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A novel optimization technique which is developed onmimicking the collective animal behaviour (CAB) is applied for the optimal
design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the
array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of
current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna
array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper
beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the
same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been
achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO,
and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna
arrays to establish the optimization efficacy of CAB.

1. Introduction

Beamforming is a signal processing technique used to control
the directionality of the transmission and reception of the
radio signals [1].This is achieved by distributing the elements
of the array in such a way that signals at particular angles
experience constructive interference while others experience
destructive interference. Beamforming can be used at both
transmitting and receiving ends in order to achieve spatial
selectivity. Hyper beamforming refers to spatial processing
algorithm used to focus an array of spatially distributed
elements (called sensors) to increase the signal to interference
plus noise ratio at the receiver. This beamforming processing
improves significantly the gain of the wireless link over
a conventional technology, thereby increasing range, rate,
and penetration [2–4]. It has found numerous applications
in radar, sonar, seismology, wireless communication, radio
astronomy, acoustics, and biomedicine [5]. It is generally
classified as either conventional (switched and fixed) beam-
forming or adaptive beamforming. Switched beamforming
system [6, 7] is a system that can choose one pattern from

many predefined patterns in order to enhance the received
signals. Fixed beamforming uses fixed set of weights and time
delays (or phasing) to combine the signals received from the
sensors in the array, primarily using only information about
the locations of the sensors in space and the wave direction
of interest [8]. Adaptive beamforming is based on the desired
signal maximizationmode and interference signal minimiza-
tion mode [9–11]. It is able to place the desired signal at the
maximum of main lobe. The hyper beamforming/any other
beamforming offers high detection performance like beam
width, the target bearing estimation and reduces false alarm,
sidelobe suppression. A new optimized hyper beamforming
technique is presented in this paper, and collective animal
behaviour (CAB) approach is applied to obtain optimal
hyperbeam patterns [12, 13] of linear antenna arrays.

The classical gradient-based optimization methods are
not suitable for optimal design of hyper beamforming of
linear antenna arrays due to the following reasons: (i)
“highly sensitive to starting points when the number of
solution variables and hence the size of the solution space
increase,” (ii) frequent convergence to local optimumsolution
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or divergence or revisiting the same suboptimal solution,
(iii) requirement of continuous and differentiable objective
function (with gradient search methods), (iv) requirement
of the piecewise linear cost approximation (linear pro-
gramming), and (v) problem of convergence and algorithm
complexity (with nonlinear programming). So, evolutionary
methods have been employed for the optimal design of hyper
beamforming of linear antenna arrays with better parameter
control. Different evolutionary optimization algorithms such
as simulated annealing algorithms [14] and genetic algorithm
(GA) [15–19] have been widely used to the synthesis of design
methods capable of satisfying constraints which would be
unattainable. When considering global optimization meth-
ods for antenna arrays design, GA seems to be the promising
one. Standard GA (herein referred to as real coded GA
(RGA)) has a good performance for finding the promising
regions of the search space, but it is prone to revisiting the
same suboptimal solutions.

Particle swarm optimization (PSO) is an evolutionary
algorithm developed by Kennedy and Eberhart [20]. PSO is
simple to implement, and its convergence may be controlled
via few parameters. The limitations of the conventional PSO
are that it may be influenced by premature convergence and
stagnation problem [21–30].

DE algorithm [31–42] was first introduced by Storn and
Price in 1995 [31]. Like RGA, it is a randomized stochastic
search technique enriched with the operations of crossover,
mutation, and selection. DE is also prone to premature con-
vergence and stagnation. So, to enhance the performance of
optimization algorithms in global search (exploration stage)
as well as local search (exploitation stage), the authors sug-
gest an alternative technique as collective animal behaviour
(CAB) algorithm for the optimization problem of hyper
beamforming.

The rest of the paper is arranged as follows. In Section 2,
the design equations of hyper beamforming of linear antenna
array are formulated. Section 3 briefly discusses on evolution-
ary algorithms RGA, PSO, DE, and CAB employed for the
designs. Section 4 describes the simulation results obtained
by employing the algorithms. Finally, Section 5 concludes the
paper.

2. Design Equations

Hyperbeam technique generates a narrow beam as compared
to conventional beamwith improved performance of SLL and
FNBW that depend on the variation of exponent parameter
value (𝑢). In hyper beamforming for linear antenna array, the
interelement spacing in either direction is 𝜆/2 in order to
steer the beam in that particular direction.The sum beam can
be created by summation of the absolute values of complex
left and right half beams, as shown in Figure 1. The difference
beam is the absolute magnitude of the difference of complex
right beamhalf beam and left half beam signals. Furthermore,
the difference beam has a minimum in the direction of the
sum beam at zero degree as shown in Figure 2. The resulting
hyperbeam is obtained by subtraction of sum and difference
beams, each raised to the power of the exponent 𝑢.
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Figure 1: Sum beam pattern for the 10-element linear array for 𝑢 =

1.
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Figure 2: Difference beam pattern for the 10-element linear array
for 𝑢 = 1.

Consider a broadside linear array of 𝑁 equally spaced
isotropic elements as shown in Figure 3.The array is symmet-
ric in both geometry and excitation with respect to the array
center [8].

For broadside beams, the array factor is given in [6]:

AF (𝜃) =

𝑁

∑

𝑛=1

𝐼
𝑛
𝑒
𝑗(𝑛−1)𝐾𝑑[sin 𝜃 cos𝜙−sin 𝜃0 cos𝜙0]

, (1)

where 𝜃 = angle of radiation of electromagnetic plane wave;
𝑑= interelement spacing;𝐾=propagation constant;𝑁= total
number of elements in the array; 𝐼

𝑛
= excitation amplitude of

𝑛th element.
The equations for the creation of sum, difference, and

simple hyperbeam pattern in terms of two half beams are as
follows [8]:
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Figure 3: Geometry of an𝑁-element linear array along the 𝑥-axis.
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(4)

Hyperbeam is obtained by subtraction of sum and difference
beams, each raised to the power of the exponent 𝑢; the general
equation of hyperbeam is a function of hyperbeam exponent
𝑢 as given in
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, (5)

where 𝑢 ranges from 0.2 to 1. If 𝑢 lies below 0.2, hyperbeam
pattern will contain a large depth spike at the peak of the
main beam without changing in the hyperbeam pattern. If 𝑢
increases more than 1, sidelobes of hyperbeam will be more
as compared to conventional radiation pattern.

All the antenna elements are assumed isotropic. Only
amplitude excitations and interelement spacing are used to
change the antenna radiation pattern.The cost function (CF)
for improving the SLL of radiation pattern of hyperbeam
linear antenna arrays is given in
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(6)

where 𝜃
0
is the angle where the highest maximum of central

angle is attained in 𝜃 ∈ [−𝜋/2, 𝜋/2]. 𝜃msl1 is the angle
wheremaximum side lobeAFHyper(𝜃msl1, 𝐼𝑛) is attained in the
lower band of hyperbeam pattern. 𝜃msl2 is the angle where
the maximum sidelobe AFHyper(𝜃msl2, 𝐼𝑛) is attained in the
upper side band of hyperbeampattern. InCF, both numerator
and denominator are in absolute magnitude. Minimization
of CF means maximum reduction of SLL. RGA, PSO, DE,
and CAB are employed individually for minimization of CF
by optimizing current excitation weights of elements and
interelement spacing. Results of the minimization of CF and
SLL are described in Section 4.

3. Optimization Technique Employed

3.1. Real Coded Genetic Algorithm (RGA). Real coded genetic
algorithm (RGA) is mainly a probabilistic search technique,
based on the principles of natural selection and evolution.
At each generation, it maintains a population of individuals
where each individual is a coded form of a possible solution
of the problem at hand called chromosome. Chromosomes
are constructed over some particular alphabet, for example,
the binary alphabet {0, 1}, so that chromosomes’ values are
uniquely mapped onto the real decision variable domain.
Each chromosome is evaluated by a function known as
fitness function, which is usually the objective function of the
corresponding optimization problem [15–19].

The basic steps of RGA are shown as follows.

Step 1. Initialize the real chromosome strings of 𝑛
𝑝
popula-

tion, each consisting of a set of coefficients of current excita-
tion weights and interelement spacing CF.

Step 2. Decoding the strings and evaluation of each string.

Step 3. Selection of elite strings in order to increase CF values
from the minimum value.

Step 4. Copying the elite strings over the nonselected strings.

Step 5. Crossover and mutation generate the offsprings.

Step 6. Genetic cycle updating.

Step 7. The iteration stops when the maximum number of
cycles is reached. The grand minimum CF and its cor-
responding chromosome string or the desired solution of
coefficients of optimal current excitationweights and optimal
interelement spacing are finally obtained.

3.2. Particle Swarm Optimization (PSO). PSO is a flexible,
robust population-based stochastic search or optimization
technique with implicit parallelism, which can easily handle
with nondifferential objective functions, unlike traditional
gradient-based optimizationmethods. PSO is less susceptible
to getting trapped on local optima unlike GA, simulated
annealing, and so forth. Eberhart et al. developed PSO
concept similar to the behaviour of a swarm of birds [20–
30]. PSO is developed through simulation of bird flocking
and fish schooling in multidimensional space. Bird flocking
optimizes a certain objective function. Each particle knows
its best value so far (𝑝𝑏𝑒𝑠𝑡). This information corresponds to
personal experiences of each particle.Moreover, each particle
knows the best value so far in the group (𝑔𝑏𝑒𝑠𝑡) among all
𝑝𝑏𝑒𝑠𝑡s.Namely, each particle tries tomodify its position using
the following information:

(i) the distance between the current position and the
𝑝𝑏𝑒𝑠𝑡;

(ii) the distance between the current position and the
𝑔𝑏𝑒𝑠𝑡.
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Mathematically, velocities of the vectors aremodified accord-
ing to the following equation:

𝑉
𝑘+1

𝑖
= CFa × (𝑤
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+ 𝐶
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)

+𝐶
2
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2
∗ (𝑔𝑏𝑒𝑠𝑡

𝑘
− 𝑆
𝑘

𝑖
)) ,

(7)

where 𝑉
𝑘

𝑖
is the velocity of vector 𝑖 at iteration 𝑘; 𝑤 is

the weighting function; 𝐶
1
and 𝐶

2
are called social and

cognitive constants, respectively; rand
𝑖
is the randomnumber

between 0 and 1; 𝑆𝑘
𝑖
is the current position of vector 𝑖 at

iteration 𝑘; 𝑝𝑏𝑒𝑠𝑡
𝑖
is the 𝑝𝑏𝑒𝑠𝑡 of vector 𝑖; 𝑔𝑏𝑒𝑠𝑡

𝑘 is the
𝑔𝑏𝑒𝑠𝑡 of the group of vectors at iteration 𝑘. The first term
of (7) is the previous velocity of the vector. The second and
third terms are used to change the velocity of the vector.
Without the second and third terms, the vector will keep on
“flying” in the same direction until it hits the boundary. The
parameter 𝑤 corresponds to a kind of inertia and tries to
explore new areas. Here, the vector is termed for the string
of real current excitation weight coefficients (𝑁 number) and
uniform interelement spacing (01 number). Total number of
variables = 𝑛var = 𝑁 + 1 in each vector.

Normally, 𝐶
1
= 𝐶
2
= 1.5–2.05, and constriction factor

(CFa) is given in
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where

𝜑 = 𝐶
1
+ 𝐶
2
, 𝜑 > 4. (9)

For 𝐶
1
= 𝐶
2
= 2.05, the computed value of CFa = 0.73.

The best values of 𝐶
1
, 𝐶
2
, and CFa are found to vary with

the design sets.
Inertia weight (𝑤𝑘+1) at (𝑘 + 1)th cycle is as given in

𝑤
𝑘+1

= 𝑤max −
𝑤max − 𝑤min

𝑘max
× (𝑘 + 1) , (10)

where 𝑤max = 1.0; 𝑤min = 0.4; 𝑘max = maximum number
of iteration cycles. The searching point/updated vector in the
solution space can be modified by

𝑆
𝑘+1

𝑖
= 𝑆
𝑘

𝑖
+ 𝑉
𝑘+1

𝑖
. (11)

The basic steps of PSO are shown as follows.
Step 1 (initialization). Population (swarm size) of particle
vectors, 𝑛

𝑝
= 120; maximum iteration cycles = 100;

𝑁 number of current excitation weights and one number
uniform interelement spacing, total optimizing coefficients
equal 𝑛var = 𝑁+1; fixing values of𝐶

1
,𝐶
2
as 1.5;minimumand

maximum values of current excitation coefficients, 𝐼min = 0,
𝐼max = 1; minimum and maximum values of interelement

spacing, 𝑑min = 0.5𝜆, 𝑑max = 𝜆; initialization of the velocities
of all the particle vectors.
Step 2. Generation of initial particle vectors, each vector
consisting of current excitationweights and uniform interele-
ment spacing randomlywith limits; computation of initial CF
values of the total population, 𝑛

𝑝
.

Step 3. Computation of population-based minimum CF
value and computation of the personal best solution vectors
(𝑝𝑏𝑒𝑠𝑡), group best solution vector (𝑔𝑏𝑒𝑠𝑡).
Step 4. Updating the velocities as per (7); updating the
particle vectors as per (11), and checking against the limits
of current excitation weights coefficients and one number
uniform interelement spacing; finally, computation of the
updated CF values of the particle vectors and population-
based minimum CF value.
Step 5. Updating the 𝑝𝑏𝑒𝑠𝑡 vectors, 𝑔𝑏𝑒𝑠𝑡 vector; reuse of the
updated particle vectors as initial particle vectors for Step 4.
Step 6. Iteration continues from Step 4 till the maximum
iteration cycles or the convergence of minimum CF values;
finally, 𝑔𝑏𝑒𝑠𝑡 is the vector of optimal current excitation
weights (𝑁 number) and uniform interelement spacing (01
number).

3.3. Differential Evolution (DE) Algorithm. The crucial idea
behind DE algorithm is a scheme for generating trial param-
eter vectors and adds the weighted difference between two
population vectors to a third one. Like any other evolutionary
algorithm, DE algorithm aims at evolving a population of
𝑁
𝑝
,𝐷-dimensional parameter vectors, so-called individuals,

which encode the candidate solutions, that is,

𝑥⃗
𝑖,𝑔

= {𝑥
1,𝑖,𝑔

, 𝑥
2,𝑖,𝑔

, . . . , 𝑥
𝐷,𝑖,𝑔

} , (12)

where 𝑖 = 1, 2, 3, . . . , 𝑁
𝑝
. The initial population (at 𝑔 = 0)

should cover the entire search space as much as possible
by uniformly randomizing individuals within the search
constrained by the prescribed minimum and maximum
parameter bounds:

𝑥⃗min = {𝑥
1,min, . . . , 𝑥𝐷,min} , 𝑥⃗max = {𝑥

1,max, . . . , 𝑥𝐷,max} .
(13)

For example, the initial value of the 𝑗th parameter of the 𝑖th
vector is

𝑥
𝑗,𝑖,0

= 𝑥
𝑗,min + rand (0, 1) ∗ (𝑥

𝑗,max − 𝑥
𝑗,min) , (14)

where 𝑗 = 1, 2, 3, . . . , 𝐷.
The random number generator, rand(0, 1), returns a

uniformly distributed randomnumber fromwithin the range
[0, 1]. After initialization, DE enters a loop of evolutionary
operations: mutation, crossover, and selection.
(a) Mutation. Once initialized, DE mutates and recombines
the population to produce new population. For each trial
vector 𝑥

𝑖,𝑔
at generation 𝑔, its associated mutant vector V⃗

𝑖,𝑔
=

{V
1,𝑖,𝑔

, V
2,𝑖,𝑔

, . . . , V
𝐷,𝑖,𝑔

} can be generated via certain mutation
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strategy. Five most frequently used mutation strategies in the
DE codes are listed as follows:

“DE/rand/1”:

V⃗
𝑖,𝑔

= 𝑥⃗
𝑟
󸀠

1
,𝑔
+ 𝐹 (𝑥⃗

𝑟
󸀠

2
,𝑔
− 𝑥⃗
𝑟
󸀠

3
,𝑔
) ; (15)

“DE/best/1”:

V⃗
𝑖,𝑔

= 𝑥⃗best,𝑔 + 𝐹 (𝑥⃗
𝑟
󸀠

1
,𝑔
− 𝑥⃗
𝑟
󸀠

2
,𝑔
) ; (16)

“DE/rand-to-best/1”:

V⃗
𝑖,𝑔

= 𝑥⃗
𝑖,𝑔

+ 𝐹 (𝑥⃗best,𝑔 − 𝑥⃗
𝑖,𝑔
)

+ 𝐹 (𝑥⃗
𝑟
󸀠

1
,𝑔
− 𝑥⃗
𝑟
󸀠

2
,𝑔
) ;

(17)

“DE/best/2”:

V⃗
𝑖,𝑔

= 𝑥⃗best,𝑔 + 𝐹 (𝑥⃗
𝑟
󸀠

1
,𝑔
− 𝑥⃗
𝑟
󸀠

2
,𝑔
)

+ 𝐹 (𝑥⃗
𝑟
󸀠

3
,𝑔
− 𝑥⃗
𝑟
󸀠

4
,𝑔
) ;

(18)

“DE/rand/2”:

V⃗
𝑖,𝑔

= 𝑥⃗
𝑟
󸀠

1
,𝑔
+ 𝐹 (𝑥⃗

𝑟
󸀠

2
,𝑔
− 𝑥⃗
𝑟
󸀠

3
,𝑔
)

+ 𝐹 (𝑥⃗
𝑟
󸀠

4
,𝑔
− 𝑥⃗
𝑟
󸀠

5
,𝑔
) .

(19)

The indices 𝑟
󸀠

1
, 𝑟󸀠
2
, 𝑟󸀠
3
, 𝑟󸀠
4
, 𝑟󸀠
5
are mutually exclusive integers

randomly chosen from the range [1,𝑁
𝑝
], and all are different

from the base index 𝑖. These indices are randomly generated
once for each mutant vector. The scaling factor 𝐹 is a positive
control parameter for scaling the difference vector. 𝑥best,𝑔 is
the best individual vector with the best fitness value in the
population at generation “𝑔.” In the present work, (17) has
been used.

(b) Crossover. To complement the differential mutation
search strategy, crossover operation is applied to increase
the potential diversity of the population. The mutant vector
V
𝑖,𝑔

exchanges its components with the target vector 𝑥
𝑖,𝑔

to
generate a trial vector:

𝑢⃗
𝑖,𝑔

= {𝑢
1,𝑖,𝑔

, 𝑢
2,𝑖,𝑔

, . . . , 𝑢
𝐷,𝑖,𝑔

} . (20)

In the basic version, DE employs the binomial (uniform)
crossover defined as

𝑢
𝑗,𝑖,𝑔

= {

V
𝑗,𝑖,𝑔

if (rand
𝑖,𝑗 (

0, 1) ≤ 𝐶
𝑟
or 𝑗 = 𝑗rand) ,

𝑥
𝑗,𝑖,𝑔

otherwise,
(21)

where 𝑗 = 1, 2, . . . , 𝐷.
The crossover rate 𝐶

𝑟
is user-specified constant within

the range (1, 0), which controls the fraction of parameter
values copied from the mutant vector. 𝑗rand is a randomly
chosen integer in the range [1, 𝐷]. The binomial crossover
operator copies the 𝑗th parameter of the mutant vector
V⃗
𝑖,𝑔

to the corresponding element in the trial vector 𝑢⃗
𝑖,𝑔

if

rand
𝑖,𝑗
(0, 1) ≤ 𝐶

𝑟
or 𝑗 = 𝑗rand. Otherwise, it is copied from

the corresponding target vector 𝑥⃗
𝑖,𝑔
.

(c) Selection. To keep the population size constant over sub-
sequent generations, the next step of the algorithm calls for
selection to determine whether the target or the trial vector
survives to the next generation, that is, at 𝑔 = 𝑔 + 1. The
selection operation is described as

𝑥⃗
𝑖,𝑔+1

= {

𝑢⃗
𝑖,𝑔

if 𝑓 (𝑢⃗
𝑖,𝑔
) ≤ 𝑓 (𝑥⃗

𝑖,𝑔
) ,

𝑥⃗
𝑖,𝑔

otherwise,
(22)

where 𝑓(𝑥) is the CF (in this work) to be minimized. So,
if the new vector yields an equal or lower value of the
objective function, it replaces the corresponding target vector
in the next generation; otherwise, the target is retained in
the population. Hence, the population either gets better (with
respect to the minimization of the objective function) or
remains the same in fitness status, but never deteriorates.

The above three steps are repeated generation after gen-
eration until some specific termination criteria are satisfied.

3.3.1. Control Parameter Selection of DE. Proper selection of
control parameters is very important for the success and
performance of an algorithm.Theoptimal control parameters
are problem-specific.Therefore, the set of control parameters
that best fit each problem has to be chosen carefully. Values
of 𝐹 lower than 0.3 may result in premature convergence,
while values greater than 1 tend to slow down the convergence
speed. Large populations help maintaining diverse individ-
uals, but also slow down convergence speed. In order to
avoid premature convergence, 𝐹 or 𝑁

𝑝
should be increased

or 𝐶
𝑟
should be decreased. Larger values of 𝐹 result in

larger perturbations and better probabilities to escape from
local optima, while lower 𝐶

𝑟
preserves more diversity in the

population, thus avoiding local optima.

3.3.2. Algorithmic Description of DE

Step 1 (generation of initial population). Set the generation
counter 𝑔 = 0 and randomly initialize 𝐷-dimensional 𝑁

𝑝

individuals (parameter vectors/target vectors),

𝑥⃗
𝑖,𝑔

= {𝑥
1,𝑖,𝑔

, 𝑥
2,𝑖,𝑔

, . . . , 𝑥
𝐷,𝑖,𝑔

} , (23)

where 𝑖 = 1, 2, 3, . . . , 𝑁
𝑝
. The initial population (at 𝑔 = 0)

should cover the entire search space as much as possible
by uniformly randomizing individuals within the search
constrained by the prescribed minimum and maximum
parameter bounds:

𝑥⃗min = {𝑥
1,min, . . . , 𝑥𝐷,min} , 𝑥⃗max = {𝑥

1,max, . . . , 𝑥𝐷,max} .
(24)
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Step 2 (mutation). For 𝑖 = 1 to𝑁
𝑝
, generate a mutated vector,

V⃗
𝑖,𝑔

= {V
1,𝑖,𝑔

, V
2,𝑖,𝑔

, . . . , V
𝐷,𝑖,𝑔

} corresponding to the target
vector 𝑥⃗

𝑖,𝑔
via mutation strategy (17).

Step 3 (crossover). Generation of a trial vector 𝑢⃗
𝑖,𝑔

for each
target vector 𝑥⃗

𝑖,𝑔
where 𝑢⃗

𝑖,𝑔
= {𝑢
1,𝑖,𝑔

, 𝑢
2,𝑖,𝑔

, . . . , 𝑢
𝐷,𝑖,𝑔

}, for 𝑖 =

1 to𝑁
𝑝
; 𝑗rand = [rand(0, 1) ∗ 𝐷]; for 𝑗 = 1 to𝐷:

𝑢
𝑗,𝑖,𝑔

= {

V
𝑗,𝑖,𝑔

if (rand
𝑖,𝑗 (

0, 1) ≤ 𝐶
𝑟
or 𝑗 = 𝑗rand) ,

𝑥
𝑗,𝑖,𝑔

otherwise.
(25)

Step 4 (selection). For 𝑖 = 1 to𝑁
𝑝
,

𝑥⃗
𝑖,𝑔+1

= {

𝑢⃗
𝑖,𝑔

if 𝑓 (𝑢⃗
𝑖,𝑔
) ≤ 𝑓 (𝑥⃗

𝑖,𝑔
) .

𝑥⃗
𝑖,𝑔

otherwise.
(26)

Increment the generation count 𝑔 = 𝑔 + 1.

3.4. Collective Animal Behavior (CAB). CAB is an optimiza-
tion technique which mimics the collective behaviour of
animals [12, 13]. CAB algorithm assumes the existence of
a set of operations that resemble the interaction rules that
model the collective animal behaviour. In this approach,
each solution within the search space represents an animal
position. The “fitness value” refers to the animal dominance
with respect to the group. The complete process mimics
the collective animal behaviour. CAB implements a memory
for storing best solutions (animal positions) mimicking the
aforementioned biologic process. Such memory is divided
into twodifferent elements, one (𝑀

𝑔
) formaintaining the best

locations at each generation and the other (𝑀
ℎ
) for storing

the best historical positions during the complete evolutionary
process.

3.4.1. Description of the CAB Algorithm. CAB algorithm
[12, 13] is an iterative process that starts by initializing the
population randomly (generated random solutions or animal
positions). Then, the following four operations are applied
until a termination criterion is met (i.e., number of iteration
cycles NI):

(i) keep the position of the best individuals;

(ii) move from or to nearby neighbours (local attraction
and repulsion);

(iii) move randomly;

(iv) compete for the space within a determined distance
(update the memory).

3.4.2. Initializing the Population. The algorithm begins
by initializing a set 𝐴 of 𝑁

𝑝
animal positions (𝐴 =

{𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁𝑝
}). Each animal position 𝑎

𝑖
is a𝐷-dimensional

vectorwhere𝐷 is equal to the current excitationweights coef-
ficients𝑁, and uniform interelement 01 (𝑛var =𝑁 + 1) needs
to be optimized. Such values are randomly and uniformly

distributed between the prespecified lower initial parameter
bound 𝑎

low
𝑗

and the upper initial parameter bound 𝑎
high
𝑗

:

𝑎
𝑗,𝑖

= 𝑎
low
𝑗

+ rand (0, 1) ⋅ (𝑎
high
𝑗

− 𝑎
low
𝑗

) ,

𝑗 = 1, 2, . . . , 𝐷; 𝑖 = 1, 2, . . . , 𝑁
𝑝
,

(27)

𝑗 and 𝑖 being the parameter and individual indexes, respec-
tively. 𝑎

𝑗,𝑖
is the 𝑗th parameter of the 𝑖th individual. All

the initial positions 𝐴 are sorted according to the fitness
function (dominance) to form a new individual set 𝑋 =

{𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁𝑝
}, so that the best 𝐵 positions are chosen,

which are initially stored in bothmemories𝑀
𝑔
and𝑀

ℎ
.Thus,

bothmemories share the same information only at this initial
stage.

3.4.3. Keep the Position of the Best Individuals. Analogous
to the biological metaphor, this behavioural rule, typical
from animal groups, is implemented as an evolutionary
operation in our approach. In this operation, the first 𝐵

elements ({𝑎
1
, 𝑎
2
, . . . , 𝑎

𝐵
}), of the new animal position set 𝐴,

are generated. Such positions are computed by the values
contained inside the historical memory 𝑀

ℎ
, considering a

slight random perturbation around them. This operation is
modelled as

𝑎
𝑙
= 𝑚
𝑙

ℎ
+ V, (28)

where 𝑙 ∈ {1, 2, . . . , 𝐵}, while 𝑚
𝑙

ℎ
represents the 𝑙-element of

the historical memory𝑀
ℎ
. V is a random vector with a small

enough length.

3.4.4. Move from or to Nearby Neighbours. From the biologi-
cal inspiration, animals experiment a random local attraction
or repulsion according to an internal motivation. Therefore,
new evolutionary operators are implemented that mimic
such biological pattern. For this operation, if a uniform
random number 𝑟

𝑚
generated within the range [0, 1] is

less than a threshold 𝐻, a determined individual position
is attracted/repelled considering the nearest best historical
position within the group (i.e., the nearest position in 𝑀

ℎ
);

otherwise, it is attracted/repelled to/from the nearest best
location within the group for the current generation (i.e., the
nearest position in𝑀

𝑔
). Such operations are modelled as

𝑎
𝑖
= {

𝑋
𝑖
± 𝑟 ⋅ (𝑚

nearest
ℎ

− 𝑋
𝑖
) with probability 𝐻,

𝑋
𝑖
± 𝑟 ⋅ (𝑚

nearest
𝑔

− 𝑋
𝑖
) with probability (1 − 𝐻) ,

(29)

where 𝑖 ∈ {𝐵 + 1, 𝐵 + 2, . . . , 𝑁
𝑝
}, 𝑚nearest
ℎ

and 𝑚
nearest
𝑔

repre-
sent the nearest elements of 𝑀

ℎ
and 𝑀

𝑔
to 𝑋
𝑖
, respectively,

while 𝑟 is a random number within [−1, 1]. Therefore, if
𝑟 > 0, the individual position 𝑋

𝑖
is attracted to the position

𝑚
nearest
ℎ

or 𝑚nearest
𝑔

; otherwise such movement is considered
as repulsion.

3.4.5. Move Randomly. Following the biological model, one
animal randomly changes its position under some probability
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𝑃. Such behavioural rule is implemented considering the
expression (30) as

𝑎
𝑖
= {

𝑟 with probability 𝑃,

𝑋
𝑖

with probability (1 − 𝑃) ,

(30)

where

𝑖 ∈ {𝐵 + 1, 𝐵 + 2, . . . , 𝑁
𝑝
} , (31)

“𝑟” is a random vector defined in the search space. This
operator is similar to reinitializing the particle in a random
position, as it is done by (27).

3.4.6. Compete for the Space within a Determined Distance
(Update the Memory). Once the operations to keep the
position of the best individuals, such as moving from or
to nearby neighbours and moving randomly, are applied to
all 𝑁
𝑝
animal positions, generating 𝑁

𝑝
new positions, it is

necessary to update the memory 𝑀
ℎ
. In order to update the

memory 𝑀
ℎ
, the concept of dominance is used. Animals

that interact within the group maintain a minimum distance
among them. Such distance, which is defined as 𝜌 depends on
how aggressive the animal behaves. Hence, when two animals
confront each other inside such distance, the most dominant
individual prevails, meanwhile the other withdraws. The
historical memory 𝑀

ℎ
is updated considering the following

procedure.

(1) The elements of 𝑀
ℎ

and 𝑀
𝑔

are merged into
𝑀
𝑈

(𝑀
𝑈
= 𝑀
ℎ
∪ 𝑀
𝑔
).

(2) Each element 𝑚
𝑖

𝑈
of the memory 𝑀

𝑈
is com-

pared pair-wise to the remaining memory elements
({𝑚
1

𝑈
, 𝑚
2

𝑈
, . . . , 𝑚

2𝐵−1

𝑈
}). If the distance between both

elements is less than 𝜌, the element getting a better
performance in the fitness function prevails, mean-
while the other is removed.

(3) From the resulting elements of𝑀
𝑈
(Step 2), the𝐵 best

values are selected to build the new𝑀
ℎ
.

The computational steps for the CAB algorithm can be
summarized as follows.
Step 1. Set the population size 𝑁

𝑝
of vectors (each having

𝐷 number of current excitation weight coefficients 𝑁 and
uniform interelement 01 (𝑛var = 𝑁 + 1) in 𝐷-dimensional
search space), CAB parameters (𝐵, 𝐻, and 𝑃), and NI
(maximum number of generations).
Step 2. Generate randomly the position set 𝐴 = {𝑎

1
,

𝑎
2
, . . . , 𝑎

𝑁𝑝
} using (27).

Step 3. Sort 𝐴 according to the objective function (domi-
nance) to build𝑋 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁𝑝
}.

Step 4. Choose the first 𝐵 positions of 𝑋 and store them into
the memory𝑀

𝑔
.

Step 5. Update 𝑀
ℎ
according to (28) (during the first itera-

tion:𝑀
𝑔
= 𝑀
ℎ
).

Step 6. Generate the first 𝐵 positions of the new solution
set 𝐴 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝐵
}. Such positions correspond to
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Figure 4: Best array pattern found by CAB for the 10-element array
with improved SLL and FNBW at 𝑢 = 0.5.

the elements of 𝑀
ℎ
making a slight random perturbation

around them. 𝑎
𝑙
= 𝑚
𝑙

ℎ
+ V; being V a random vector of a small

enough length.
Step 7. Generate the rest of the 𝐴 elements using the attrac-
tion, repulsion, and random movements:

for 𝑖 = 𝐵 + 1: 𝑁
𝑝

if (𝑟
1
< 𝑃) then

(attraction and repulsion movement)
{if (𝑟
2
< 𝐻) then

𝑎
𝑖
= 𝑋
𝑖
± 𝑟 ⋅ (𝑚

nearest
ℎ

− 𝑋
𝑖
)

else if
𝑎
𝑖
= 𝑋
𝑖
± 𝑟 ⋅ (𝑚

nearest
𝑔

− 𝑋
𝑖
)}

else
random movement
{𝑎
𝑖
= 𝑟}

end
where 𝑟

1
, 𝑟
2
∈ rand(0, 1) and 𝑟 ∈ [−1, 1].

Step 8. If maximum number of iteration cycles (NI) is
completed, the process is finished; otherwise go back to
Step 3. The best value in 𝑀

ℎ
represents the global solution

for current excitation weights coefficients (𝑁 number) and
uniform interelement (01 number).

4. Simulation Results

All simulation results were obtained by programming in
MATLAB language using MATLAB 7.5 on dual core proces-
sor, 2.88GHz with 2GB RAM. Table 1 shows the best chosen
parameters for RGA, PSO, DE, and CAB, respectively.



8 The Scientific World Journal

Table 1: RGA, PSO, DE, and CAB parameters.

Parameters RGA PSO DE CAB
Population size 120 120 120 120
Iteration cycle 100 100 100 100
Crossover rate 0.8 — — —
Crossover Two point cross over — — —
Mutation rate 0.05 — — —
Mutation Gaussian mutation — — —
Selection, probability Roulette wheel, 1/3 — — —
𝐶
1
, 𝐶
2

— 1.5, 1.5 — —
Vmin
𝑖

, Vmax
𝑖

— 0.01, 1.0 — —
𝑤max, 𝑤min — 1.0, 0.4 — —
𝐶
𝑟

— — 0.3 —
𝐹 — — 0.5 —
𝐵, 𝑃,𝐻 20, 0.5, 0.5

Table 2: Initial values of SLL and FNBW for uniform linear array having uniform excitation (𝐼
𝑛
= 1) and 𝜆/2 inter-element spacing.

𝑁

SLL (dB) for
uniform linear

array with (𝐼
𝑛
= 1)

and 𝜆 = 0.5

SLL of hyper beam
nonoptimized (dB)
at 𝑢 = 0.5, (𝐼

𝑛
= 1)

and 𝜆 = 0.5

SLL of hyper beam
nonoptimized (dB)
at 𝑢 = 1, (𝐼

𝑛
= 1)

and 𝜆 = 0.5

FNBW (deg) for
uniform linear

array with (𝐼
𝑛
= 1)

and 𝜆 = 0.5

FNBW of hyper
beam nonoptimized
(deg) at 𝑢 = 0.5,

(𝐼
𝑛
= 1) and 𝜆 = 0.5

FNBW of hyper
beam nonoptimized

(deg) at 𝑢 = 1,
(𝐼
𝑛
= 1) and 𝜆 = 0.5

10 −12.97 −32.78 −19.91 33.12 33.12 33.12
14 −13.11 −33.02 −20.10 23.04 23.04 23.04
20 −13.20 −33.20 −20.20 16.56 16.56 16.56
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Figure 5: Best array pattern found by CAB for the 14-element array
with improved SLL and FNBW at 𝑢 = 0.5.

4.1. Analysis of Radiation Patterns of Hyperbeam without
Optimization. This section gives the experimental results for
various hyper beams of nonoptimized linear antenna array
designs. Three linear antenna array designs considered are
of 10-, 14-, and 20-element sets, each maintaining uniform
interelement spacing. Reduction of SLL can be controlled by
varying the hyperbeam exponent value 𝑢, thereby obtaining
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Figure 6: Best array pattern found by CAB for the 20-element array
with improved SLL and FNBW at 𝑢 = 0.5.

different hyperbeam patterns. The results show that the SLL
reduction increases as the exponent value 𝑢 decreases. For
10-, 14-, and 20-element linear arrays, with 𝑢 = 1, SLL reduc-
tions are −19.91 dB, −20.10 dB, and −20.20 dB, respectively,
where as with 𝑢 = 0.5, SLL reduces to −32.78 dB, −33.02 dB,
and −33.20 dB, respectively, as shown in Figures 4, 5, 6, 7, 8,
and 9 and Table 2. Uniform linear array shows the respective
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Table 3: SLL, FNBW, optimal current excitation weights, and optimal inter-element spacing for hyper beam pattern of linear array with hyper
beam exponent (𝑢 = 0.5), obtained by RGA, PSO, DE, and CAB for different sets of arrays.

𝑁 Algorithms Optimized current excitation weights and
[𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, . . . , 𝐼

𝑁
]

Optimal
inter-element
spacing in (𝜆)

SLL of hyper beam
with optimization

(dB)

FNBW of hyper
beam with

optimization (deg)

RGA 0.2844 0.5240 0.8813 0.9032 0.4231
0.8425 0.4564 0.6402 0.3414 0.3853 0.5441 −100.6 41.04

10
PSO 0.2398 0.6414 0.9123 0.9722 0.4312

0.9502 0.4327 0.6582 0.3571 0.3982 0.5717 −117.2 39.60

DE 0.1029 0.3802 0.6258 0.9394 0.7907
1.0000 0.5211 0.5538 0.2118 0.2156 0.8470 −151.9 34.56

CAB 0.2359 0.3120 0.4490 0.4396 0.9983
0.7164 0.9233 0.7213 0.3960 0.0846 0.8594 −182.8 32.4

RGA
0.3631 0.2555 0.4905 0.0043 0.6114
0.5778 0.8634 0.5042 0.5782 0.5913
0.7502 0.5545 0.2878 0.3431

0.5878 −96.21 25.92

14

PSO
0.2319 0.1857 0.6027 0.5089 0.7906
0.4163 0.6275 0.7212 0.9097 0.2907
0.2525 0.2755 0.5506 0.3615

0.6036 −113 25.20

DE
0.2297 0.3701 0.3080 0.2229 0.6599
0.9495 0.6941 0.8597 0.4157 0.7559
0.7305 0.2389 0.3759 0.0982

0.7949 −125.8 23.04

CAB
0.0510 0.2113 0.3799 0.8250 0.9015
0.8437 0.9090 0.9410 0.8698 0.5521
0.3112 0.4662 0.3493 0.1664

0.9245 −166 20.16

RGA

0.2505 0.3933 0.4881 0.4829 0.3027
0.6697 0.3436 0.9551 0.5974 0.8952
0.5252 0.9773 0.4056 0.6612 1.0000
0.1577 0.8144 0.3284 0 0.5558

0.5361 −83.69 19.44

20

PSO

0.1675 0.2453 0.2113 0.5168 0.6011
0.5661 0.7962 0.2148 0.8279 0.2476
0.9888 0.3429 0.8064 0.1836 0.2281
0.1792 0.4317 0.6579 0.2244 0.3467

0.5353 −88.71 18.72

DE

0.1567 0.1345 0.5561 0.4817 0.9529
0.7651 0.9420 0.7511 0.6736 0.5927
0.9889 0.8862 0.4313 0.4025 0.2891
0.3316 0.4286 0.4649 0.4306 0.3195

0.5852 −101.9 18

CAB

0.1411 0.4085 0.4124 0.4649 0.4193
0.4515 0.5774 0.7569 0.9998 0.9478
0.9593 0.8373 0.9730 0.9216 0.8734
0.6891 0.4313 0.2586 0.0089 0.0987

0.8283 −142.1 15.84

SLL values as −12.97 dB, −13.11 dB, and −13.20 dB. Therefore,
in comparison to conventional beamforming, hyperbeam
technique yields large reduction of SLL even without any
optimization. Main beam width (FNBW) remains unaltered
for all cases.

4.2. Analysis of Radiation Patterns of Hyper Beams for
𝑢 = 0.5 and 1 with Different Algorithms. This section gives
the experimental results for various optimized hyperbeam
antenna array designs obtained by RGA, PSO, DE, and
CAB techniques. The parameters of the RGA, PSO, DE, and
CAB are set after many trial runs. It is found that the best
results are obtained for the initial population (𝑛

𝑝
) of 120

chromosomes and maximum number of generations, 𝑁max
as 100. Each RGA, PSO, DE, CAB individually generates a
set of optimized, nonuniform current excitation weights and

optimal uniform interelement spacing for same three sets
of linear antenna arrays. Tables 3 and 4 show SLL, FNBW,
optimal current excitation weights with hyperbeam exponent
value 𝑢 = 0.5, and 𝑢 = 1, respectively, for optimally excited
hyperbeam linear antenna array with optimized uniform
interelement spacing (𝑑 ∈ [𝜆/2, 𝜆]) using RGA, PSO, DE,
and CAB. Figures 4–9 depict the radiation patterns of linear
antenna arrays with the exponent values 𝑢 = 0.5 and 𝑢 = 1

for sets of 10, 14, and 20 number of elements, respectively,
with optimized nonuniform excitations and optimized fixed
interelement spacing, as obtained by the techniques. Figures
clearly show improvement of SLL and FNBWby optimization
of hyper beam.

The following observations are made from Table 3 and
Figures 4, 5, and 6, in which the exponent value 𝑢 =

0.5. The algorithms yield SLL values of −100.6 dB (RGA),
−117.2 dB (PSO), −151.9 dB (DE), and −182.8 dB (CAB)
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Table 4: SLL, FNBW, optimal current excitation weights, and optimal inter-element spacing for hyper beam pattern of linear array with hyper
beam exponent (𝑢 = 1), obtained by RGA, PSO, DE, and CAB for different sets of arrays.

𝑁 Algorithms Optimized current excitation weights and
[𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, . . . , 𝐼

𝑁
]

Optimal
inter-element
spacing In (𝜆)

SLL of hyper beam
with optimization

(dB)

FNBW of hyper beam
with optimization

(deg)

RGA 0.1339 0.1010 0.4353 0.3657 0.6166
0.5295 0.6264 0.4194 0.3935 0.2296 0.6503 −46.76 36.72

10
PSO 0.3889 0.4254 0.2096 0.7456 0.7961

0.4382 0.3525 0.5002 0.1764 0.1603 0.6436 −58.88 35.28

DE 0.2057 0.4820 0.9658 0.9686 1.0000
0.9881 0.5582 0 0 0.0086 0.9974 −64.57 34.56

CAB 0.1692 0.3915 0.4476 0.6693 0.9456
0.9860 0.9550 0.6883 0.2226 0.0156 0.9358 −96.96 33.12

RGA
0 0.4146 0.6005 0.7859 0.7903
0.7755 0.4159 0.9358 0.2159 0.3125
0.4533 0 0.6501 0.1934

0.5824 −46.76 25.20

14

PSO
0.1011 0.2588 0.3020 0.5343 0.6365
0.6937 0.5245 0.8198 0.3813 0.4761
0.3815 0.4803 0.1301 0.3374

0.6698 −51.4 24.48

DE
0.1822 0.4092 0.3052 0.3611 0.5660
0.8365 0.6771 0.7047 0.4664 0.6376
0.5091 0.3593 0.0822 0.1951

0.7436 −61.71 23.76

CAB
0.2313 0.2924 0.4580 0.3613 0.9441
0.9963 0.9818 0.9922 0.8262 0.6192
0.8685 0.3357 0.1659 0.1938

0.9253 −82.6 22.32

RGA

0.2739 0.0772 0.4652 0.3369 0.4341
0.6162 0.5613 0.8008 0.4211 0.7082
0.6840 0.8283 0.3579 0.4822 0.3872
0.7091 0.3145 0.3415 0.1838 0.4675

0.5587 −42.85 18.72

20

PSO

0.5918 0.0903 0.4110 0.0131 0.6447
0.1519 0.7800 0 0.8548 0.8593
0.6530 0.7593 0.9763 0.9991 0.7571
0.8972 0.5175 0.7424 0.2818 0.2433

0.5961 −52.97 18

DE

0.0938 0.1489 0.2668 0.5640 0.6043
0.8496 0.8847 0.7082 0.6143 0.7392
0.8163 0.8767 0.7024 0.3612 0.2068
0.3691 0.3646 0.5144 0.3815 0.1665

0.6638 −61.19 17.28

CAB

0 0.0048 0.1938 0.4010 0.6162
0.7142 0.9277 0.9825 0.8613 0.8899
0.9679 0.9160 0.6405 0.5015 0.5205
0.3977 0.3407 0.3297 0.3303 0.1310

0.9297 −80.55 16.56

for the 10-element array, then, −96.21 dB (RGA), −113 dB
(PSO), −125.8 dB (DE), and −166 dB (CAB) for the 14-
element array, andfinally,−83.69 dB (RGA),−88.71 dB (PSO),
−101.9 dB (DE), and −142.1 dB (CAB) for the 20-element
array of respective optimized hyperbeam patterns against
SLL of −32.78 dB, −33.02 dB, and −33.20 dB of respective
nonoptimized hyperbeam patterns. Regarding FNBW values
for the same respective arrays, the algorithms yield 41.04
degrees (RGA), 39.60 degrees (PSO), 34.56 degrees (DE),
and 32.4 degrees (CAB), then, 25.92 degrees (RGA), 25.20
degrees (PSO), 23.04 degrees (DE), and 20.16 degrees (CAB),
and finally, 19.44 degrees (RGA), 18.72 degrees (PSO), 18
degrees (DE), and 15.84 degrees (CAB) of respective opti-
mized hyperbeam patterns against FNBW of 33.12 degrees,

23.04 degrees, and 16.56 degrees of respective nonoptimized
hyperbeam patterns. Thus, Figures as well as Tables clearly
show much improvement of both SLL and FNBW by CAB-
based optimization, as compared to the other algorithms.

From Table 4 and Figures 7, 8, and 9, in which the
exponent value 𝑢 = 1.0, the same nature of observations
can be made with regard to SLL and FNBW values for the
algorithms. In this case, also, CAB proves its superiority in
yielding better SLL and FNBW as compared to the other
algorithms. CAB efficiently computes 𝑁 number of near
global optimal current excitation weights and one number
optimal uniform interelement separation for each hyperbeam
linear antenna array to have maximum SLL reduction and
much improved FNBW.
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Figure 7: Best array pattern found by CAB for the 10-element array
at 𝑢 = 1 with improved SLL.
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Figure 8: Best array pattern found by CAB for the 14 -element array
at 𝑢 = 1 with improved SLL.

5. Convergence Profiles of RGA, PSO,
DE, and CAB

The algorithms can be compared in terms of the cost
function (CF) values, Figures 10 and 11 show the convergences
of log

10
(CF) values obtained for 10-element array sets, for

𝑢 = 0.5 and 1, respectively, as RGA, PSO, DE, and
CAB are employed, respectively. CAB converges to the least
minimum CF as compared to RGA, PSO, and DE which
yield suboptimal higher values of CF. CAB thus yields the
near-global optimal current excitation weights and optimal
inter element spacing of hyperbeam of linear antenna arrays.
Table 5 shows the execution times of RGA, PSO, DE, and
CAB. From the same table, it is clear that execution times of
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Figure 9: Best array pattern found by CAB for the 20-element array
at 𝑢 = 1 with improved SLL.
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Figure 10: Convergence profile of CAB in case of 10-element linear
antenna array at 𝑢 = 0.5.

CAB are lesser than those of RGA and DE but not those of
PSO. With a view to the above fact, it may be inferred that
the performance of the proposed CAB algorithm is the best
among the algorithms for solving the optimization problem
of hyper beamforming design.

6. Conclusions

In this paper, a novel algorithm based on collective ani-
mal behaviour (CAB) is used for finding the best optimal
nonuniform excitation weights, 𝐼

𝑛
(0 < 𝐼

𝑛
≤ 1) and optimal

uniform interelement spacing, 𝑑 (𝜆/2 ≤ 𝑑 < 𝜆) for hyper
beamforming of linear antenna arrays. Three broad cases of
arrays are considered in the study. The first two cases are (i)
conventional uniformly excited (𝐼

𝑛
= 1) linear antenna arrays
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Table 5: Comparison of execution times for different algorithms for different sets of elements.

No. of elements Execution times for different algorithms
RGA (sec) DE (sec) PSO (sec) CAB (sec)

10 384.840 311.3459 244.2920 286.0470
14 408.2940 376.4710 289.0360 310.2220
20 538.4420 483.5892 320.0520 358.5028

0 10 20 30 40 50 60 70 80 90 100
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0
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Figure 11: Convergence profile of CAB in case of 10-element linear
antenna array at 𝑢 = 1.

with interelement spacing, 𝑑 = 𝜆/2 and (ii) nonoptimized
uniformly excited (𝐼

𝑛
= 1) hyper beamforming of linear

antenna arrays with interelement spacing, 𝑑 = 𝜆/2. The
last one is of actual concern, which is hyper beamforming
of linear antenna arrays with optimized interelement spacing
(𝜆/2 ≤ 𝑑 < 𝜆) along with optimized nonuniform excitations
(0 < 𝐼

𝑛
≤ 1). The optimization algorithms considered are

RGA, PSO, DE, and CAB. Extensive experimental results
reveal that the other algorithms RGA, PSO, and DE are
entrapped to suboptimal designs. Whereas the collective
animal behaviour (CAB) yields optimal designs, offering in
the highest reduction in sidelobe level (SLL) and much more
improved first null beam width (FNBW) as compared to the
other two cases for any hyperbeam exponent parameter.
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