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A class of derivative-free methods without memory for approximating a simple zero of a nonlinear equation is presented. The
proposed class uses four function evaluations per iteration with convergence order eight. Therefore, it is an optimal three-step
scheme without memory based on Kung-Traub conjecture. Moreover, the proposed class has an accelerator parameter with the
property that it can increase the convergence rate from eight to twelve without any new functional evaluations. Thus, we construct
a with memory method that increases considerably efficiency index from 8

1/4
≈ 1.681 to 12

1/4
≈ 1.861. Illustrations are also

included to support the underlying theory.

1. Introduction

The first attempts for classifying iterative root-finding meth-
ods were done by Traub [1]. He divided iterative methods
for finding zeros of a function into two sets: one-point and
multipoint methods. There is a fact about how to create
a new method. As Traub investigated in his book [1], and
Kung and Traub mentioned in [2], construction of one-point
methods is not a useful task. In other words, to construct an
optimal one-pointmethodwith convergence order𝑛, we need
𝑛 functional evaluations, while for construction an optimal
method without memory having convergence order 2𝑛; only
𝑛 + 1 function evaluations are required.

To be more precise, constructing an optimal one-point
method with eighth-order convergence needs eight func-
tion evaluations, while constructing an optimal three-point
method without memory having the same convergence
order requires four functional evaluations. As a result, many
researchers have paid much attention to construct optimal
multipoint iterationswithoutmemory based on the unproved
conjecture due to Kung and Traub: any multipoint iteration
without memory using 𝑛 + 1 function evaluations can reach
the optimal order 2𝑛.

This work follows two main goals: frst developing a
new optimal three-step derivative-free class of methods
without memory and second developing the proposed class
to methods with memory. In this way, it reaches convergence
order 12 without any new functional evaluations. Because of
the derivative-free property of the proposed class, it can be
used for finding zeros of not only smooth functions but also
nonsmooth ones. Moreover, as we pointed out above we can
reach the convergence order 12 using the same functional
evaluations (to three-step without memory iterations) and,
therefore, increasing 50% convergence order is the other
aspect and contribution of this work.

Note that in most test problems for nonlinear equations
computing derivatives are an easy exercise. However, for
some practical problems computing the derivative might be
a cumbersome task and we have to relay on methods free of
derivatives. For further reading on this topic, one may refer
to [3–6].

The paper is organized as follows. First, a new without
memory family of optimal order eight, consuming four
function evaluations per iteration, is proposed by using two
weight functions in Section 2. A different way to compute the
order of convergence for iterative methods that use divided
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differences instead of derivatives is presented in Section 3,
when we derive a method with memory. The significant
increase of convergence speed is achieved without additional
function evaluations, which is the main advantage of such
methods. Section 4 is devoted to numerical results connected
to the order of the methods with and without memory. And
finally, concluding remarks will be drawn in Section 5.

2. Construction of a New Three-Step Class

Let the scalar function 𝑓 : 𝐷 ⊂ R → R and 𝑓(𝛼) = 0 ̸=

𝑓
󸀠
(𝛼) = 𝑐

1
. In other words, 𝛼 is a simple zero of 𝑓(𝑥) = 0. In

this section, we start with the three-step scheme:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓󸀠 (𝑥
𝑘
)
,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓󸀠 (𝑦
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−

𝑓 (𝑧
𝑘
)

𝑓󸀠 (𝑧
𝑘
)
,

(1)

where 𝑘 = 0, 1, . . ., is the iteration indicator. The order of
convergence for (1) is eight but its computational efficiency
is low. We substitute derivatives in all three steps by suitable
approximations that use available data; thus we introduce the
following approximations:

𝑓
󸀠
(𝑥
𝑘
) ≈ 𝑓 [𝑥

𝑘
, 𝑤
𝑘
] ,

where 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑓
󸀠
(𝑦
𝑘
) ≈

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]

𝐻 (𝑢
𝑘
, V
𝑘
)
, 𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑓
󸀠
(𝑧
𝑘
) ≈

𝑓 [𝑦
𝑘
, 𝑧
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

𝑊 (𝑠
𝑘
)

,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
,

(2)

in the first, second, and third steps of (1), where𝐻 and𝑊 are
weight functions. The following iterative family of three-step
methods is obtained:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝛽 ∈ 𝑅,

𝑧
𝑘
= 𝑦
𝑘
− 𝐻 (𝑢

𝑘
, V
𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
, 𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−𝑊(𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(3)

In the following theorem, we state suitable conditions for
deriving a new optimal class without memory according
to the Kung and Traub conjecture [2] (also known as K-T
hypothesis).

Theorem 1. Let 𝑓 : 𝐷 ⊂ R → R be a scalar function
which has a simple root 𝛼 in the open interval 𝐷, and also
the initial approximation 𝑥

0
is sufficiently close to the simple

zero. Then, the three-step iterative method (3) has eighth-order
under the conditions𝑊(0) = 𝑊

󸀠
(0) = 1,𝐻(0, 0) = 𝐻

𝑢
(0, 0) =

𝐻
𝑢𝑢
(0, 0) = 1, 𝐻V(0, 0) = 𝐻VV(0, 0) = 0, and 𝐻

𝑢V(0, 0) = 2

and satisfies the following error equation:

𝑒
𝑘+1

= (1 + 𝛽𝑓
󸀠
(𝛼))
4

𝑐
2

2
𝑐
3

× ((9 + 𝛽𝑓
󸀠
(𝛼) (7 + 𝛽𝑓

󸀠
(𝛼))) 𝑐

3

2

+2𝑐
2
𝑐
3
− 𝑐
4
) 𝑒
8

𝑘
+ 𝑂 (𝑒

9

𝑘
) .

(4)

Proof. By using Taylor’s expansion of 𝑓(𝑥) around 𝛼 and
taking into account that 𝑓(𝛼) = 0, we obtain

𝑓 (𝑥) = 𝑓
󸀠
(𝛼) (𝑒

𝑘
+ 𝑐
2
𝑒
2

𝑘
+ 𝑐
3
𝑒
3

𝑘
+ 𝑐
4
𝑒
4

𝑘

+𝑐
5
𝑒
5

𝑘
+ 𝑐
6
𝑒
6

𝑘
+ 𝑐
7
𝑒
7

𝑘
+ 𝑐
8
𝑒
8

𝑘
+ 𝑂 (𝑒

9

𝑘
)) ,

(5)

where 𝑒
𝑘
= 𝑥
𝑘
− 𝛼, 𝑒
𝑘,𝑤

= 𝑤
𝑘
− 𝛼, 𝑒
𝑘,𝑦

= 𝑦
𝑘
− 𝛼, 𝑒
𝑘,𝑧

= 𝑧
𝑘
− 𝛼,

and 𝑐
𝑘
= 𝑓
(𝑘)
(𝛼)/𝑘!𝑓

󸀠
(𝛼). Therefore,

𝑒
𝑘,𝑤

= (1 + 𝛽𝑓
󸀠
(𝛼)) 𝑒

𝑘
+ 𝛽𝑓
󸀠
(𝛼) 𝑐
2
𝑒
2

𝑘
+ 𝛽𝑓
󸀠
(𝛼) 𝑐
3
𝑒
3

𝑘

+ 𝛽𝑓
󸀠
(𝛼) 𝑐
4
𝑒
4

𝑘
+ 𝛽𝑓
󸀠
(𝛼) 𝑐
5
𝑒
5

𝑘
+ 𝛽𝑓
󸀠
(𝛼) 𝑐
6
𝑒
6

𝑘

+ 𝛽𝑓
󸀠
(𝛼) 𝑐
7
𝑒
7

𝑘
+ 𝛽𝑓
󸀠
(𝛼) 𝑐
8
𝑒
8

𝑘
+ 𝑂 (𝑒

9

𝑘
) ,

(6)

𝑓 (𝑤
𝑘
) = 𝑓
󸀠
(𝛼) (1 + 𝑓

󸀠
(𝛼) 𝛽) 𝑒

𝑘

+ 𝑓
󸀠
(𝛼) (1 + 𝑓

󸀠
(𝛼) 𝛽 (3 + 𝑓

󸀠
(𝛼) 𝛽)) 𝑐

2
𝑒
2

𝑘

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑘
) .

(7)
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Note that we used ⋅ ⋅ ⋅ in order to avoid writing further terms
of the Taylor expansions due to symbolic computations. By
using (5) and (7), we obtain

𝑓 [𝑥
𝑘
, 𝑤
𝑘
] = 𝑓
󸀠
(𝛼) (1 + (2 + 𝛽𝑓

󸀠
(𝛼))) 𝑐

2
𝑒
𝑘

+ 𝑓
󸀠
(𝛼) (𝛽𝑓

󸀠
(𝛼) 𝑐
2

2
+ (3 + 𝛽𝑓

󸀠
(𝛼)

× (3 + 𝛽𝑓
󸀠
(𝛼))) 𝑐

3
) 𝑒
2

𝑘

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
8

𝑘
) .

(8)

Dividing (5) by (8) gives us

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
= 𝑒
𝑘
− (1 + 𝛽𝑓

󸀠
(𝛼)) 𝑐
2
𝑒
2

𝑘

+ ((2 + 𝛽𝑓
󸀠
(𝛼) (2 + 𝛽𝑓

󸀠
(𝛼))) 𝑐

2

2

− (1 + 𝛽𝑓
󸀠
(𝛼)) (2 + 𝛽𝑓

󸀠
(𝛼)) 𝑐
3
) 𝑒
3

𝑘

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑘
) .

(9)

And thus,

𝑒
𝑘,𝑦

= − (1 + 𝛽𝑓
󸀠
(𝛼))
2

𝑐
2
𝑐
3
𝑒
4

𝑘
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑘
) . (10)

Subsequently, we have

𝑓 [𝑦
𝑘
, 𝑤
𝑘
] = 𝑓
󸀠
(𝛼) + 𝑓

󸀠
(𝛼) (1 + 𝛽𝑓

󸀠
(𝛼)) 𝑐
2
𝑒
𝑘

+ 𝑓
󸀠
(𝛼) ((1 + 2𝛽𝑓

󸀠
(𝛼)) 𝑐

2

2

+ (1 + 𝛽𝑓
󸀠
(𝛼))
2

𝑐
3
) 𝑒
2

𝑘

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
8

𝑘
) .

(11)

Thus,

ℎ (𝑢
𝑘
, V
𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
= (1 + 𝛽𝑓

󸀠
(𝛼)) 𝑐
2
𝑒
2

𝑘

+ (− (2 + 𝛽𝑓
󸀠
(𝛼) (2 + 𝛽𝑓

󸀠
(𝛼))) 𝑐

2

2

+ (1 + 𝛽𝑓
󸀠
(𝛼)) (2 + 𝛽𝑓

󸀠
(𝛼)) 𝑐
3
)

× 𝑒
3

𝑘
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑘
) ,

𝑓 [𝑤
𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] = 𝑓
󸀠
(𝛼) 𝑐
2
+ 𝑓
󸀠
(𝛼) (1 + 𝛽𝑓

󸀠
(𝛼)) 𝑐
3
𝑒
𝑘

+ 𝑓
󸀠
(𝛼) ( (1 + 2𝛽𝑓

󸀠
(𝛼)) 𝑐
2
𝑐
3

+ (1 + 𝛽𝑓
󸀠
(𝛼))
2

𝑐
4
) 𝑒
2

𝑘

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
9

𝑘
) .

(12)

Therefore, we attain

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

= − (1 + 𝛽𝑓
󸀠
(𝛼))
2

𝑐
2
𝑐
3
𝑒
4

𝑘
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

9

𝑘
) .

(13)

Finally, according to the above analysis, the general error
equation is given by

𝑒
𝑘+1

= 𝑒
𝑘,𝑧

−𝑊(𝑠
𝑘
)

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

= (1 + 𝛽𝑓
󸀠
(𝛼))
4

𝑐
2

2
𝑐
3

× ((9 + 𝛽𝑓
󸀠
(𝛼) (7 + 𝛽𝑓

󸀠
(𝛼))) 𝑐

3

2

+ 2𝑐
2
𝑐
3
− 𝑐
4
) 𝑒
8

𝑘
+ 𝑂 (𝑒

9

𝑘
) ,

(14)

so that the proof of the theorem is finished.

We provide some specific weight functions that satisfy the
conditions of Theorem 1 as follows:

𝐻
1
(𝑢
𝑘
, V
𝑘
) = 1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
,

𝐻
2
(𝑢
𝑘
, V
𝑘
) =

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

,

𝑊
1
(𝑠
𝑘
) = cos (𝑠

𝑘
) + sin (𝑠

𝑘
) ,

𝑊
2
(𝑠
𝑘
) =

1

1 − 𝑠
𝑘

,

𝑊
3
(𝑠
𝑘
) = 1 + 𝑠

𝑘
,

𝑊
4
(𝑠
𝑘
) = 𝑒
𝑠𝑘 .

(15)

We consider these weight functions in, without and with
memory methods, (3) and (18) in the forthcoming sections.

There are some measures for comparing various iterative
techniques. Traub [1] introduced the informational efficiency
and efficiency index, which can be expressed in terms of the
order (𝑟) of the method and the number of function (and
derivative) evaluations (𝜌). In fact, the efficiency index (or
computational efficiency) is given by 𝐸 = 𝑟

1/𝜌.
Clearly, the efficiency index of the proposed optimal class

of method is 81/4 ≈ 1.682 which is optimal in the sense of
K-T hypothesis and is higher than two- or one-step methods
without memory.

It is worth emphasizing that themaximal order of conver-
gence is not the only goal in constructing root-finding meth-
ods and, consequently, the ultimate measure of efficiency of
the designed method. Complexity of the formulae involved,
often called combinatorial cost, makes another important
parameter, which should be taken into account. Hence, we
wish to construct a new method with memory possessing a
high order 12 requiring only 4 functional evaluations (just like
(3)).
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In the next section, we will modify the proposed method
and introduce a new method. We use an accelerator parame-
ter to increase the order of convergence significantly.

3. Construction of a Method with Memory

Error equation (14) indicates that the order of convergence
for class (3) is equal to eight. This section is concerned with
extracting an efficiency with memory method from (3) since
its error equation contains the parameter 𝛽 which can be
approximated in such a way that increases the local order of
convergence.

We set 𝛽 = 𝛽
𝑘
as the iteration proceeds by the formula

𝛽
𝑘

= −1/𝑓󸀠(𝛼) for 𝑘 = 1, 2, . . ., where 𝑓󸀠(𝛼) is an
approximation of 𝑓󸀠(𝛼). We have a method via the following
forms of 𝛽

𝑘
:

𝛽
𝑘
= −

1

𝑓󸀠 (𝛼)

= −
1

𝑁
󸀠

4
(𝑥
𝑘
)
. (16)

The key idea that provides the order acceleration lies
in a special form of the error relation and a convenient
choice of a free parameter. We define a self-accelerating
parameter, which is calculated during the iterative process
using Newton’s interpolating polynomial.

Hence, we consider Newton’s interpolation as themethod
for approximating 𝑓󸀠(𝛼), where 𝑁

4
(𝑡) is Newton’s interpola-

tion polynomial of fourth degree, set through five available
approximations 𝑥

𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑤
𝑘−1

, 𝑥
𝑘−1

as follows:

𝑁
󸀠

4
(𝑥
𝑘
) = [

𝑑

𝑑𝑡
𝑁
4
(𝑡)]

𝑡=𝑥𝑘

= [
𝑑

𝑑𝑡
(𝑓 (𝑥
𝑘
) + 𝑓 [𝑥

𝑘
, 𝑧
𝑘−1

] (𝑡 − 𝑥
𝑘
)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

] (𝑡 − 𝑥
𝑘
)

×(𝑡 − 𝑧
𝑘−1

)+𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑡 − 𝑥
𝑘
)

× (𝑡 − 𝑧
𝑘−1

) (𝑡 − 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑤
𝑘−1

]

× (𝑡 − 𝑥
𝑘
) (𝑡 − 𝑧

𝑘−1
) (𝑡 − 𝑦

𝑘−1
)

× (𝑡 − 𝑥
𝑘−1

)) ]

𝑡=𝑥𝑘

= 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

] + 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

] (𝑥
𝑘
− 𝑧
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑥
𝑘
− 𝑧
𝑘−1

) (𝑥
𝑘
− 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑤
𝑘−1

] (𝑥
𝑘
− 𝑧
𝑘−1

)

× (𝑥
𝑘
− 𝑦
𝑘−1

) (𝑥
𝑘
− 𝑥
𝑘−1

) .

(17)

Here, the with memory development of (3) can be presented
as follows:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− 𝐻 (𝑢

𝑘
, V
𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
, 𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−𝑊(𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(18)

We attempt to prove that the method with memory
(18) has convergence order twelve provided that we use
accelerator 𝛽

𝑘
as in (16). It should be remarked that we have

applied the Herzberger’s matrix method [7].

Theorem 2. If an initial approximation 𝑥
0
is sufficiently close

to the zero 𝛼 of 𝑓(𝑥) and the parameter 𝛽
𝑘
in the iterative

scheme (18) is recursively calculated by the forms given in (16),
then the order of convergence is twelve.

Proof. We will use Herzberger’s matrix method to determine
the order of convergence. Note that the lower bound of order
for a single-step 𝑠-point method 𝑥

𝑘
= 𝐺(𝑥

𝑘−1
, 𝑥
𝑘−2

, . . . , 𝑥
𝑘−𝑠

)

is the spectral radius of a matrix 𝑀(𝑠) = (𝑚
𝑖𝑗
), associated to

the method with elements:

𝑚
1,𝑗

= amount of information required at point 𝑥
𝑘−𝑗

𝑗 = 1, 2, . . . , 𝑠,

𝑚
𝑖,𝑖−1

= 1 (𝑖 = 2, 3, . . . , 𝑠) ,

𝑚
𝑖,𝑗
= 0, otherwise.

(19)

On the other hand, the lower bound of order of an 𝑠-step
method 𝐺 = 𝐺

1
∘ 𝐺
2
∘ ⋅ ⋅ ⋅ ∘ 𝐺

𝑠
is the spectral radius of the

product of matrices𝑀 = 𝑀
1
⋅ 𝑀
2
⋅ ⋅ ⋅𝑀
𝑠
.

We can express each approximation𝑥
𝑘+1

, 𝑧
𝑘
,𝑦
𝑘
, and𝑤

𝑘
as

a function of available information 𝑓(𝑧
𝑘
), 𝑓(𝑦

𝑘
), 𝑓(𝑤

𝑘
), and

𝑓(𝑥
𝑘
) from the 𝑘th iteration and 𝑓(𝑧

𝑘−1
), 𝑓(𝑦

𝑘−1
), 𝑓(𝑤

𝑘−1
),

and 𝑓(𝑥
𝑘−1

) from the previous iteration, depending on the
accelerating technique. Now, we determine the order of
convergence for (18) applied for the calculation of 𝛽

𝑘
.
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Method (N4). We use the following matrices to express
informational dependence:

𝑥
𝑘+1

= 𝜑
1
(𝑧
𝑘
, 𝑦
𝑘
, 𝑤
𝑘
, 𝑥
𝑘
, 𝑧
𝑘−1

) 󳨀→ 𝑀
1
=

[
[
[
[
[

[

1 1 1 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

,

𝑧
𝑘
= 𝜑
2
(𝑦
𝑘
, 𝑤
𝑘
, 𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

) 󳨀→ 𝑀
2
=

[
[
[
[
[

[

1 1 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

,

𝑦
𝑘
= 𝜑
3
(𝑤
𝑘
, 𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑤
𝑘−1

) 󳨀→ 𝑀
3
=

[
[
[
[
[

[

1 1 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

,

𝑤
𝑘
=𝜑
4
(𝑥
𝑘
, 𝑧
𝑘−1

, 𝑦
𝑘−1

, 𝑤
𝑘−1

, 𝑥
𝑘−1

) 󳨀→ 𝑀
4
=

[
[
[
[
[

[

1 1 1 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

]
]
]
]
]

]

.

(20)

Hence, it is easy to derive

𝑀
(𝑁4)

= 𝑀
1
𝑀
2
𝑀
3
𝑀
4
=

[
[
[
[
[

[

8 4 4 4 4

4 2 2 2 2

2 1 1 1 1

1 1 1 1 1

1 0 0 0 0

]
]
]
]
]

]

, (21)

with the eigenvalues {12, 0, 0, 0, 0}. Consequently, the order
of the method with memory (18)-(N4) is at least twelve. The
proof of Theorem 2 is finished.

Clearly, the proposed with memory scheme possesses a
high computational efficiency index 12

1/4
≈ 1.861, which

makes it interesting for practical problems.

4. Numerical Examples

In this section, we test our proposed methods and compare
their results with some other methods of the same order of
convergence. The errors |𝑥

𝑘
− 𝛼| denote approximations to

the sought zeros, and 𝑎(−𝑏) stands for 𝑎 × 10
−𝑏. Moreover,

coc indicates computational order of convergence and is
computed by

coc =
log (󵄨󵄨󵄨󵄨𝑓 (𝑥

𝑘
) /𝑓 (𝑥

𝑘−1
)
󵄨󵄨󵄨󵄨)

log (󵄨󵄨󵄨󵄨𝑓 (𝑥
𝑘−1

) /𝑓 (𝑥
𝑘−2

)
󵄨󵄨󵄨󵄨)
. (22)

The calculated value coc estimates the theoretical order
of convergence well when “pathological behavior” of the
iterative method (for instance, slow convergence at the

beginning of the implemented iterative method, “oscillating”
behavior of approximations, etc.) does not exist.

We have used 1000-fixed floating point arithmetic so as to
minimize the effect of round-off errors.

By using weight functions (15), we introduce some con-
crete methods based on the proposed class. Note that it is
assumed that the initial estimate 𝛽

0
should be chosen before

starting the iterative process and also 𝑥
0
is given suitably.

Concrete method 1:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (cos (𝑠

𝑘
) + sin (𝑠

𝑘
))

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(23)

Concrete method 2:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (

1

1 − 𝑠
𝑘

)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(24)

Concrete method 3:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,
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𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (1 + 𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(25)

Concrete method 4:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (1 + 𝑢

𝑘
+ 2𝑢
𝑘
V
𝑘
+ 𝑢
2

𝑘
)

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (𝑒
𝑠𝑘)

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(26)

Concrete method 5:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (cos (𝑠

𝑘
) + sin (𝑠

𝑘
))

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

𝑠
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(27)

Concrete method 6:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (

1

1 − 𝑠
𝑘

)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑤
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(28)

Concrete method 7:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (1 + 𝑠

𝑘
)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑤
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(29)

Concrete method 8:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽
𝑘
𝑓 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− (

1

1 − 𝑢
𝑘
− 2𝑢
𝑘
V
𝑘

)
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
,

𝑢
𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
, V
𝑘
=

𝑓 (𝑦
𝑘
)

𝑓 (𝑤
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (𝑒
𝑠𝑘)

×
𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑦
𝑘
] + 𝑓 [𝑤

𝑘
, 𝑦
𝑘
, 𝑧
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)
,

𝑤
𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑥
𝑘
)
.

(30)

Several iterative methods (IM) of optimal order eight,
which also require four function evaluations, for comparisons
with our proposed methods have been chosen.
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Table 1: Consider 𝑓
1
(𝑥) = sin(𝜋𝑥)𝑒(𝑥

2
+𝑥 cos(𝑥)−1)

+ 𝑥 log(𝑥 sin(𝑥) + 1), 𝛼 = 0, 𝑥
0
= 0.6, 𝛽 = −0.01.

Methods without memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.3810(−3) 5.5392(−25) 6.9091(−201) 8.0003
Our method (24) 2.1802(−3) 3.9973(−28) 5.0816(−226) 8.0001
Our method (25) 4.2865(−3) 8.9612(−26) 3.2420(−207) 8.0002
Our method (26) 3.1912(−3) 8.4384(−27) 2.0042(−215) 8.0002
Our method (27) 5.7030(−3) 4.9625(−25) 1.6203(−201) 8.0002
Our method (28) 2.3293(−3) 3.8278(−28) 2.0304(−226) 8.0001
Our method (29) 5.7030(−3) 4.9625(−25) 1.6203(−201) 8.0002
Our method (30) 4.5488(−3) 8.1186(−26) 8.3149(−208) 8.0002
(34), 𝛽 = −0.01 9.7732(−3) 4.3543(−24) 6.6317(−195) 8.0002
(35), 𝛽 = −0.01 1.7342(−2) 1.1724(−21) 3.5692(−175) 8.0085

Three-step method by Wang et al. [8]:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
]
𝐻 (𝑡
𝑘
) , 𝑡

𝑘
=
𝑓 (𝑦
𝑘
)

𝑓 (𝑥
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−

𝑓 (𝑧
𝑘
)

𝑓 [𝑧
𝑘
, 𝑤
𝑘
]
𝐺 (𝑡
𝑘
, 𝑠
𝑘
) , 𝑠

𝑘
=

𝑓 (𝑧
𝑘
)

𝑓 (𝑦
𝑘
)
,

(31)

where functions 𝐻 and 𝐺 are following 𝐻
1
(𝑡) = 1 + 𝑡,

𝐺
1
(𝑡, 𝑠) = 1 + 𝑡 + 𝑠 + 2𝑡𝑠 − (1 + 𝜆)𝑡

3, and 𝜆 = 1/(1 +𝛽𝑓[𝑥, 𝑤]).
Three-step method by Lotfi and Tavakoli [9]:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
,

𝑧
𝑛
= 𝑦
𝑛
− 𝐻 (𝑡

𝑛
, 𝑢
𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑤
𝑛
]
, 𝑡
𝑛
=
𝑓 (𝑦)

𝑓 (𝑥)
,

𝑢
𝑛
=
𝑓 (𝑤)

𝑓 (𝑥)
,

𝑥
𝑘+1

= 𝑧
𝑛
− 𝐺 (𝑡

𝑛
, 𝑠
𝑛
)𝑊 (V

𝑛
, 𝑠
𝑛
)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑤
𝑛
]
,

𝑠
𝑛
=

𝑓 (𝑧)

𝑓 (𝑦)
, V
𝑛
=

𝑓 (𝑧)

𝑓 (𝑥)
,

(32)

where

𝑊(𝑠
𝑛
, V
𝑛
) = 1 + 𝑠

2

𝑛
+ V2
𝑛
,

𝐺 (𝑡
𝑛
, 𝑠
𝑛
) = 1 + 𝑡

𝑛
+ 𝑠
𝑛
+ 2𝑡
𝑛
𝑠
𝑛
+ (−1 − 𝜙

𝑛
) 𝑡
3

𝑛
,

(𝜙
𝑛
=

1

1 + 𝛽
𝑛
𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
) ,

𝐻 (𝑡
𝑛
, 𝑢
𝑛
) = 1 + 𝑡

𝑛
.

(33)

Derivative-free Kung-Traub’s family [2]:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
) 𝑓 (𝑤

𝑘
)

[𝑓 (𝑤
𝑘
) − 𝑓 (𝑦

𝑘
)] 𝑓 [𝑥

𝑘
, 𝑦
𝑘
]
,

𝑥
𝑘+1

= 𝑧
𝑘
−
𝑓 (𝑦
𝑘
) 𝑓 (𝑤

𝑘
) (𝑦
𝑘
− 𝑥
𝑘
+ 𝑓 (𝑥

𝑘
) /𝑓 [𝑥

𝑘
, 𝑧
𝑘
])

[𝑓 (𝑦
𝑘
) − 𝑓 (𝑧

𝑘
)] [𝑓 (𝑤

𝑘
) − 𝑓 (𝑧

𝑘
)]

+
𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑧
𝑘
]
.

(34)

Three-step methods made by Zheng et al. [10]:

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑤
𝑘
]
, 𝑤
𝑘
= 𝑥
𝑘
+ 𝛽𝑓 (𝑥

𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓 [𝑦
𝑘
, 𝑤
𝑘
] + 𝑓 [𝑦

𝑘
, 𝑥
𝑘
, 𝑤
𝑘
] (𝑦
𝑘
− 𝑥
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
− (𝑓 (𝑧

𝑘
) × (𝑓 [𝑧

𝑘
, 𝑦
𝑘
] + 𝑓 [𝑧

𝑘
, 𝑦
𝑘
, 𝑥
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

+ 𝑓 [𝑧
𝑘
, 𝑦
𝑘
, 𝑥
𝑘
, 𝑤
𝑘
] (𝑧
𝑘
− 𝑦
𝑘
)

×(𝑧
𝑘
− 𝑥
𝑘
))
−1

) .

(35)

In Tables 1, 3, and 5 our without memory proposed
method by different weight functions (23)–(30) has been
compared with optimal three-point methods (34) and (35),
and we observe that all these methods behave very well
practically and confirm their theoretical results.

Also Tables 2, 4, and 6 present numerical results for
our with memory classes (23)–(30). It is also clear that all
these methods behave very well practically and confirm their
relevant theories. They all provide wherea bout twelve of
convergence order.
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Table 2: Consider 𝑓
1
(𝑥) = sin(𝜋𝑥)𝑒(𝑥

2
+𝑥 cos(𝑥)−1)

+ 𝑥 log(𝑥 sin(𝑥) + 1), 𝛼 = 0, 𝑥
0
= 0.6, 𝛽

0
= −0.01.

Methods with memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.3810(−3) 2.7788(−35) 1.8668(−426) 12.1156
Our method (24) 2.1802(−3) 3.0336(−38) 5.3469(−462) 12.1571
Our method (25) 4.2865(−3) 5.2041(−36) 3.4739(−435) 12.1273
Our method (26) 3.1912(−3) 5.6445(−37) 9.2065(−447) 12.1411
Our method (27) 5.7030(−3) 4.6138(−35) 8.1591(−424) 12.1138
Our method (28) 2.3293(−3) 5.4580(−38) 6.1228(−459) 12.1556
Our method (29) 4.5488(−3) 8.7828(−36) 1.8467(−432) 12.1256
Our method (30) 3.3939(−3) 9.7470(−37) 6.4438(−444) 12.1395
(31), 𝛽 = −1 2.1170(−3) 1.1077(−41) 3.4407(−501) 12.0035
(32), 𝛽 = −1 5.7578(−3) 2.7125(−39) 1.4859(−474) 11.9819

Table 3: Consider 𝑓
2
(𝑥) = 𝑒

−5𝑥
(𝑥 − 2)(𝑥

10
+ 𝑥 + 2), 𝛼 = 2, 𝑥

0
= 2.2, 𝛽 = −1.

Methods without memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.4211(−6) 7.6321(−54) 1.1776(−436) 8.0000
Our method (24) 5.4981(−6) 8.5429(−54) 2.9020(−436) 8.0000
Our method (25) 5.4468(−6) 7.9261(−54) 1.5935(−436) 8.0001
Our method (26) 5.4725(−6) 8.2301(−54) 2.1533(−436) 8.0000
Our method (27) 3.2606(−6) 1.3070(−55) 8.7125(−451) 8.0000
Our method (28) 3.3757(−6) 1.7249(−55) 8.0153(−450) 8.0000
Our method (29) 3.2991(−6) 1.4354(−55) 1.8434(−450) 8.0000
Our method (30) 3.3375(−6) 1.5747(−55) 3.8666(−450) 8.0000
(34), 𝛽 = −1 8.0552(−6) 1.4131(−52) 1.2677(−456) 8.0000
(35), 𝛽 = −0.01 3.9453(−6) 1.2705(−59) 5.0021(−491) 8.0085

Table 4: Consider 𝑓
2
(𝑥) = 𝑒

−5𝑥
(𝑥 − 2)(𝑥

10
+ 𝑥 + 2), 𝛼 = 2, 𝑥

0
= 2.2, 𝛽

0
= −1.

Methods with memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 5.4211(−6) 2.1857(−80) 4.4911(−970) 11.9590
Our method (24) 5.4981(−6) 2.4529(−80) 1.7931(−969) 11.9587
Our method (25) 5.4468(−6) 2.2719(−80) 7.1443(−970) 11.9589
Our method (26) 5.4725(−6) 2.3611(−80) 9.2065(−969) 11.9588
Our method (27) 5.4981(−6) 2.4529(−80) 1.7931(−969) 11.9587
Our method (28) 3.3757(−6) 7.7624(−82) 1.8084(−987) 11.9732
Our method (29) 3.2991(−6) 6.4445(−82) 1.9393(−988) 11.9737
Our method (30) 3.3375(−6) 7.0781(−82) 5.9748(−988) 11.9735
(31), 𝛽 = −1 4.9425(−5) 1.5275(−69) 4.1256(−874) 12.0535
(32), 𝛽 = −1 4.0518(−6) 8.2730(−77) 2.4267(−861) 11.0982

Table 5: Consider 𝑓
3
(𝑥) = 𝑒

𝑥
3
−𝑥

− cos(𝑥2 − 1) + 𝑥
3
+ 1, 𝛼 = −1, 𝑥

0
= −1.65, 𝛽 = −1.

Methods without memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 6.0256(−3) 4.0898(−24) 1.8272(−193) 8.0001
Our method (24) 5.9797(−3) 3.8471(−24) 1.1202(−193) 8.0001
Our method (25) 6.0104(−3) 4.0081(−24) 1.5548(−193) 8.0001
Our method (26) 5.9952(−3) 3.9278(−24) 1.3225(−193) 8.0001
Our method (27) 5.3628(−3) 1.6071(−24) 1.0388(−196) 8.0001
Our method (28) 5.3357(−3) 1.5431(−24) 7.5042(−197) 8.0001
Our method (29) 5.3537(−3) 1.5856(−24) 9.3292(−197) 8.0001
Our method (30) 5.3448(−3) 1.5644(−24) 8.3766(−197) 8.0001
(34), 𝛽 = −1 2.9152(−4) 5.3239(−34) 6.5827(−272) 8.0000
(35), 𝛽 = −0.01 6.4036(−5) 4.4335(−44) 2.4457(−357) 7.9995
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Table 6: Consider 𝑓
3
(𝑥) = 𝑒

𝑥
3
−𝑥

− cos(𝑥2 − 1) + 𝑥
3
+ 1, 𝛼 = −1, 𝑥

0
= −1.65, 𝛽

0
= −1.

Methods with memory |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| coc

Our method (23) 6.0256(−3) 4.7294(−38) 3.8067(−459) 11.9952
Our method (24) 5.9797(−3) 4.4345(−38) 1.7580(−459) 11.9955
Our method (25) 6.0104(−3) 4.6300(−38) 2.9502(−459) 11.9953
Our method (26) 5.9959(−3) 4.5324(−38) 2.2850(−459) 11.9954
Our method (27) 5.3628(−3) 9.5497(−39) 1.7425(−467) 11.9929
Our method (28) 5.3357(−3) 9.1483(−39) 1.0410(−467) 11.9931
Our method (29) 5.3538(−3) 9.4151(−39) 1.4696(−467) 11.9929
Our method (30) 5.3448(−3) 9.2821(−39) 1.2391(−467) 11.9930
(31), 𝛽 = −1 1.3000(−2) 5.5214(−33) 1.2114(−401) 12.1381
(32), 𝛽 = −1 1.0937(−2) 3.5221(−34) 1.7174(−415) 12.1081

5. Concluding Remarks

We have constructed a class of methods without and with
memory. Our proposed methods do not need any derivative
and therefore are applicable to nonsmooth functions too.
Another advantage of the proposed methods is that their
without memory versions are optimal in the sense of K-T
conjecture. In addition, it contains an accelerator parameter
which rises convergence order from eight to twelve without
any new functional evaluations. In other words, the efficiency
index of the with memory class is 121/4 ≈ 1.861.

We finalize this work by suggesting some outlines for
future research: first developing the proposed methods for
computing multiple roots and second exploring its dynamic
or basins of attractions, and finally we wonder why not to use
an adaptive arithmetic in each step of the iterative method
instead of using a fixed precision, since this higher precision
is only necessary in the last step of the iterative process.
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[8] X. Wang, J. Džunić, and T. Zhang, “On an efficient family
of derivative free three-point methods for solving nonlinear
equations,” Applied Mathematics and Computation, vol. 219, no.
4, pp. 1749–1760, 2012.

[9] T. Lotfi and E. Tavakoli, “On a new efficient Steffensen-like
iterative class by applying a suitable self-accelerator parameter,”
The Scientific World Journal, vol. 2014, Article ID 769758, 9
pages, 2014.

[10] Q. Zheng, J. Li, and F. Huang, “An optimal Steffensen-type
family for solving nonlinear equations,” Applied Mathematics
and Computation, vol. 217, no. 23, pp. 9592–9597, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


