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Thegeneral coupledmatrix equations (including the generalized coupled Sylvestermatrix equations as special cases) have numerous
applications in control and system theory. In this paper, an iterative algorithm is constructed to solve the general coupled matrix
equations over reflexive matrix solution. When the general coupled matrix equations are consistent over reflexive matrices, the
reflexive solution can be determined automatically by the iterative algorithmwithin finite iterative steps in the absence of round-off
errors. The least Frobenius norm reflexive solution of the general coupled matrix equations can be derived when an appropriate
initial matrix is chosen. Furthermore, the unique optimal approximation reflexive solution to a given matrix group in Frobenius
norm can be derived by finding the least-norm reflexive solution of the corresponding general coupled matrix equations. A
numerical example is given to illustrate the effectiveness of the proposed iterative algorithm.

1. Introduction

Let 𝑃 ∈ R𝑛×𝑛 be a generalized reflection matrix; that is,
𝑃
𝑇

= 𝑃 and 𝑃
2

= 𝐼. A matrix 𝐴 ∈ R𝑛×𝑛 is called reflexive
with respect to the matrix 𝑃 if 𝑃𝐴𝑃 = 𝐴. The set of all 𝑛-by-𝑛
reflexive matrices with respect to the generalized reflection
matrix 𝑃 is denoted by R𝑛×𝑛

𝑟
(𝑃). Let R𝑚×𝑛 denote the set

of all 𝑚 × 𝑛 real matrices. We denote by the superscript
𝑇 the transpose of a matrix. In matrix space R𝑚×𝑛, define
inner product as; ⟨𝐴, 𝐵⟩ = tr(𝐵𝑇𝐴) for all 𝐴, 𝐵 ∈ R𝑚×𝑛;
‖𝐴‖
𝐹
represents the Frobenius norm of 𝐴. R(𝐴) represents

the column space of 𝐴. vec(⋅) represents the vector operator;
that is, vec(𝐴) = (𝑎

𝑇

1
, 𝑎
𝑇

2
, . . . , 𝑎

𝑇

𝑛
)
𝑇

∈ R𝑚𝑛 for the matrix
𝐴 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) ∈ R𝑚×𝑛, 𝑎

𝑖
∈ 𝑅
𝑚, 𝑖 = 1, 2, . . . , 𝑛.

𝐴 ⊗ 𝐵 stands for the Kronecker product of matrices 𝐴 and
𝐵.

In this paper, we will consider the following two prob-
lems.

Problem 1. Let𝑃
𝑗
∈ R𝑛𝑗×𝑛𝑗 be generalized reflectionmatrices.

For given matrices 𝐴
𝑖𝑗

∈ R𝑟𝑖×𝑛𝑗 , 𝐵
𝑖𝑗

∈ R𝑛𝑗×𝑠𝑖 , and 𝑀
𝑖

∈

R𝑟𝑖×𝑠𝑖 , find reflexive matrix solution group (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑞
)

with 𝑋
𝑗
∈ R
𝑛𝑗×𝑛𝑗

𝑟
(𝑃
𝑗
) such that

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑝. (1)

Problem 2. When Problem 1 is consistent, let 𝑆
𝐸
denote the

set of the reflexive solution group of Problem 1; that is,

𝑆
𝐸
=

{

{

{

(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑞
) |

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝑀
𝑖
,

𝑖 = 1, 2, . . . , 𝑝, 𝑋
𝑗
∈ R
𝑛𝑗×𝑛𝑗

𝑟
(𝑃
𝑗
)

}

}

}

.

(2)

For a given reflexive matrix group

(𝑋
0

1
, 𝑋
0

2
, . . . , 𝑋

0

𝑞
) ∈ R

𝑛1×𝑛1

𝑟
(𝑃
1
)

× R
𝑛2×𝑛2

𝑟
(𝑃
2
) × ⋅ ⋅ ⋅ × R

𝑛𝑞×𝑛𝑞

𝑟
(𝑃
𝑞
) ,

(3)
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Find (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑞
) ∈ 𝑆
𝐸
such that

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑗
− 𝑋
0

𝑗

󵄩󵄩󵄩󵄩󵄩

2

= min
(𝑋1,𝑋2 ,...,𝑋𝑞)∈𝑆𝐸

{

{

{

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑗
− 𝑋
0

𝑗

󵄩󵄩󵄩󵄩󵄩

2}

}

}

.

(4)

The general coupled matrix equations (1) (including the
generalized coupled Sylvester matrix equations as special
cases) may arise in many areas of control and system theory.

Many theoretical and numerical results on (1) and some of
its special cases have been obtained. Least-squares-based iter-
ative algorithms are very important in system identification,
parameter estimation, and signal processing, including the
recursive least squares (RLS) and iterative least squares (ILS)
methods for solving the solutions of some matrix equations,
for example, the Lyapunov matrix equation, Sylvester matrix
equations, and coupledmatrix equations aswell. For example,
novel gradient-based iterative (GI) method [1–5] and least-
squares-based iterative methods [3, 4, 6] with highly com-
putational efficiencies for solving (coupled) matrix equations
are presented and have good stability performances, based
on the hierarchical identification principle, which regards
the unknown matrix as the system parameter matrix to be
identified. Ding and Chen [1] presented the gradient-based
iterative algorithms by applying the gradient search principle
and the hierarchical identification principle for (1) with 𝑞 = 𝑝.
Wu et al. [7, 8] gave the finite iterative solutions to coupled
Sylvester-conjugate matrix equations. Wu et al. [9] gave the
finite iterative solutions to a class of complexmatrix equations
with conjugate and transpose of the unknowns. Jonsson
and Kågström [10, 11] proposed recursive block algorithms
for solving the coupled Sylvester matrix equations and the
generalized Sylvester and Lyapunov Matrix equations. By
extending the idea of conjugate gradient method, Dehghan
and Hajarian [12] constructed an iterative algorithm to solve
(1) with 𝑞 = 𝑝 over generalized bisymmetric matrices. Very
recently, Huang et al. [13] presented a finite iterative algo-
rithms for the one-sided and generalized coupled Sylvester
matrix equations over generalized reflexive solutions. Yin et
al. [14] presented a finite iterative algorithms for the two-
sided and generalized coupled Sylvester matrix equations
over reflexive solutions. For more results, we refer to [15–
28]. However, to our knowledge, the reflexive solution to
the general coupled matrix equations (1) and the optimal
approximation reflexive solution have not been derived. In
this paper, we will consider the reflexive solution of (1) and
the optimal approximation reflexive solution.

This paper is organized as follows. In Section 2, we will
solve Problem 1 by constructing an iterative algorithm. The
convergence of the proposed algorithm is proved. For any
arbitrary initial matrix group, we can obtain a reflexive
solution group of Problem 1 within finite iteration steps in
the absence of round-off errors. Furthermore, for a special
initial matrix group, we can obtain the least Frobenius norm
solution of Problem 1. Then in Section 3, we give the optimal
approximate solution group of Problem 2 by finding the

least Frobenius norm reflexive solution group of the corre-
sponding general coupled matrix equations. In Section 4, a
numerical example is given to illustrate the effectiveness of
ourmethod. At last, some conclusions are drawn in Section 5.

2. An Iterative Algorithm for
Solving Problem 1

In this section, we will first introduce an iterative algorithm
to solve Problem 1 then prove its convergence. We will also
give the least-norm reflexive solution of Problem 1 when an
appropriate initial iterative matrix group is chosen.

Algorithm 3.

Step 1. Input matrices 𝐴
𝑖𝑗

∈ R𝑟𝑖×𝑛𝑗 , 𝐵
𝑖𝑗

∈ R𝑛𝑗×𝑠𝑖 , 𝑀
𝑖
∈ R𝑟𝑖×𝑠𝑖 ,

and generalized reflection matrices 𝑃
𝑗
∈ R𝑛𝑗×𝑛𝑗 , 𝑖 = 1, . . . , 𝑝,

𝑗 = 1, . . . , 𝑞.

Step 2. Choose an arbitrary matrix group

(𝑋
1
(1) , 𝑋

2
(1) , . . . , 𝑋

𝑞
(1)) ∈ R

𝑛1×𝑛1

𝑟
(𝑃
1
)

× R
𝑛2×𝑛2

𝑟
(𝑃
2
) × ⋅ ⋅ ⋅ × R

𝑛𝑞×𝑛𝑞

𝑟
(𝑃
𝑞
) .

(5)

Compute

𝑅 (1) = diag(𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(1) 𝐵
1𝑙
,𝑀
2

−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(1) 𝐵
2𝑙
, . . . ,𝑀

𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(1) 𝐵
𝑝𝑙
) ,

𝑆
𝑗
(1) =

1

2
[

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
𝑃
𝑗
] ,

𝑘 := 1.

(6)

Step 3. If 𝑅(𝑘) = 0, then stop and (𝑋
1
(𝑘), 𝑋

2
(𝑘), . . . , 𝑋

𝑞
(𝑘))

is the solution group of (1); elseif 𝑅(𝑘) ̸= 0, but 𝑆
𝑗
(𝑘) = 0,

𝑗 = 1, . . . , 𝑞, then stop and (1) are not consistent over reflexive
matrix group; else 𝑘 := 𝑘 + 1.

Step 4. Compute

𝑋
𝑗
(𝑘) = 𝑋

𝑗
(𝑘 − 1) +

‖𝑅 (𝑘 − 1)‖
2

𝐹

∑
𝑞

𝑙=1

󵄩󵄩󵄩󵄩𝑆𝑙 (𝑘 − 1)
󵄩󵄩󵄩󵄩

2

𝐹

× 𝑆
𝑗
(𝑘 − 1) , 𝑗 = 1, . . . , 𝑞,

𝑅 (𝑘) = diag(𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑘) 𝐵
1𝑙
,𝑀
2

−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑘) 𝐵
2𝑙
, . . . ,𝑀

𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑘) 𝐵
𝑝𝑙
)
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= 𝑅 (𝑘 − 1) −
‖𝑅 (𝑘 − 1)‖

2

𝐹

∑
𝑞

𝑙=1

󵄩󵄩󵄩󵄩𝑆𝑙 (𝑘 − 1)
󵄩󵄩󵄩󵄩

2

𝐹

⋅ diag(

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑆
𝑙
(𝑘 − 1) 𝐵

1𝑙
,

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑆
𝑙
(𝑘 − 1) 𝐵

2𝑙
, . . . ,

×

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑆
𝑙
(𝑘 − 1) 𝐵

𝑝𝑙
) ,

𝑆
𝑗
(𝑘) =

1

2
[

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
𝑃
𝑗
]

+
‖𝑅 (𝑘)‖

2

𝐹

‖𝑅 (𝑘 − 1)‖
2

𝐹

𝑆
𝑗
(𝑘 − 1) .

(7)

Step 5. Go to Step 3.

Obviously, it can be seen that𝑋
𝑗
(𝑘), 𝑆
𝑗
(𝑘) ∈ 𝑅

𝑛𝑗×𝑛𝑗

𝑟
(𝑃
𝑗
) for

all 𝑗 = 1, . . . , 𝑞 and 𝑘 = 1, 2, . . ..

Lemma 4. For the sequences {𝑅(𝑘)}, {𝑆
𝑗
(𝑘)} (𝑗 = 1, 2, . . . , 𝑞)

generated by Algorithm 3, and 𝑚 ≥ 2, we have

tr ((𝑅 (𝑠))
𝑇

𝑅 (𝑡)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑠))
𝑇

𝑆
𝑗
(𝑡)) = 0,

𝑠, 𝑡 = 1, 2, . . . , 𝑚, 𝑠 ̸= 𝑡.

(8)

The proof of Lemma 4 is presented in the appendix.

Lemma 5. Suppose that (𝑋
∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
) is an arbitrary

reflexive solution group of Problem 1; then for any initial
reflexive matrix group (𝑋

1
(1), 𝑋

2
(1), . . . , 𝑋

𝑞
(1)), one has

𝑞

∑

𝑗=1

tr ((𝑋∗
𝑗
− 𝑋
𝑗
(𝑘))
𝑇

𝑆
𝑗
(𝑘)) = ‖𝑅 (𝑘)‖

2

𝐹
, 𝑘 = 1, 2, . . . ,

(9)

where the sequences {𝑋
𝑗
(𝑘)}, {𝑆

𝑗
(𝑘)}, and {𝑅(𝑘)} are generated

by Algorithm 3.

The proof of Lemma 5 is presented in the appendix.

Remark 6. If there exists a positive number 𝑘 such that
𝑆
𝑗
(𝑘) = 0, 𝑗 = 1, 2, . . . , 𝑞 but 𝑅(𝑘) ̸= 0, then, by Lemma 5, we

get that (1) are not consistent over reflexive matrices.

Theorem 7. Suppose that Problem 1 is consistent; then for
an arbitrary initial matrix group (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑞
) with 𝑋

𝑗
∈

R
𝑛𝑗×𝑛𝑗

𝑟
(𝑃
𝑗
), a reflexive solution group of Problem 1 can be

obtained with finite iteration steps in the absence of round-off
errors.

Proof. If 𝑅(𝑘) ̸= 0, 𝑘 = 1, 2, . . . , 𝑚 = ∑
𝑝

𝑖=1
𝑟
𝑖
𝑠
𝑖
, then by

Lemma 5 and Remark 6 we have 𝑆
𝑗
(𝑘) ̸= 0 for all 𝑗 =

1, 2, . . . , 𝑞 and 𝑘 = 1, 2, . . . , 𝑚. Thus we can compute 𝑅(𝑚+1)

and (𝑋
1
(𝑚 + 1), 𝑋

2
(𝑚 + 1), . . . , 𝑋

𝑞
(𝑚 + 1)) by Algorithm 3.

By Lemma 4, we have

tr ((𝑅 (𝑚 + 1))
𝑇

𝑅 (𝑘)) = 0, 𝑘 = 1, 2, . . . , 𝑚,

tr ((𝑅 (𝑘))
𝑇

𝑅 (𝑙)) = 0, 𝑘, 𝑙 = 1, 2, . . . , 𝑚, 𝑘 ̸= 𝑙.

(10)

It can be seen that the set of 𝑅(1), 𝑅(2), . . . , 𝑅(𝑚) is an
orthogonal basis of the matrix subspace

𝑆 = {𝐿 | 𝐿 = diag (𝐿
1
, 𝐿
2
, . . . , 𝐿

𝑝
) ,

𝐿
𝑖
∈ R𝑟𝑖×𝑠𝑖 , 𝑖 = 1, 2 . . . , 𝑝} ,

(11)

which implies that 𝑅(𝑚 + 1) = 0; that is, (𝑋
1
(𝑚 + 1), 𝑋

2
(𝑚 +

1), . . . , 𝑋
𝑞
(𝑚 + 1)) with 𝑋

𝑗
(𝑚 + 1) ∈ R

𝑛𝑗×𝑛𝑗

𝑟
(𝑃
𝑗
) is a

reflexive solution group of Problem 1. This completes the
proof.

To show the least Frobenius norm reflexive solution of
Problem 1, we first introduce the following result.

Lemma 8 (see [20, Lemma 2.4]). Suppose that the consistent
system of linear equation 𝐴𝑥 = 𝑏 has a solution 𝑥

∗

∈ 𝑅(𝐴
𝑇

);
then 𝑥

∗ is a unique least Frobenius norm solution of the system
of linear equation.

By Lemma 8, the following result can be obtained.

Theorem 9. Suppose that Problem 1 is consistent. If one
chooses the initial iterative matrices 𝑋

𝑗
(1) = ∑

𝑝

𝑖=1
𝐴
𝑇

𝑖𝑗
𝐾
𝑖
𝐵
𝑇

𝑖𝑗
+

∑
𝑝

𝑖=1
𝑃
𝑗
𝐴
𝑇

𝑖𝑗
𝐾
𝑖
𝐵
𝑇

𝑖𝑗
𝑃
𝑗
, 𝑗 = 1, 2, . . . , 𝑞, where 𝐾

𝑖
∈ R𝑟𝑖×𝑠𝑖 ,

𝑖 = 1, 2, . . . , 𝑝 are arbitrary matrices, especially, 𝑋
𝑗
(1) =

0 ∈ R𝑛𝑗×𝑛𝑗(𝑃
𝑗
), then the solution group (𝑋

∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
)

generated by Algorithm 3 is the unique least Frobenius norm
reflexive solution group of Problem 1.

Proof. We know that the solvability of (1) over reflexive
matrices is equivalent to the following matrix equations:

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝑀
𝑖

(𝑖 = 1, 2, . . . , 𝑝) ,

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑃
𝑗
𝑋
𝑗
𝑃
𝑗
𝐵
𝑖𝑗

= 𝑀
𝑖

(𝑖 = 1, 2, . . . , 𝑝) .

(12)
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Then the system of matrix equations (12) is equivalent to

(
(
(
(
(
(
(

(

𝐵
𝑇

11
⊗ 𝐴
11

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
⊗ 𝐴
1𝑞

... ⋅ ⋅ ⋅
...

𝐵
𝑇

𝑝1
⊗ 𝐴
𝑝1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
⊗ 𝐴
𝑝𝑞

𝐵
𝑇

11
𝑃
1
⊗ 𝐴
11
𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
𝑃
𝑞
⊗ 𝐴
1𝑞
𝑃
𝑞

... ⋅ ⋅ ⋅
...

𝐵
𝑇

𝑝1
𝑃
1
⊗ 𝐴
𝑝1

𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
𝑃
𝑞
⊗ 𝐴
𝑝𝑞

𝑃
𝑞

)
)
)
)
)
)
)

)

× (

vec (𝑋
1
)

...
vec (𝑋

𝑞
)

) =

(
(
(
(

(

vec (𝑀
1
)

...
vec (𝑀

𝑝
)

vec (𝑀
1
)

...
vec (𝑀

𝑝
)

)
)
)
)

)

.

(13)

Let𝑋
𝑗
(1) = ∑

𝑝

𝑖=1
𝐴
𝑇

𝑖𝑗
𝐾
𝑖
𝐵
𝑇

𝑖𝑗
+∑
𝑝

𝑖=1
𝑃
𝑗
𝐴
𝑇

𝑖𝑗
𝐾
𝑖
𝐵
𝑇

𝑖𝑗
𝑃
𝑗
, 𝑗 = 1, 2, . . . , 𝑞,

where 𝐾
𝑖
∈ R𝑟𝑖×𝑠𝑖 are arbitrary matrices; then

(

vec (𝑋
1
(1))

...
vec (𝑋

𝑞
(1))

)

=
(
(

(

vec(
𝑝

∑

𝑖=1

𝐴
𝑇

𝑖1
𝐾
𝑖
𝐵
𝑇

𝑖1
+

𝑝

∑

𝑖=1

𝑃
1
𝐴
𝑇

𝑖1
𝐾
𝑖
𝐵
𝑇

𝑖1
𝑃
1
)

...

vec(
𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑞
𝐾
𝑖
𝐵
𝑇

𝑖𝑞
+

𝑝

∑

𝑖=1

𝑃
𝑞
𝐴
𝑇

𝑖𝑞
𝐾
𝑖
𝐵
𝑇

𝑖𝑞
𝑃
𝑞
)

)
)

)

= (

𝐵
11

⊗ 𝐴
𝑇

11
⋅ ⋅ ⋅ 𝐵
𝑝1

⊗ 𝐴
𝑇

𝑝1
𝑃
1
𝐵
11

⊗ 𝑃
1
𝐴
𝑇

11
⋅ ⋅ ⋅ 𝑃
1
𝐵
𝑝1

⊗ 𝑃
1
𝐴
𝑇

𝑝1

... ⋅ ⋅ ⋅
... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

...
𝐵
1𝑞

⊗ 𝐴
𝑇

1𝑞
⋅ ⋅ ⋅ 𝐵
𝑝𝑞

⊗ 𝐴
𝑇

𝑝𝑞
𝑃
𝑞
𝐵
1𝑞

⊗ 𝑃
𝑞
𝐴
𝑇

1𝑞
⋅ ⋅ ⋅ 𝑃
𝑞
𝐵
𝑝𝑞

⊗ 𝑃
𝑞
𝐴
𝑇

𝑝𝑞

)

(
(
(
(

(

vec (𝐾
1
)

...
vec (𝐾

𝑝
)

vec (𝐾
1
)

...
vec (𝐾

𝑝
)

)
)
)
)

)

=

(
(
(
(
(

(

𝐵
𝑇

11
⊗ 𝐴
11

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
⊗ 𝐴
1𝑞

...
...

...
𝐵
𝑇

𝑝1
⊗ 𝐴
𝑝1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
⊗ 𝐴
𝑝𝑞

𝐵
𝑇

11
𝑃
1
⊗ 𝐴
11
𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
𝑃
𝑞
⊗ 𝐴
1𝑞
𝑃
𝑞

...
...

...
𝐵
𝑇

𝑝1
𝑃
1
⊗ 𝐴
𝑝1

𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
𝑃
𝑞
⊗ 𝐴
𝑝𝑞

𝑃
𝑞

)
)
)
)
)

)

𝑇

(
(
(
(

(

vec (𝐾
1
)

...
vec (𝐾

𝑝
)

vec (𝐾
1
)

...
vec (𝐾

𝑝
)

)
)
)
)

)

∈ 𝑅

(
(
(
(
(

(

(
(
(
(
(

(

𝐵
𝑇

11
⊗ 𝐴
11

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
⊗ 𝐴
1𝑞

...
...

...
𝐵
𝑇

𝑝1
⊗ 𝐴
𝑝1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
⊗ 𝐴
𝑝𝑞

𝐵
𝑇

11
𝑃
1
⊗ 𝐴
11
𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
𝑃
𝑞
⊗ 𝐴
1𝑞
𝑃
𝑞

...
...

...
𝐵
𝑇

𝑝1
𝑃
1
⊗ 𝐴
𝑝1

𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
𝑃
𝑞
⊗ 𝐴
𝑝𝑞

𝑃
𝑞

)
)
)
)
)

)

𝑇

)
)
)
)
)

)

.

(14)
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Furthermore, we can see that all reflexive matrix solution
groups (𝑋

1
(𝑘), 𝑋

2
(𝑘), . . . , 𝑋

𝑞
(𝑘)) generated by Algorithm 3

satisfy

(

vec (𝑋
1
(1))

...
vec (𝑋

𝑞
(1))

)

∈ 𝑅

(
(
(
(
(

(

(
(
(
(
(

(

𝐵
𝑇

11
⊗ 𝐴
11

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
⊗ 𝐴
1𝑞

...
...

...
𝐵
𝑇

𝑝1
⊗ 𝐴
𝑝1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
⊗ 𝐴
𝑝𝑞

𝐵
𝑇

11
𝑃
1
⊗ 𝐴
11
𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

1𝑞
𝑃
𝑞
⊗ 𝐴
1𝑞
𝑃
𝑞

...
...

...
𝐵
𝑇

𝑝1
𝑃
1
⊗ 𝐴
𝑝1

𝑃
1

⋅ ⋅ ⋅ 𝐵
𝑇

𝑝𝑞
𝑃
𝑞
⊗ 𝐴
𝑝𝑞

𝑃
𝑞

)
)
)
)
)

)

𝑇

)
)
)
)
)

)

;

(15)

by Lemma 8 we know that (𝑋
∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
) is the least

Frobenius norm reflexive solution group of the system of
linear equation (13). Since vector operator is isomorphic,
(𝑋
∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
) is the unique least Frobenius norm reflexive

solution group of the system of matrix equations (12). Thus
(𝑋
∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
) is the unique least Frobenius norm reflexive

solution group of Problem 1. This completes the proof.

3. The Solution of Problem 2

In this section, we will show that the reflexive solution group
of Problem 2 to a given reflexive matrix group can be derived
by finding the least Frobenius norm reflexive solution group
of the corresponding general coupled matrix equations.

When Problem 1 is consistent, the set of the reflexive
solution groups of Problem 1 denoted by 𝑆

𝐸
is not empty. For

a given matrix pair (𝑋
0

1
, 𝑋
0

2
, . . . , 𝑋

0

𝑞
) with 𝑋

0

𝑗
∈ R
𝑛𝑗×𝑛𝑗

𝑟
(𝑃
𝑗
),

𝑗 = 1, 2, . . . , 𝑞, we have

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝑀
𝑖
⇐⇒

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
(𝑋
𝑗
− 𝑋
0

𝑗
) 𝐵
𝑖𝑗

= 𝑀
𝑖
−

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
0

𝑗
𝐵
𝑖𝑗
,

𝑖 = 1, 2, . . . , 𝑝.

(16)

Set 𝑋
𝑗

= 𝑋
𝑗

− 𝑋
0

𝑗
and 𝑀̃

𝑖
= 𝑀

𝑖
− ∑
𝑞

𝑗=1
𝐴
𝑖𝑗
𝑋
0

𝑗
𝐵
𝑖𝑗
;

then solving Problem 2 is equivalent to finding the least
Frobenius norm reflexive solution group (𝑋

∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
) of

the corresponding general coupled matrix equations

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝑀̃
𝑖
, 𝑖 = 1, 2, . . . , 𝑝. (17)

By using Algorithm 3, let initial iteration matrices

𝑋
𝑗
(1) =

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
𝐾
𝑖
𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
𝐾
𝑖
𝐵
𝑇

𝑖𝑗
𝑃
𝑗
, 𝑗 = 1, 2, . . . , 𝑞,

(18)

where 𝐾
𝑖

∈ R𝑟𝑖×𝑠𝑖 , 𝑖 = 1, 2, . . . , 𝑝 are arbitrary matrices,
especially, 𝑋

𝑗
(1) = 0 ∈ R𝑛𝑗×𝑛𝑗(𝑃

𝑗
), 𝑗 = 1, 2, . . . , 𝑞; then we

can get the the least Frobenius norm reflexive solution group
(𝑋
∗

1
, 𝑋
∗

2
, . . . , 𝑋

∗

𝑞
) of (17). Thus the reflexive solution group of

Problem 2 can be represented as

(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑞
) = (𝑋

∗

1
+ 𝑋
0

1
, 𝑋
∗

2
+ 𝑋
0

2
, . . . , 𝑋

∗

𝑞
+ 𝑋
0

𝑞
) .

(19)

4. A Numerical Example

In this section, we will show a numerical example to illustrate
our results. All the tests are performed by MATLAB 7.8.

Example 10. Consider the reflexive solution of the general
coupled matrix equations

𝐴
11
𝑋
1
𝐵
11

+ 𝐴
12
𝑋
2
𝐵
12

= 𝑀
1
, 𝐴
21
𝑋
1
𝐵
21

+ 𝐴
22
𝑋
2
𝐵
22

= 𝑀
2
,

(20)

where

𝐴
11

= (

(

1 3 −5 7 −9

2 0 4 6 −1

0 −2 9 6 −8

3 6 2 2 −3

−5 5 −22 −1 −11

8 4 −6 −9 −9

)

)

, (21)

𝐵
11

= (

3 5 6 7

4 8 −5 4

−1 5 −2 3

3 9 2 −6

−2 7 −8 1

), (22)

𝐴
12

= (

(

6 −5 7 −9

2 4 6 −11

9 −12 3 −8

13 6 4 −15

−5 15 −13 −11

2 9 −6 −9

)

)

,

𝐵
12

= (

5 1 9 −6

−4 5 −2 3

3 −12 0 8

−5 8 −2 9

) ,
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𝐴
21

= (

14 5 −1 7 1

−2 3 −2 5 4

13 4 2 −3 6

−8 1 −5 4 8

) ,

𝐵
21

= (

6 5 2 3 7

1 3 −5 8 2

−11 5 −6 2 5

13 2 7 −9 7

−9 6 −5 12 1

),

𝐴
22

= (

1 2 −5 8

−5 5 −7 3

2 4 9 −6

−3 7 −12 11

) ,

𝐵
22

= (

7 −1 5 −2 3

6 3 9 2 −6

5 −2 7 −8 1

1 4 −3 −2 6

) ,

𝑀
1
= (

(

−406 123 16 −74

79 290 408 −71

−891 597 −664 720

6 205 147 349

651 −2638 625 −131

652 −1923 634 −106

)

)

,

𝑀
2
= (

2814 −239 1455 −1634 845

439 287 480 −550 890

2500 −126 1199 −720 376

−1000 630 −266 −24 1042

) .

(23)

Let

𝑃
1
= (

0 0 0 1 0

0 0 0 0 1

0 0 −1 0 0

1 0 0 0 0

0 1 0 0 0

), 𝑃
2
= (

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

)

(24)

be the generalized reflection matrices.
We will find the reflexive solution of the the general

coupled matrix equations (20) by using Algorithm 3. It can
be verified that the matrix equations (20) are consistent over
reflexive matrices and the solution is

𝑋
∗

1
= (

3 0 −6 3 −4

4 3 −6 4 −2

0 2 4 0 −2

3 −4 6 3 0

4 −2 6 4 3

),

𝑋
∗

2
= (

−5 2 −1 1

2 −1 2 −3

−1 −1 −5 −2

−2 −3 −2 −1

) .

(25)

Because of the influence of the error of calculation, the
residual 𝑅(𝑘) is usually unequal to zero in the process of

the iteration, where 𝑘 = 1, 2, . . .. For any chosen posi-
tive number 𝜀, however small enough, for example, 𝜀 =

1.0000𝑒 − 010, whenever ‖𝑅(𝑘)‖ < 𝜀, stop the iteration;
(𝑋
1
(𝑘), 𝑋

2
(𝑘)) is regarded to be the reflexive solution of the

matrix equations (20). Choose an initially iterative matrix
group (𝑋

1
(1), 𝑋

2
(1)), such as

𝑋
1
(1) = (

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

), 𝑋
2
(1) = (

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

) ;

(26)

by Algorithm 3, we have

𝑋
∗

1
= 𝑋
1
(31)

= (

3.0000 −0.0000 −6.0000 3.0000 −4.0000

4.0000 3.0000 −6.0000 4.0000 −2.0000

0.0000 2.0000 4.0000 −0.0000 −2.0000

3.0000 −4.0000 6.0000 3.0000 −0.0000

4.0000 −2.0000 6.0000 4.0000 3.0000

),

𝑋
∗

2
= 𝑋
2
(31) = (

−5.0000 2.0000 −1.0000 1.0000

2.0000 −1.0000 2.0000 −3.0000

−1.0000 −1.0000 −5.0000 −2.0000

−2.0000 −3.0000 −2.0000 −1.0000

) ,

‖𝑅 (31)‖ = 3.1869𝑒 − 011 < 𝜀.

(27)

Sowe obtain the reflexive solution of thematrix equations
(20). The relative error of the solution and the residual are
shown in Figure 1, where the relative error 𝑅𝐸𝑘 = (‖𝑋

1
(𝑘) −

𝑋
∗

1
‖ + ‖𝑋

2
(𝑘) − 𝑋

∗

2
‖)/(‖𝑋

∗

1
‖ + ‖𝑋

∗

2
‖) and the residual 𝑅𝑘 =

‖𝑅(𝑘)‖.
Let 𝑆
𝐸
denote the set of all reflexive solution group of the

matrix equations (20). For two given reflexive matrices,

𝑋
0

1
= (

2 3 −5 3 3

−1 3 3 −5 2

5 −2 2 −5 2

3 3 5 2 3

−5 2 −3 −1 3

),

𝑋
0

2
= (

−3 −3 4 2

0 1 1 2

4 −2 −3 3

−1 2 0 1

) ,

(28)

we will find (𝑋
1
, 𝑋
2
) ∈ 𝑆
𝐸
, such that

󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
0

1

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
0

2

󵄩󵄩󵄩󵄩󵄩

= min
(𝑋1 ,𝑋2)∈𝑆𝐸

󵄩󵄩󵄩󵄩󵄩
𝑋
1
− 𝑋
0

1

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑋
2
− 𝑋
0

1

󵄩󵄩󵄩󵄩󵄩
;

(29)

that is, find the optimal approximate reflexive solution group
to the given matrix group (𝑋

0

1
, 𝑋
0

2
) in 𝑆
𝐸
in Frobenius norm.
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Let 𝑋
1

= 𝑋
1

− 𝑋
0

1
, 𝑋
2

= 𝑋
2

− 𝑋
0

2
, 𝑀̃
1

= 𝑀
1

−

𝐴
11
𝑋
0

1
𝐵
11

− 𝐴
12
𝑋
0

2
𝐵
12
, 𝑀̃
2

= 𝑀
2
− 𝐴
21
𝑋
0

1
𝐵
21

− 𝐴
22
𝑋
0

2
𝐵
22
,

by the method mentioned in Section 3, we can obtain the
least-norm reflexive solution group (𝑋

∗

1
, 𝑋
∗

2
) of the matrix

equations 𝐴
11
𝑋
1
𝐵
11

+ 𝐴
12
𝑋
2
𝐵
12

= 𝑀̃
1
and 𝐴

21
𝑋
1
𝐵
21

+

𝐴
22
𝑋
2
𝐵
22

= 𝑀̃
2
by choosing the initially iterative matrices

𝑋
1
(1) = 0 and 𝑋

2
(1) = 0; then by Algorithm 3 we have that

𝑋
∗

1
= 𝑋
1
(29)

= (

1.0000 −3.0000 −1.0000 −0.0000 −7.0000

5.0000 0.0000 −9.0000 9.0000 −4.0000

−5.0000 4.0000 2.0000 5.0000 −4.0000

−0.0000 −7.0000 1.0000 1.0000 −3.0000

9.0000 −4.0000 9.0000 5.0000 −0.0000

),

𝑋
∗

2
= 𝑋
2
(29) = (

−2.0000 5.0000 −5.0000 −1.0000

2.0000 −2.0000 1.0000 −5.0000

−5.0000 1.0000 −2.0000 −5.0000

−1.0000 −5.0000 −2.0000 −2.0000

) ,

‖𝑅 (30)‖ = 3.6134𝑒 − 011 < 𝜀 = 1.0000𝑒 − 010,

(30)

and the optimal approximate reflexive solution to the matrix
group (𝑋

0

1
, 𝑋
0

2
) in Frobenius norm are

𝑋
1
= 𝑋
∗

1
+ 𝑋
0

1

= (

3.0000 0.0000 −6.0000 3.0000 −4.0000

4.0000 3.0000 −6.0000 4.0000 −2.0000

0.0000 2.0000 4.0000 −0.0000 −2.0000

3.0000 −4.0000 6.0000 3.0000 0.0000

4.0000 −2.0000 6.0000 4.0000 3.0000

),

𝑋
2
= 𝑋
∗

2
+ 𝑋
0

2
= (

−5.0000 2.0000 −1.0000 1.0000

2.0000 −1.0000 2.0000 −3.0000

−1.0000 −1.0000 −5.0000 −2.0000

−2.0000 −3.0000 −2.0000 −1.0000

) .

(31)

The relative error and the residual of the solution are shown
in Figure 2, where the relative error 𝑅𝐸𝑘 = (‖𝑋

1
(𝑘) + 𝑋

0

1
−

𝑋
∗

1
‖ + ‖𝑋

2
(𝑘) + 𝑋

0

2
− 𝑋
∗

2
‖)/(‖𝑋

∗

1
‖ + ‖𝑋

∗

2
‖) and the residual

𝑅𝑘 = ‖𝑅(𝑘)‖.

5. Conclusions

In this paper, an iterative algorithm is presented to solve the
general coupled matrix equations ∑

𝑞

𝑗=1
𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝑀
𝑖
(𝑖 =

1, 2, . . . , 𝑝) over reflexivematrices.When the general coupled
matrix equations are consistent over reflexive matrices, for
any initially reflexive matrix group, the reflexive solution
group can be obtained by the iterative algorithm within
finite iterative steps in the absence of round-off errors.
When a special kind of initial iteration matrix group is
given, the unique least-norm reflexive solution of the general
coupled matrix equations can be derived. Furthermore, the
optimal approximate reflexive solution of the general coupled
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0

2
.

matrix equations to a given reflexive matrix group can be
derived by finding the least-norm reflexive solution of new
corresponding general coupled matrix equations. Finally, a
numerical example is given in Section 4 to illustrate that our
iterative algorithm is quite effective.
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Appendices

A. The Proof of Lemma 4

Since tr((𝑅(𝑠))
𝑇

𝑅(𝑡)) = tr((𝑅(𝑡))
𝑇

𝑅(𝑠)) and
tr((𝑆
𝑗
(𝑠))
𝑇

𝑆
𝑗
(𝑡)) = tr((𝑆

𝑗
(𝑡))
𝑇

𝑆
𝑗
(𝑠)) for all 𝑠, 𝑡 = 1, 2, . . . , 𝑚

and 𝑗 = 1, 2, . . . , 𝑞, we only need to prove that

tr ((𝑅 (𝑠))
𝑇

𝑅 (𝑡)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑠))
𝑇

𝑆
𝑗
(𝑡)) = 0,

1 ≤ 𝑡 < 𝑠 ≤ 𝑚.

(A.1)

We prove the conclusion by induction, and two steps are
required.

Step 1. we will show that

tr ((𝑅 (𝑘 + 1))
𝑇

𝑅 (𝑘)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘 + 1))

𝑇

𝑆
𝑗
(𝑘)) = 0,

𝑘 = 1, 2, . . . , 𝑚 − 1.

(A.2)

To prove this conclusion, we also use induction.
For 𝑘 = 1, by Algorithm 3, we have that

tr ((𝑅 (2))
𝑇

𝑅 (1))

= tr([

[

𝑅 (1) −
‖𝑅 (1)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(1) 𝐵
1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(1) 𝐵
2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(1) 𝐵
𝑝𝑗
)]

]

𝑇

𝑅 (1))

= ‖𝑅 (1)‖
2

𝐹
−

‖𝑅 (1)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr([

[

diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(1) 𝐵
1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(1) 𝐵
2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(1) 𝐵
𝑝𝑗
)]

]

𝑇

⋅ diag(𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(1) 𝐵
1𝑙
,

𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(1) 𝐵
2𝑙
, . . . ,

𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(1) 𝐵
𝑝𝑙
))

= ‖𝑅 (1)‖
2

𝐹
−

‖𝑅 (1)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(diag((

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(1) 𝐵
1𝑗
)

𝑇

× (𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(1) 𝐵
1𝑙
) ,

(

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(1) 𝐵
2𝑗
)

𝑇

× (𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(1) 𝐵
2𝑙
) , . . . ,

× (

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(1) 𝐵
𝑝𝑗
)

𝑇

× (𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(1) 𝐵
𝑝𝑙
)))

= ‖𝑅 (1)‖
2

𝐹
−

‖𝑅 (1)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑝

∑

𝑖=1

((

𝑞

∑

𝑗=1

𝐵
𝑇

𝑖𝑗
(𝑆
𝑗
(1))
𝑇

𝐴
𝑇

𝑖𝑗
)

×(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)))

= ‖𝑅 (1)‖
2

𝐹
−

‖𝑅 (1)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(1))
𝑇

[

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
])

= ‖𝑅 (1)‖
2

𝐹
−

‖𝑅 (1)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(1))
𝑇

× [

∑
𝑝

𝑖=1
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
− ∑
𝑞

𝑙=1
𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
) 𝐵
𝑇

𝑖𝑗

2

+

∑
𝑝

𝑖=1
𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
− ∑
𝑞

𝑙=1
𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
) 𝐵
𝑇

𝑖𝑗
𝑃
𝑗

2
])



The Scientific World Journal 9

= ‖𝑅 (1)‖
2

𝐹
−

‖𝑅 (1)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(1))
𝑇

𝑆
𝑗
(1)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(2))
𝑇

𝑆
𝑗
(1))

=

𝑞

∑

𝑗=1

tr([
1

2
(

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(2) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(2) 𝐵
𝑖𝑙
)

×𝐵
𝑇

𝑖𝑗
𝑄
𝑗
)

+
‖𝑅 (2)‖

2

𝐹

‖𝑅 (1)‖
2

𝐹

𝑆
𝑗
(1)]

𝑇

𝑆
𝑗
(1))

=

𝑞

∑

𝑗=1

tr((

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(2) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+
‖𝑅 (2)‖

2

𝐹

‖𝑅 (1)‖
2

𝐹

𝑆
𝑗
(1))

𝑇

𝑆
𝑗
(1))

=

𝑞

∑

𝑗=1

tr((𝑆
𝑗
(1))
𝑇

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(2) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
)

+
‖𝑅 (2)‖

2

𝐹

‖𝑅 (1)‖
2

𝐹

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(1))
𝑇

𝑆
𝑗
(1))

=

𝑝

∑

𝑖=1

tr(
𝑞

∑

𝑗=1

(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(2) 𝐵
𝑖𝑙
)

𝑇

𝐴
𝑖𝑗
𝑆
𝑗
(1) 𝐵
𝑖𝑗
)

+
‖𝑅 (2)‖

2

𝐹

‖𝑅 (1)‖
2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(2) 𝐵
1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(2) 𝐵
2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(2) 𝐵
𝑝𝑙
)

𝑇

)

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(1) 𝐵
1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(1) 𝐵
2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(1) 𝐵
𝑝𝑗
)) +

‖𝑅 (2)‖
2

𝐹

‖𝑅 (1)‖
2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (1)‖
2

𝐹

tr ((𝑅 (2))
𝑇

(𝑅 (1) − 𝑅 (2)))

+
‖𝑅 (2)‖

2

𝐹

‖𝑅 (1)‖
2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (1)‖
2

𝐹

tr ((𝑅 (2))
𝑇

𝑅 (1)) = 0.

(A.3)

Assume that (A.2) holds for 𝑘 = 𝑚 − 1; that is,

tr ((𝑅 (𝑚))
𝑇

𝑅 (𝑚 − 1)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑚))
𝑇

𝑆
𝑗
(𝑚 − 1)) = 0.

(A.4)

When 𝑘 = 𝑚, we have that

tr ((𝑅 (𝑚 + 1))
𝑇

𝑅 (𝑚))

= tr([

[

𝑅 (𝑚) −
‖𝑅 (𝑚)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑚) 𝐵

1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑚) 𝐵

2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑚) 𝐵

𝑝𝑗
)]

]

𝑇

𝑅 (𝑚))

= ‖𝑅 (𝑚)‖
2

𝐹
−

‖𝑅 (𝑚)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr([

[

diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑚) 𝐵

1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑚) 𝐵

2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑚) 𝐵

𝑝𝑗
)]

]

𝑇

⋅ diag(𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑚) 𝐵

1𝑙
,

𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑚) 𝐵

2𝑙
, . . . ,

𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑚) 𝐵

𝑝𝑙
))
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= ‖𝑅 (𝑚)‖
2

𝐹
−

‖𝑅 (𝑚)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(diag((

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑚) 𝐵

1𝑗
)

𝑇

×(𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑚) 𝐵

1𝑙
),

(

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑚) 𝐵

2𝑗
)

𝑇

× (𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑚) 𝐵

2𝑙
) , . . . ,

(

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑚) 𝐵

𝑝𝑗
)

𝑇

× (𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑚) 𝐵

𝑝𝑙
)))

= ‖𝑅 (𝑚)‖
2

𝐹
−

‖𝑅 (𝑚)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

×tr(
𝑝

∑

𝑖=1

((

𝑞

∑

𝑗=1

𝐵
𝑇

𝑖𝑗
(𝑆
𝑗
(𝑚))
𝑇

𝐴
𝑇

𝑖𝑗
)

× (𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚) 𝐵

𝑖𝑙
)))

= ‖𝑅 (𝑚)‖
2

𝐹
−

‖𝑅 (𝑚)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(𝑚))
𝑇

× [

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗
])

= ‖𝑅 (𝑚)‖
2

𝐹
−

‖𝑅 (𝑚)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

×tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(𝑚))
𝑇

× [

∑
𝑝

𝑖=1
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
− ∑
𝑞

𝑙=1
𝐴
𝑖𝑙
𝑋
𝑙
(𝑚) 𝐵

𝑖𝑙
) 𝐵
𝑇

𝑖𝑗

2

+

∑
𝑝

𝑖=1
𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
− ∑
𝑞

𝑙=1
𝐴
𝑖𝑙
𝑋
𝑙
(𝑚) 𝐵

𝑖𝑙
) 𝐵
𝑇

𝑖𝑗
𝑃
𝑗

2
])

= ‖𝑅 (𝑚)‖
2

𝐹
−

‖𝑅 (𝑚)‖
2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(𝑚))
𝑇

(𝑆
𝑗
(𝑚)−

‖𝑅 (𝑚)‖
2

𝐹

‖𝑅 (𝑚 − 1)‖
2

𝐹

𝑆
𝑗
(𝑚 − 1)))=0,

(A.5)
𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑚 + 1))

𝑇

𝑆
𝑗
(𝑚))

=

𝑞

∑

𝑗=1

tr([
1

2
(

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)

× 𝐵
𝑇

𝑖𝑗
𝑃
𝑗
)

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑆
𝑗
(𝑚) ]

𝑇

𝑆
𝑗
(𝑚))

=

𝑞

∑

𝑗=1

tr((

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑆
𝑗
(𝑚))

𝑇

𝑆

𝑗

(𝑚))

=

𝑞

∑

𝑗=1

tr((𝑆
𝑗
(𝑚))
𝑇

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗
)

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑚))
𝑇

𝑆
𝑗
(𝑚))

=

𝑝

∑

𝑖=1

tr(
𝑞

∑

𝑗=1

(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)

𝑇

𝐴
𝑖𝑗
𝑆
𝑗
(𝑚) 𝐵

𝑖𝑗
)

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑝𝑙
)

𝑇

)

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑚) 𝐵

1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑚) 𝐵

2𝑗
, . . . ,
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𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑚) 𝐵

𝑝𝑗
))

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

× tr ((𝑅 (𝑚 + 1))
𝑇

(𝑅 (𝑚) − 𝑅 (𝑚 + 1)))

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

tr ((𝑅 (𝑚 + 1))
𝑇

𝑅 (𝑚)) = 0.

(A.6)

Hence, (A.2) holds for 𝑘 = 𝑚. Therefore, (A.2) holds by the
principle of induction.

Step 2.We show that

tr ((𝑅 (𝑘 + 1))
𝑇

𝑅 (𝑡)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘 + 1))

𝑇

𝑆
𝑗
(𝑡)) = 0,

𝑡 = 1, 2, . . . , 𝑘, ∀𝑘 ≥ 1.

(A.7)

When 𝑘 = 1, (A.7) holds.
Assume that

tr ((𝑅 (𝑘))
𝑇

𝑅 (𝑡)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘))
𝑇

𝑆
𝑗
(𝑡)) = 0,

𝑡 = 1, 2, . . . , 𝑘 − 1, ∀𝑘 ≥ 2;

(A.8)

then we show that

tr ((𝑅 (𝑘 + 1))
𝑇

𝑅 (𝑡)) = 0,

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘 + 1))

𝑇

𝑆
𝑗
(𝑡)) = 0,

𝑡 = 1, 2, . . . , 𝑘.

(A.9)

In fact, we have that

tr ((𝑅 (𝑘 + 1))
𝑇

𝑅 (𝑡))

= tr([

[

𝑅 (𝑘) −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑘) 𝐵
1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑘) 𝐵
2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑘) 𝐵
𝑝𝑗
)]

]

𝑇

𝑅 (𝑡))

= tr ((𝑅 (𝑘))
𝑇

𝑅 (𝑡)) −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr([

[

diag(
𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑘) 𝐵
1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑘) 𝐵
2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑘) 𝐵
𝑝𝑗
)]

]

𝑇

⋅ diag(𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑡) 𝐵
1𝑙
,

𝑀
2

−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑡) 𝐵
2𝑙
, . . . ,

𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑡) 𝐵
𝑝𝑙
))

= −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(diag((

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑘) 𝐵
1𝑗
)

𝑇

× (𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑡) 𝐵
1𝑙
),

(

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑘) 𝐵
2𝑗
)

𝑇

× (𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑡) 𝐵
2𝑙
), . . .,

(

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑘) 𝐵
𝑝𝑗
)

𝑇

× (𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑡) 𝐵
𝑝𝑙
)))

= −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹
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× tr(
𝑝

∑

𝑖=1

((

𝑞

∑

𝑗=1

𝐵
𝑇

𝑖𝑗
(𝑆
𝑗
(𝑘))
𝑇

𝐴
𝑇

𝑖𝑗
)

× (𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑡) 𝐵
𝑖𝑙
)))

= −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

×tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(𝑘))
𝑇

[

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑡) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
])

= −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

× tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(𝑘))
𝑇

× [

∑
𝑝

𝑖=1
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
− ∑
𝑞

𝑙=1
𝐴
𝑖𝑙
𝑋
𝑙
(𝑡) 𝐵
𝑖𝑙
) 𝐵
𝑇

𝑖𝑗

2

+

∑
𝑝

𝑖=1
𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
− ∑
𝑞

𝑙=1
𝐴
𝑖𝑙
𝑋
𝑙
(𝑡) 𝐵
𝑖𝑙
) 𝐵
𝑇

𝑖𝑗
𝑃
𝑗

2
])

= −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

×tr(
𝑞

∑

𝑗=1

(𝑆
𝑗
(𝑘))
𝑇

(𝑆
𝑗
(𝑡) −

‖𝑅 (𝑡)‖
2

𝐹

‖𝑅 (𝑡 − 1)‖
2

𝐹

𝑆
𝑗
(𝑡 − 1)))

= −
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘))
𝑇

𝑆
𝑗
(𝑡))

+
‖𝑅 (𝑘)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (𝑡)‖
2

𝐹

‖𝑅 (𝑡 − 1)‖
2

𝐹

×

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘))
𝑇

𝑆
𝑗
(𝑡 − 1)) = 0.

(A.10)

From the above results, we have tr(𝑅(𝑘 + 1)
𝑇

𝑅(𝑡 + 1)) = 0,
𝑡 = 1, 2, . . . , 𝑘 − 1, and

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘 + 1))

𝑇

𝑆
𝑗
(𝑡))

=

𝑞

∑

𝑗=1

tr([
1

2
(

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗
𝑃
𝑗
)

+
‖𝑅 (𝑘 + 1)‖

2

𝐹

‖𝑅 (𝑘)‖
2

𝐹

𝑆
𝑗
(𝑘) ]

𝑇

𝑆
𝑗
(𝑡))

=

𝑞

∑

𝑗=1

tr((

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+
‖𝑅 (𝑘 + 1)‖

2

𝐹

‖𝑅 (𝑘)‖
2

𝐹

𝑆
𝑗
(𝑘))

𝑇

𝑆
𝑗
(𝑡))

=

𝑞

∑

𝑗=1

tr((𝑆
𝑗
(𝑡))
𝑇

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗
)

+
‖𝑅 (𝑘 + 1)‖

2

𝐹

‖𝑅 (𝑘)‖
2

𝐹

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑘))
𝑇

𝑆
𝑗
(𝑡))

=

𝑝

∑

𝑖=1

tr(
𝑞

∑

𝑗=1

(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

𝑖𝑙
)

𝑇

𝐴
𝑖𝑗
𝑆
𝑗
(𝑡) 𝐵
𝑖𝑗
)

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑘 + 1) 𝐵

𝑝𝑙
)

𝑇

)

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑆
𝑗
(𝑡) 𝐵
1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑆
𝑗
(𝑡) 𝐵
2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑆
𝑗
(𝑡) 𝐵
𝑝𝑗
))

=

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (𝑡)‖
2

𝐹

× tr ((𝑅 (𝑘 + 1))
𝑇

(𝑅 (𝑡) − 𝑅 (𝑡 + 1)))

=

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

‖𝑅 (𝑡)‖
2

𝐹

× tr ((𝑅 (𝑘 + 1))
𝑇

𝑅 (𝑡)) = 0.

(A.11)

By the principle of induction, (A.7) holds.
Note that (A.1) is implied in Steps 1 and 2 by the principle

of induction. This completes the proof.
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B. The Proof of Lemma 5

We prove the conclusion by induction for the positive integer
𝑘.

For 𝑘 = 1, we have that

𝑞

∑

𝑗=1

tr ((𝑋∗
𝑗
− 𝑋
𝑗
(1))
𝑇

𝑆
𝑗
(1))

=

𝑞

∑

𝑗=1

tr((𝑋
∗

𝑗
− 𝑋
𝑗
(1))
𝑇

× [
1

2
(

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
𝑃
𝑗
)])

=

𝑞

∑

𝑗=1

tr((𝑋
∗

𝑗
− 𝑋
𝑗
(1))
𝑇

× [

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)𝐵
𝑇

𝑖𝑗
])

=

𝑝

∑

𝑖=1

tr((𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(1) 𝐵
𝑖𝑙
)

𝑇

×

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
(𝑋
∗

𝑗
− 𝑋
𝑗
(1)) 𝐵

𝑖𝑗
)

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(1) 𝐵
1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(1) 𝐵
2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(1) 𝐵
𝑝𝑙
)

𝑇

)

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗

(𝑋
∗

𝑗
− 𝑋
𝑗
(1)) 𝐵

1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗

(𝑋
∗

𝑗
− 𝑋
𝑗
(1)) 𝐵

2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗

(𝑋
∗

𝑗
− 𝑋
𝑗
(1)) 𝐵

𝑝𝑗
))

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(1) 𝐵
1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(1) 𝐵
2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(1) 𝐵
𝑝𝑙
)

𝑇

)

× diag(𝑀
1
−

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑋
𝑗
(1) 𝐵
1𝑗
,

𝑀
2
−

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑋
𝑗
(1) 𝐵
2𝑗
, . . . ,

𝑀
𝑝
−

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑋
𝑗
(1) 𝐵
𝑝𝑗
))

= ‖𝑅 (1)‖
2

.

(B.1)

Assume that (9) holds for 𝑘 = 𝑚. When 𝑘 = 𝑚 + 1, by
Algorithm 3, we have that

𝑞

∑

𝑗=1

tr ((𝑋∗
𝑗
− 𝑋
𝑗
(𝑚 + 1))

𝑇

𝑆
𝑗
(𝑚 + 1))

=

𝑞

∑

𝑗=1

tr((𝑋
∗

𝑗
− 𝑋
𝑗
(𝑚 + 1))

𝑇

× [
1

2
(

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗

+

𝑝

∑

𝑖=1

𝑃
𝑗
𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗
𝑃
𝑗
)

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑆
𝑗
(𝑚)])

=

𝑞

∑

𝑗=1

tr((𝑋
∗

𝑗
− 𝑋
𝑗
(𝑚 + 1))

𝑇

×[

𝑝

∑

𝑖=1

𝐴
𝑇

𝑖𝑗
(𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)𝐵
𝑇

𝑖𝑗
])

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

×

𝑞

∑

𝑗=1

tr ((𝑋∗
𝑗
− 𝑋
𝑗
(𝑚 + 1))

𝑇

𝑆
𝑗
(𝑚))

=

𝑝

∑

𝑖=1

tr((𝑀
𝑖
−

𝑞

∑

𝑙=1

𝐴
𝑖𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑖𝑙
)

𝑇
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×

𝑞

∑

𝑗=1

𝐴
𝑖𝑗
(𝑋
∗

𝑗
− 𝑋
𝑗
(𝑚 + 1)) 𝐵

𝑖𝑗
)

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

𝑞

∑

𝑗=1

tr ((𝑋∗
𝑗
− 𝑋
𝑗
(𝑚))
𝑇

𝑆
𝑗
(𝑚))

−
‖𝑅 (𝑚 + 1)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

𝑞

∑

𝑗=1

tr ((𝑆
𝑗
(𝑚))
𝑇

𝑆
𝑗
(𝑚))

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑝𝑙
)

𝑇

)

× diag(

𝑞

∑

𝑗=1

𝐴
1𝑗

(𝑋
∗

𝑗
− 𝑋
𝑗
(𝑚 + 1)) 𝐵

1𝑗
,

𝑞

∑

𝑗=1

𝐴
2𝑗

(𝑋
∗

𝑗
− 𝑋
𝑗
(𝑚 + 1)) 𝐵

2𝑗
, . . . ,

𝑞

∑

𝑗=1

𝐴
𝑝𝑗

(𝑋
∗

𝑗
− 𝑋
𝑗
(𝑚 + 1)) 𝐵

𝑝𝑗
))

+
‖𝑅 (𝑚 + 1)‖

2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

‖𝑅 (𝑚)‖
2

𝐹

−
‖𝑅 (𝑚 + 1)‖

2

𝐹

∑
𝑞

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

𝑞

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
(𝑚)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

= tr(diag((𝑀
1
−

𝑞

∑

𝑙=1

𝐴
1𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

1𝑙
)

𝑇

,

(𝑀
2
−

𝑞

∑

𝑙=1

𝐴
2𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

2𝑙
)

𝑇

, . . . ,

(𝑀
𝑝
−

𝑞

∑

𝑙=1

𝐴
𝑝𝑙
𝑋
𝑙
(𝑚 + 1) 𝐵

𝑝𝑙
)

𝑇

)

× diag(𝑀
1
−

𝑞

∑

𝑗=1

𝐴
1𝑗
𝑋
𝑗
(𝑚 + 1) 𝐵

1𝑗
,

𝑀
2
−

𝑞

∑

𝑗=1

𝐴
2𝑗
𝑋
𝑗
(𝑚 + 1) 𝐵

2𝑗
, . . . ,

𝑀
𝑝
−

𝑞

∑

𝑗=1

𝐴
𝑝𝑗
𝑋
𝑗
(𝑚 + 1) 𝐵

𝑝𝑗
))

+ ‖𝑅 (𝑚 + 1)‖
2

𝐹
− ‖𝑅 (𝑚 + 1)‖

2

𝐹

= ‖𝑅 (𝑚 + 1)‖
2

𝐹
.

(B.2)

Therefore, (9) holds for 𝑘 = 𝑚 + 1. Thus (9) holds by the
principal of induction. This completes the proof.
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