R. Oppliger, “Security at the internet layer,” Computer, vol. 31,

no. 9, pp. 43–47, 1998.
[6] S. Weber and L. Cheng, “A survey of anycast in IPv6 networks,”

IEEE Communications Magazine, vol. 42, no. 1, pp. 127–132,
2004.

[7] E. Fong and V. Okun, “Web application scanners: definitions
and functions,” in Proceedings of the 40th Annual Hawaii Inter-
national Conference on System Sciences (HICSS ’07), Waikoloa,
Hawaii, USA, January 2007.

[8] X. Fu, X. Lu, B. Peltsverger, S. Chen,K.Qian, andL. Tao, “A static
analysis framework for detecting SQL injection vulnerabilities,”
in Proceedings of the 31st Annual International Computer Soft-
ware and Applications Conference (COMPSAC ’07), pp. 87–96,
Beijing, China, July 2007.

[9] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
automated black-box web application vulnerability testing,” in
Proceedings of the IEEE Symposium on Security and Privacy (SP
’10), pp. 332–345, Oakland, Calif, USA, May 2010.

[10] G. Pant, P. Srinivasan, and F. Menczer, Crawling the Web, 2004.
[11] A. Heydon andM.Najork, “Mercator: a scalable, extensible web

crawler,”World Wide Web, vol. 2, no. 4, pp. 219–229, 1999.
[12] H. Y. Kao, S. H. Lin, J. M. Ho, and M. S. Chen, “Mining web

informative structures and contents based on entropy analysis,”
IEEE Transactions on Knowledge and Data Engineering, vol. 16,
no. 1, pp. 41–55, 2004.

[13] I. S. Altingövde and O. Ulusoy, “Exploiting interclass rules for
focused crawling,” IEEE Intelligent Systems, vol. 19, no. 6, pp. 66–
73, 2004.

[14] V. Shkapenyuk and T. Suel, “Design and implementation of a
high-performance distributed web crawler,” in Proceedings of
the 18th International Conference on Data Engineering, pp. 357–
368, San Jose, Calif, USA, March 2002.

[15] C. Castillo, “Effective web crawling,” Computer Science, The
University of Chile in fulfillment: ACM SIGIR Forum, 2004.

[16] S. Even, Graph Algorithms, Cambridge University Press, New
York, NY, USA, 2011.

[17] A. Paraskevas, I. Katsogridakis, R. Law, and D. Buhalis, “Search
engine marketing: transforming search engines into hotel dis-
tribution channels,” Cornell Hospitality Quarterly, vol. 52, no. 2,
pp. 200–208, 2011.

[18] M. Weiser, “Program slicing,” IEEE Transactions on Software
Engineering, vol. 10, no. 4, pp. 352–357, 1984.

[19] A. Phalgune, “Testing and debugging web applications: an end-
user perspective,” in Proceedings of the IEEE Symposium on
Visual Languages and Human Centric Computing, pp. 289–290,
Rome, Italy, September 2004.

[20] N. El Ioini and A. Sillitti, “Open web services testing,” in Pro-
ceedings of the IEEEWorld Congress on Services (SERVICES ’11),
pp. 130–136, Washington, DC, USA, July 2011.

[21] N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl, “An analysis
of black-box web application security scanners against stored
SQL injection,” in Proceedings of the IEEE 3rd International
Conference onPrivacy, Security, Risk andTrust (passat) and IEEE
3rd International Conference on Social Computing (SocialCom
’11), pp. 1095–1101, Boston, Mass, USA, October 2011.

[22] M. Bishop, “About Penetration Testing,” IEEE Security & Pri-
vacy, vol. 5, no. 6, pp. 84–87, 2007.

[23] N. Antunes andM. Vieira, “Enhancing penetration testing with
attack signatures and interface monitoring for the detection of
injection vulnerabilities in web services,” in Proceedings of the
IEEE International Conference on Services Computing (SCC ’11),
pp. 104–111, Washington, DC, USA, July 2011.

[24] H. J. Kam and J. J. Pauli, “Work in progress—web penetration
testing: effectiveness of student learning in Web application
security,” in Proceedings of the Frontiers in Education Conference
(FIE ’11), pp. F3G-1–F3G-3, Rapid City, SD, USA, November
2011.

[25] C. Mainka, J. Somorovsky, and J. Schwenk, “Penetration testing
tool for web services security,” in Proceedings of the IEEE 8th
World Congress on Services (SERVICES ’12), pp. 163–170, Hon-
olulu, Hawaii, USA, June 2012.

[26] D. A. Kindy and A. K. Pathan, “A survey on SQL injection: vul-
nerabilities, attacks, and prevention techniques,” in Proceedings
of the 15th IEEE International SymposiumonConsumer Electron-
ics (ISCE ’11), pp. 468–471, Singapore, June 2011.

[27] R. Johari and P. Sharma, “A survey on web application vul-
nerabilities (SQLIA, XSS) exploitation and security engine for
SQL injection,” in Proceedings of the International Conference on
Communication Systems and Network Technologies (CSNT ’12),
pp. 453–458, Rajkot, India, May 2012.

[28] M. Junjin, “An approach for SQL injection vulnerability detec-
tion,” in Proceedings of the 6th International Conference on
Information Technology: New Generations (ITNG ’09), pp. 1411–
1414, Las Vegas, Nev, USA, April 2009.

[29] V. Chapela, Advanced SQL Injection, 2005.
[30] R. Overstreet, Protecting Yourself from SQL Injection Attacks,

2006.
[31] S. W. Boyd and A. D. Keromytis, “SQLrand: preventing SQL

injection attacks,” pp. 292–302.
[32] C. Anley, More Advanced SQL Injection, An NGSSoftware

Insight Security Research (NISR) Publication, 2002.
[33] C. Anley, Advanced SQL Injection in SQL Server Application,

AnNGSSoftware Insight Security Research (NISR) Publication,
2002.

[34] E. H. Spafford, “OPUS: preventing weak password choices,”
Computers and Security, vol. 11, no. 3, pp. 273–278, 1992.



The Scientific World Journal 9

[35] D. P. Jablon, “Extended password key exchange protocols
immune to dictionary attack,” in Proceedings of the 6th IEEE
Workshops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, pp. 248–255, Cambridge, Mass, USA, June
1997.

[36] S. M. Bellovin and M. Merritt, “Augmented encrypted key
exchange: a password-based protocol secure against dictionary
attacks and password file compromise,” in Proceedings of the 1st
ACM Conference on Computer and Communications Security,
pp. 244–250, ACM, November 1993.

[37] B. Schneier, “Attack trees,”Dr. Dobb’s Journal, vol. 24, no. 12, pp.
21–29, 1999.

[38] L. R. Knudsen and M. J. B. Robshaw, “Brute force attacks,” in
The Block Cipher Companion, Information Security and Cryp-
tography, pp. 95–108, Springer, Berlin, Germany, 2011.

[39] M. Vieira, N. Antunes, and H. Madeira, “Using web security
scanners to detect vulnerabilities in web services,” in Proceed-
ings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’09), pp. 566–571, Lisbon, Portugal,
July 2009.

[40] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing
web vulnerability scanning tools for SQL injection and XSS
attacks,” inProceedings of the 13th Pacific Rim International Sym-
posium on Dependable Computing (PRDC ’07), pp. 365–372,
Melbourne, Australia, December 2007.

[41] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat: a web
vulnerability scanner,” in Proceedings of the 15th International
Conference on World Wide Web, pp. 247–256, ACM, May 2006.

[42] N. Antunes andM. Vieira, “Detecting SQL injection vulnerabil-
ities in web services,” in Proceedings of the 4th Latin-American
Symposium on Dependable Computing (LADC ’09), pp. 17–24,
Joao Pessoa, Brazil, September 2009.

[43] L. Auronen, “Tool-based approach to assessingWeb application
security,” in Seminar on Network Security, vol. 11, pp. 12–13,
Helsinki University of Technology, 2002.

[44] E. Nordmark and R. Gilligan, IETF RFC4213, Basic Transition
Mechanisms for IPv6 Hosts and Routers, 2005, http://www.ietf
.org/rfc/rfc4213.txt.

[45] A. R. Choudhary, “In-depth analysis of IPv6 security posture,”
in Proceedings of the 5th International Conference on Collab-
orative Computing: Networking, Applications and Worksharing
(CollaborateCom ’09), November 2009.

[46] S. Szigeti and P. Risztics, “Will IPv6 bring better security?” in
Proceedings of the 30th EUROMICRO Conference, pp. 532–537,
September 2004.

[47] E.Davies, S. Krishnan, andP. Savola, IETFRFC4942, IPv6Tran-
sition/Coexistence Security Considerations, 2007, http://www
.ietf.org/rfc/rfc4942.txt.

[48] R. Priyadarshini, S. Aishwarya, and A. A. Ahmed, “Search
engine vulnerabilities and threats—a survey and proposed solu-
tion for a secured censored search platform,” in Proceedings of
the International Conference on Communication and Compu-
tational Intelligence (INCOCCI ’10), pp. 535–539, Erode, India,
December 2010.

[49] Wikipedia,“Application security,” 2012, http://en.wikipedia.org/
wiki/Application security.

[50] D. Watson, “Web application attacks,” Network Security, vol.
2007, no. 10, pp. 10–14, 2007.

[51] R. Radhakrishnan, M. Jamil, S. Mehfuz, and M. Moinuddin,
“Security issues in IPv6,” in Proceedings of the 3rd International
Conference on Networking and Services (ICNS ’07), p. 110,
Athens, Greece, June 2007.

[52] D. Yang, X. Song, andQ. Guo, “Security on IPv6,” in Proceedings
of the 2nd IEEE International Conference onAdvancedComputer
Control (ICACC ’10), pp. 323–326, March 2010.

[53] Y. W. Huang, C. Tsai, T. Lin, S. Huang, D. T. Lee, and S. Kuo, “A
testing framework for web application security assessment,”
Computer Networks, vol. 48, no. 5, pp. 739–761, 2005.

[54] O. Security, “The exploit database,” 2012, http://www.exploit-
db.com/.

[55] Y. Sun, I. G. Councill, and C. L. Giles, “BotSeer: an automated
information system for analyzing Web robots,” in Proceedings
of the 8th International Conference on Web Engineering (ICWE
’08), pp. 108–114, Yorktown Heights, NJ, USA, July 2008.

[56] Y. Sun, I. G. Councill, and C. L. Giles, “The ethicality of web
crawlers,” in Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2010, pp. 668–675, Toronto,
Canada, September 2010.

[57] J. Cho, H. Garcia-Molina, and L. Page, “Efficient crawling
through URL ordering,” in Proceedings of the 7th International
Conference on World Wide (WWW ’98), pp. 161–172, 1998.

[58] V. Shkapenyuk and T. Suel, “Design and implementation of a
high-performance distributed web crawler,” in Proceedings of
the 18th International Conference on Data Engineering, pp. 357–
368, March 2002.

[59] M. Najork, “Breadth-first search crawling yields high-quality
pages,” in Proceedings of the 10th International Conference on
World Wide (WWW ’01), pp. 114–118, 2001.

[60] National Taiwan University, 2012, http://www.ntu.edu.tw/
english/.

[61] N.Gaur, “Assessing the security of yourweb applications,” Linux
Journal, vol. 2000, no. 72, article 3, 2000.

[62] P. Noiumkar and T. Chomsiri, “Top 10 free web-mail security
test using session Hijacking,” in Proceedings of the 3rd Inter-
national Conference on Convergence and Hybrid Information
Technology (ICCIT ’08), vol. 2, pp. 486–490, Busan, Republic of
Korea, November 2008.

[63] D. Gollmann, “Securing Web applications,” Information Secu-
rity Technical Report, vol. 13, no. 1, pp. 1–9, 2008.

[64] D. Scott and R. Sharp, “Abstracting application-level web secu-
rity,” inProceedings of the 11th International Conference onWorld
Wide Web (WWW ’02), pp. 396–407, ACM Press, May 2002.

[65] D. Scott and R. Sharp, “Abstracting application-level web
security,” in Proceedings of the 11th International Conference on
World Wide Web (WWW ’02), pp. 396–407, ACM Press, May
2002.

[66] D. J. Bryce and T. C. Williams, “HTTP header intermediary
for enabling session-based dynamic site searches,” U.S. Patent
Application 11/299, 525.

[67] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data
tainting and static analysis,” in Proceeding of the Network and
Distributed System Security Symposium (NDSS ’07), 2007.

[68] Forum, I. IPv6 EnabledWWWWeb Sites List, 2012, http://www
.ipv6forum.com/ipv6 enabled/approval list.php.

[69] C. M. Judd, G. H. McClelland, and C. S. Ryan, Data Analysis:
A Model Comparison Approach, Routledge/Taylor & Francis
Group, 2009.

[70] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis
tool for detecting web application vulnerabilities,” in Proceed-
ings of the IEEE Symposium on Security and Privacy (S and P
’06), pp. 258–263, Berkeley/Oakland, Calif, USA, May 2006.



10 The Scientific World Journal

[71] M. A. Howard, “A process for performing security code
reviews,” IEEE Security and Privacy, vol. 4, no. 4, pp. 74–79,
2006.

[72] P. Cisar and S. M. Cisar, “Password—a form of authentication,”
in Proceedings of the 5th International Symposium on Intelligent
Systems and Informatics (SISY ’07), pp. 29–32, Subotica, Serbia,
August 2007.

[73] S. Riley, “Password security: what users know and what they
actually do,” Usability News 8.1, 2006.

[74] X. Zheng and J. Jidong, “Research for the application and safety
of MD5 algorithm in password authentication,” in Proceedings
of the 9th International Conference on Fuzzy Systems and Knowl-
edge Discovery (FSKD ’12), pp. 2216–2219, Sichuan, China, 2012.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


