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Amulti-itemmultiperiod inventory control model is developed for known-deterministic variable demands under limited available
budget. Assuming the order quantity is more than the shortage quantity in each period, the shortage in combination of backorder
and lost sale is considered. The orders are placed in batch sizes and the decision variables are assumed integer. Moreover, all unit
discounts for a number of products and incremental quantity discount for some other items are considered.While the objectives are
tominimize both the total inventory cost and the required storage space, themodel is formulated into a fuzzymulticriteria decision
making (FMCDM) framework and is shown to be a mixed integer nonlinear programming type. In order to solve the model,
a multiobjective particle swarm optimization (MOPSO) approach is applied. A set of compromise solution including optimum
and near optimum ones via MOPSO has been derived for some numerical illustration, where the results are compared with those
obtained using a weighting approach. To assess the efficiency of the proposed MOPSO, the model is solved using multi-objective
genetic algorithm (MOGA) as well. A large number of numerical examples are generated at the end, where graphical and statistical
approaches show more efficiency of MOPSO compared with MOGA.

1. Introduction and Literature Review
Most real-world problems in industries and commerce
are studied as an optimization problem involving a single
objective. The assumption that organizations always seek to
maximize (or minimize) their profit (or their cost) rather
than making trade-offs among multiple objectives has been
censured for a long time. Generally, classical inventory mod-
els are developed under the basic assumption that the man-
agement purchases or produces a single product. However,
in many real-life conditions, this assumption does not hold.
Instead, many firms, enterprises, or vendors are motivated to
store a number of products in their shops for more profitable
business affairs. Another cause of theirmotivation is to attract
the customers to purchase several items in one showroom or
shop.

This work proposes a multiperiod inventory model for
seasonal and fashion items. The multiperiodic inventory

control problems have been investigated in depth in different
research. Chiang [1] investigated a periodic review inventory
model in which the period is partly long. The important
aspect of his study was to introduce emergency orders to
prevent shortages. He employed a dynamic programming
approach to model the problem. Mohebbi and Posner [2]
investigated an inventory system with periodic review, mul-
tiple replenishment, and multilevel delivery. Assuming a
Poisson process for the demand, shortages were allowed in
this research, and the lost sale policy could be employed. Lee
and Kang [3] developed a model for managing inventory of
a product in multiple periods. Their model was first derived
for one item and then was extended for several products.
Mousavi et al. [4] proposed a multiproduct multiperiod
inventory control problem under time value of money and
inflation where total storage space and budget were limited.
They solved the problem using twometaheuristic algorithms,
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that is, genetic algorithm and simulated annealing. Mirza-
pour Al-e-hashem and Rekik [5] presented a multiproduct
multiperiod inventory routing problem, where multiple con-
strained vehicles distributed products from multiple suppli-
ers to a single plant tomeet the given demand of each product
over a finite planning horizon. Janakiraman et al. [6] analyzed
the multiperiodic newsvendor problem and proposed some
new results.

The quantity discount is of increasing attention due
to its practical importance in purchasing and control of
items. Usually, one derives the better marginal cost of pur-
chase/production by taking advantages of the chances of cost
savings through bulk purchase/production. Furthermore, in
supply chain environments, quantity discounts can be consid-
ered an inventory coordination mechanism between buyers
and suppliers [7]. In the literature of quantity discounts,
Benton [8] considered an inventory system with quantity
discount with multiple price breaks and alternative purchas-
ing and lot-sizing policy. Abad [9, 10] proposed models
for joint price and lot size determination when supplier
offers either incremental (IQD) or all unit (AUD) quantity
discounts. K. Maiti andM. Maiti [11] developed a model for a
multi-item inventory control system of breakable items with
AUD and IQD (and a combination of the two policies) and
proposed genetic algorithm to solve the model. Sana and
Chaudhuri [12] extended an EOQ model by relaxation of
the preassumptions related to payments, allowing delay on
delivery and discounts. They used a mixed integer nonlinear
programming technique to model the problem. Taleizadeh et
al. [13] considered a genetic algorithm to optimizemultiprod-
uct multiconstraint inventory control systems with stochastic
replenishment intervals and discount. Recently, several works
such as the ones in [4, 14–16] have also spotted discounts in
inventory control problems. Huang and Lin [17] addressed an
integrated model that scheduled multi-item replenishment
with uncertain demand to determine delivery routes and
truck loads. In this study, the products are purchased in
different periods under AUD and IQD policies.

Metaheuristic algorithms have been suggested to solve
some of the existing developed inventory problems in the
literature. Someof these algorithms are tabu search [18, 19, 31],
genetic algorithms (GA) [20–22, 32], simulating annealing
(SA) [23, 33, 34], evolutionary algorithm [24, 35], threshold
accepting [30], neural networks [36], ant colony optimization
[37], fuzzy simulation [25], and harmony search [26, 38–41].

Inspired by social behavior of bird flocking or fish school-
ing, particle swarm optimization (PSO) is also a population-
based stochastic optimization metaheuristic developed by
Kennedy and Eberhart [42]. Recently, researchers have
employed this effective technique to find optimal or near
optimal solutions of their inventory control problems. For
example, Taleizadeh et al. [43] employed PSO to solve
their integer nonlinear programming model of a constraint
joint single buyer-single vendor inventory problem with
changeable lead time and (𝑟, 𝑄) policy in supply chains
with stochastic demand. Chen and Dye [44] solved an
inventory problem with deteriorating products and variable
demands using a PSO algorithm. Further, Taleizadeh et al.
[27] modeled a chance–constraint supply chain problem

with uniformly distributed stochastic demand, where an Ant
Colony Bee and a PSO algorithm were utilized to solve the
problem.

Instead of optimizing a single objective, some researchers
tried to find Pareto front solutions for their multiple objective
inventory planning problems that usually consist of multiple
conflicting objectives. Agrell [45] proposed a multicriteria
framework for inventory control problem, in which the solu-
tion procedure was an interactive method with preferences
extracted gradually in decision analysis process to determine
batch size and security stock. Roy and Maiti [28] presented
a multiobjective inventory model of deteriorating items with
stock-dependent demand under limited imprecise storage
area and total cost budget. Tsou [46] developed a multiob-
jective reorder point and order size system and proposed
a multiobjective PSO (MOPSO) to generate Pareto front
solutions. He employed TOPSIS to sort the nondominated
solutions. The objectives therein were to maximize the profit
and to minimize the wastage cost where the profit goal,
wastage cost, and storage areawere fuzzy in nature.One of the
successful applications of PSO toMOOPs is the seminal work
of Coello Coello and Lechuga [47]. Yaghin et al. [29] first
addressed an inventory-marketing system to determine the
production lot size, marketing expenditure, and selling prices
in which the model was formulated as a fuzzy nonlinear
multiobjective program. Then, they converted the model to
a classical single-objective one by a fuzzy goal programming
method where an efficient solution procedure using PSO
was provided to solve the resulting nonlinear problem. In
their study, MOPSO is not only a viable alternative to
solve MOOPs, but also the only one, compared with the
nondominated sorting genetic algorithm-II (NSGA-II) [48],
the Pareto archive evolutionary strategy (PAES) [49], and the
microgenetic algorithm [50] for multiobjective optimization
problems [51]. Table 1 shows the literature review of theworks
reviewed in this work where DOE is an abbreviation of term
“design of experiments.”

In this research, the contribution of the problem is con-
sidering a new biobjective multi-item multiperiodic inven-
tory control model where some items are purchased under
AUD and the other items are bought from IQD.The demands
vary in different periods, the budget is limited, the orders
are placed in batch sizes, and shortages in combination of
backorder and lost sale are considered. The goal is to find the
optimum inventory levels of the items in each period such
that the total inventory cost and the total required warehouse
space are minimized simultaneously. Since it is not easy for
the managers to allocate the crisp values to the weights of
the objectives in a decisionmaking process, considering these
weights as fuzzy numbers will be taken as an advantage.

In order to be more understanding of the problem, we
try to explain the model with taking an example in the real
world. We consider a company which produces some kinds
of fashion clothes including trousers, t-shirt, and shirt in a
certain period. The customers (wholesales) of this company
with different demand rates make the orders and receive
their products in the prespecific boxes, each one consisting
of a known number of these clothes. Moreover, due to
some unforeseen matters, such as production limitation, the
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Table 1: Literature review of the related works.

References Multiproduct Multiperiod Fuzzy multiobjective Discount policy Solving methodology Shortages DOE
[1] — ✓ — — B and B — —
[2] — — — — Level-crossing ✓ —
[3] — ✓ — IQD Numerical methods — —
[4] ✓ ✓ — IQD GA — —
[5] ✓ ✓ — — CPLEX — —
[6] — ✓ — — — ✓ —
[7] — — — IQD and AUD Simulation — —
[8] — — — AUD Simulation — —
[9] — — — IQD Numerical methods — —
[10] — — — IQD Numerical methods — —
[11] ✓ — — IQD and AUD GA — —
[12] ✓ — — AUD Numerical methods — —
[13] ✓ — — IQD and AUD GA ✓ —
[14] — — — IQD Yager ranking — —
[15] — — — IQD Excel macro — —
[16] — — ✓ — TOPSIS and GA ✓ —
[17] ✓ — — — ACO — —
[18] — — — — Tabu search and Lagrangian — —
[19] — ✓ — — Tabu search — —
[20] — — — IQD Goal programming and GA ✓ —
[21] ✓ — — IQD GA and fuzzy simulation ✓ —
[22] ✓ — — — GA ✓ —
[23] ✓ — — — SA and GA ✓ —
[24] — — ✓ — TOPSIS and GA ✓ —
[25] ✓ — — IQD fuzzy simulation ✓ —
[26] ✓ — — — Harmony search ✓ —
[27] ✓ — — — Bee colony and PSO ✓ —
[28] ✓ — ✓ — Fuzzy programming algorithm — —
[29] — ✓ ✓ — Fuzzy method — —
This research ✓ ✓ ✓ ✓ PSO and GA ✓ Taguchi

companies are not responsive to all of the demands in a
period and hence some customers must wait until the next
period to receive their orders. Furthermore, it is assumed the
company is going to extend the production part and therefore
the owner has a plan to build and optimize a new storage
subject to the available space.

The remainder of the paper is organized as follows. In
Section 2, the problem along with its assumptions is defined.
In Section 3, the defined problem of Section 2 is modeled.
To do this, the parameters and the variables of the problem
are first introduced. A MOPSO algorithm is presented in
Section 4 to solve the model. Section 5 contains a numerical
example for a problem with 5 items and 3 periods, for
which a multiobjective genetic algorithm (MOGA) is also
applied as benchmark for comparisons. Finally, conclusion
and recommendations for future research comes in Section 6.

2. Problem Definition,
Assumptions, and Notations

Consider a biobjective multi-item multiperiod inventory
control problem, in which an AUD policy is used for some
items and an IQD policy for some other items.The inventory
control problem of this research is similar to the seasonal

items problem where the planning horizon starts in a period
(or season) and finish in a certain period (or season). The
total available budget in the planning horizon is limited and
fixed. Due to existing ordering limitations or production
constraints, the order quantities of all items in different
periods cannot be more than their predetermined upper
bounds. The demands of the products are constant and
distinct, and, in case of shortage, a fraction is considered
backorder and a fraction lost sale. The costs associated with
the inventory control system are holding, backorder, lost sale,
and purchasing costs. Moreover, due to current managerial
decision adaptations on production policies (i.e., setting
up a new manufacturing line, extending the warehouse, or
building a new storage area), minimizing the total storage
space is required as well as minimizing the total inventory
costs. Therefore, the goal is to identify the inventory levels of
the items in each period such that the two objective functions,
total inventory costs and total storage space, are minimized.

In order to simplify the modeling, the following assump-
tions are set to the problem at hand.

(1) The demand rate of an item is independent of the
others and is constant in a period. However, it can be
different in different periods.
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(2) At most one order can be placed in a period. This
order can include or exclude an item.

(3) The items are delivered in a special container. Thus,
the order quantitiesmust be amultiple of a fixed-sized
batch.

(4) The vendor uses an AUD policy for some items and
an IQD policy for others.

(5) A fraction of the shortages is considered backorder
and a fraction lost sale.

(6) The initial inventory level of all items is zero.
(7) The budget is limited.
(8) Theplanning horizon is finite and known. In the plan-

ning horizon, there are𝑁 periods of equal duration.
(9) The order quantity on an item in a period is greater

than or equal to its shortage quantity in the previous
period (i.e., 𝑄

𝑖,𝑗+1
≥ 𝑏
𝑖,𝑗
defined below).

In order to model the problem at hand, in what comes next
we first define the variables and the parameters. Then, the
problem is formulated in Section 3.

For 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑁 − 1 and 𝑘 =
1, 2, . . . , 𝐾 the variables and the parameters of the model are
defined as follows:

𝑁: number of replenishment cycles during the plan-
ning horizon,
𝑚: number of items,
𝐾: number of price break points,
𝑆
𝑖
: required storage space per unit of the 𝑖th product,
𝑇
𝑗
: total time elapsed up to and including the 𝑗th

replenishment cycle,
𝑇󸀠
𝑖,𝑗
: 𝑗th period in which the inventory level of item 𝑖

is zero (a decision variable),
𝐵
𝑖
: batch size of the 𝑖th product,
𝑉
𝑖,𝑗
: number of the packets for the 𝑖th product order

in period j (a decision variable),
𝐷
𝑖,𝑗
: demand of the 𝑖th product in period j,

𝑄
𝑖,𝑗
: purchase quantity of item 𝑖 in period 𝑗 (a decision

variable where 𝑄
𝑖,𝑗
= 𝐵
𝑖
𝑉
𝑖,𝑗
),

𝐴
𝑖
: ordering cost per replenishment of product 𝑖 (If

an order is placed for one or more items in period 𝑗,
this cost appears in that period),
𝑏
𝑖,𝑗
: shortage quantity of the 𝑖th product in period 𝑗 (a

decision variable),
𝑋
𝑖,𝑗
: the beginning positive inventory level of the

𝑖th product in period 𝑗 (in 𝑗 = 1, the beginning
positive inventory level of all items is zero) (a decision
variable),
𝐼
𝑖,𝑗
: inventory position of the 𝑖th product in period j

(it is𝑋
𝑖,𝑗+1
+ 𝑄
𝑖,𝑗+1

, if 𝐼
𝑖,𝑗
≥ 0, otherwise equals 𝑏

𝑖,𝑗
),

𝐼
𝑖
(𝑡): the inventory level of the 𝑖th item at time t,
𝐻
𝑖
: unit inventory holding cost for item i,

𝑞
𝑖,𝑘
: kth discount point for the 𝑖th product (𝑞

𝑖,1
= 0),

𝑚
𝑖,𝑘
: discount rate of item 𝑖 in kth price break point

(𝑚
𝑖,1
= 0),

𝑃
𝑖
: purchasing cost per unit of the 𝑖th product,
𝑃
𝑖,𝑘
: purchasing cost per unit of the 𝑖th product at the

kth price break point,
𝑈
𝑖,𝑗,𝑘

: a binary variable, set 1 if item 𝑖 is purchased at
price break point 𝑘 in period j, and 0 otherwise,
𝑊
𝑖,𝑗
: a binary variable, set 1 if a purchase of item 𝑖 is

made in period j, and 0 otherwise,
𝐿
𝑖,𝑗
: a binary variable, set 1 if a shortage for item 𝑖

occurs in period j, and 0 otherwise,
𝛽
𝑖
: percentage of unsatisfied demands of the 𝑖th

product, that is, back ordered,
𝜋
𝑖,𝑗
: backorder cost per unit demandof the 𝑖th product

in period j,
𝜋̂
𝑖,𝑗
: shortage cost per unit of the 𝑖th product in period

𝑗, that is, lost,
𝑍
1
: total inventory cost,

𝑍
2
: total storage space,

𝑇𝐵: total available budget,
𝑀
1
: an upper bound for order quantity of the 𝑖th item

in period j,
𝑀
2
: an upper bound for order quantities of all items

in each period (the truck capacity),
TMF: objective function (the weighted combination
of the total inventory cost and the total storage space),
𝑤
1
: a weight associated with the total inventory cost

(0 ≤ 𝑤
1
≤ 1),

𝑤
2
: a weight associated with the total storage space

(0 ≤ 𝑤
2
≤ 1).

3. Problem Formulation

A graphical representation of the inventory control problem
at hand with 5 periods for item 𝑖 is given in Figure 1 to obtain
the inventory costs. At the beginning of the primary period
(𝑇
0
), it is assumed the starting inventory level of item 𝑖 is

zero and that the order quantity has been received and is
available. In the following periods, shortages can either occur
or not. If shortage occurs, the corresponding binary variable
is 1, otherwise it is zero. In the latter case, the inventory levels
at the beginning of each period may be positive.

3.1. The Objective Functions. The first objective function of
the problem, the total inventory cost, is obtained as

𝑍
1
= Total Inventory Cost

= Total Ordering Cost + Total Holding Cost

+ Total Shortage Cost + Total Purchasing Cost,

(1)

where each part is derived as follows.
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Qi,1 Qi,2

Qi,3

Qi,4

Di,1

bi,1
bi,3

Xi,3

T1T0 T4T3T2 T5T󳰀1 T󳰀3𝛽i bi,1

(1 − 𝛽i)bi,1

Figure 1: Some possible situations for the inventory of item 𝑖 in 5 periods.

The ordering cost of an item in a period occurs when an
order is placed for it in that period. Using a binary variable
𝑊
𝑖,𝑗
, where it is 1 if an order for the 𝑖th product in period 𝑗

is placed and zero otherwise, and knowing that orders can be
placed in periods 1 to𝑁−1 the total ordering cost is obtained
as

Total Ordering Cost =
𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

𝐴
𝑖
𝑊
𝑖,𝑗
. (2)

Since it is assumed a shortage may occur for a product
in a period or not, the holding cost derivation is not
as straightforward as the ordering cost derivation. Taking
advantage of a binary variable 𝐿

𝑖,𝑗
, where it is 1 if a shortage

for item 𝑖 in period 𝑗 occurs and otherwise zero, and using
Figure 1, the holding cost for item 𝑖 in the time interval𝑇

𝑗−1
≤

𝑡 ≤ 𝑇
𝑗
(1 − 𝐿

𝑖,𝑗
) + 𝑇󸀠
𝑖,𝑗
𝐿
𝑖,𝑗
is obtained as

𝐻
𝑖
∫
𝑇𝑗(1−𝐿 𝑖,𝑗)+𝑇

󸀠
𝑖,𝑗𝐿 𝑖,𝑗

𝑇𝑗−1

𝐼
𝑖 (𝑡) 𝑑𝑡, (3)

where 𝐼
𝑖
(𝑡) is the inventory level of the 𝑖th item at time t.

In (3), if a shortage for item 𝑖 occurs, 𝐿
𝑖,𝑗
becomes 1 and the

term 𝑇
𝑗
(1 − 𝐿

𝑖,𝑗
) + 𝑇󸀠
𝑖,𝑗
𝐿
𝑖,𝑗
becomes 𝑇󸀠

𝑖,𝑗
. Otherwise, 𝐿

𝑖,𝑗
= 0

and𝑇
𝑗
(1−𝐿
𝑖,𝑗
)+𝑇󸀠
𝑖,𝑗
𝐿
𝑖,𝑗
= 𝑇
𝑗
. In Figure 1, the trapezoidal area

above the horizontal timeline in each period whenmultiplied
by the unit inventory holding cost of an item, 𝐻

𝑖
, represents

the holding cost of the item in that period. In other word,
since

𝐼
𝑖,𝑗+1
= 𝐼
𝑖,𝑗
+ 𝑄
𝑖,𝑗
− 𝐷
𝑖,𝑗 (4)

and if 𝐼
𝑖,𝑗+1
≥ 0 then 𝐼

𝑖,𝑗+1
= 𝑋
𝑖,𝑗+1

, otherwise 𝐼
𝑖,𝑗+1
= 𝑏
𝑖,𝑗
, (3)

becomes

𝐻
𝑖
∫
𝑇𝑗(1−𝐿 𝑖,𝑗)+𝑇

󸀠
𝑖,𝑗𝐿 𝑖,𝑗

𝑇𝑗−1

𝐼
𝑖 (𝑡) 𝑑𝑡

=
𝑋
𝑖,𝑗
+ 𝑄
𝑖,𝑗
− 𝐷
𝑖,𝑗

2
(𝑇
𝑗
(1 − 𝐿

𝑖,𝑗
) + 𝑇
󸀠

𝑖,𝑗
𝐿
𝑖,𝑗
− 𝑇
𝑗−1
)𝐻
𝑖
.

(5)

Therefore, the total holding cost is obtained in

Total Holding Cost

=

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

(
𝑋
𝑖,𝑗
+ 𝑄
𝑖,𝑗
+ 𝑋
𝑖,𝑗+1

2
)

× (𝑇
𝑗
(1 − 𝐿

𝑖,𝑗
) + 𝑇
󸀠

𝑖,𝑗
𝐿
𝑖,𝑗
− 𝑇
𝑗−1
)𝐻
𝑖
.

(6)

The total shortage cost consists of two parts: the total
backorder cost and the total lost sale cost. In Figure 1, the
trapezoidal area underneath the horizontal timeline in each
period (shown for the primary period) when multiplied by
the backorder cost per unit demand of the 𝑖th product in
period 𝑗, 𝜋

𝑖,𝑗
, is equal to the backorder cost of the item in that

period. Therefore, the total backorder cost will be

Total Backorder Cost

=

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

(
𝜋
𝑖,𝑗
𝑏
𝑖,𝑗

2
(𝑇
𝑗
− 𝑇
󸀠

𝑖,𝑗
) 𝛽
𝑖
) .

(7)

Furthermore, since (1 − 𝛽
𝑖
) represents the percentage

demands of the 𝑖th product, that is, lost sale, the total lost sale
becomes

Total Lost Sale Cost

=

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

(
𝜋̂
𝑖,𝑗
𝑏
𝑖,𝑗

2
(𝑇
𝑗
− 𝑇
󸀠

𝑖,𝑗
) (1 − 𝛽

𝑖
))

(8)

in which 𝑇
𝑗
− 𝑇󸀠
𝑖,𝑗
= 𝑏
𝑖,𝑗
/𝐷
𝑖,𝑗
.

The total purchase cost also consists of twoAUD and IQD
costs. The purchasing offered by AUD policy is modeled by

𝑃
𝑖
=

{{{{{

{{{{{

{

𝑃
𝑖,1
; 0 < 𝑄

𝑖,𝑗
≤ 𝑞
𝑖,2

𝑃
𝑖,2
; 𝑞
𝑖,2
< 𝑄
𝑖,𝑗
≤ 𝑞
𝑖,3

...
𝑃
𝑖,𝐾
; 𝑞
𝑖,𝐾
< 𝑄
𝑖,𝑗
.

(9)

Hence, the purchasing cost of this policy is obtained as

AUD Purchasing Cost

=

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

𝐾

∑
𝑘=1

𝑃
𝑖,𝑘
𝑄
𝑖,𝑗
𝑈
𝑖,𝑗,𝑘
.

(10)
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PijK

PijK−1

Pij2

Pij1

qijKqijK−1qij2qij1

Figure 2: AUD policy for purchasing the products in different periods.

PijKPijK−1Pij2Pij1

qijKqijK−1qij2qij1

Pi,1qi,2 + Pi,2(qi,3 − qi,2)(1 − mi,2) Pi,K(Qi,j − qi,K)(1 − mi,K)

Pi,1qi,2 + Pi,2(Qi,j − qi,2)(1 − mi,2)

Pi,1Qi,j

+ · · · +

Figure 3: IQD policy for purchasing the products in different periods.

A graphical representation of the AUD policy employed
to purchase the products in different periods is shown in
Figure 2. In this Figure, the relation between the price break
points and the purchasing costs is demonstrated clearly.
Moreover, 𝑈

𝑖,𝑗,𝑘
is a binary variable, set 1 if the 𝑖th item is

purchased with price break 𝑘 in period 𝑗 and 0 otherwise.
In the IQD policy, the purchasing cost per unit of the 𝑖th

product depends on its order quantity. Therefore, for each
price break point we have

𝑃
𝑖,1
𝑄
𝑖,𝑗
; 0 < 𝑄

𝑖,𝑗
≤ 𝑞
𝑖,2

𝑃
𝑖,1
𝑞
𝑖,2
+ 𝑃
𝑖,2
(𝑄
𝑖,𝑗
− 𝑞
𝑖,2
) (1 − 𝑚

𝑖,2
) ; 𝑞

𝑖,2
< 𝑄
𝑖,𝑗
≤ 𝑞
𝑖,3

...

𝑃
𝑖,1
𝑞
𝑖,2
+ 𝑃
𝑖,2
(𝑞
𝑖,3
− 𝑞
𝑖,2
) (1 − 𝑚

𝑖,2
)

+ ⋅ ⋅ ⋅ + 𝑃
𝑖,𝐾
(𝑄
𝑖,𝑗
− 𝑞
𝑖,𝐾
) (1 − 𝑚

𝑖,𝐾
) ;

𝑞
𝑖,𝐾
< 𝑄
𝑖,𝑗
.

(11)

Hence, the total purchasing cost under the IQD policy is
obtained as

IQD Purchasing Cost

=

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

{(𝑄
𝑖,𝑗
− 𝑞
𝑖,𝐾
) 𝑃
𝑖
𝑈
𝑖,𝑗,𝐾
(1 − 𝑚

𝑖,𝐾
)

+

𝐾−1

∑
𝑘=1

(𝑞
𝑖,𝑘+1
− 𝑞
𝑖,𝑘
) 𝑃
𝑖
(1 − 𝑚

𝑖,𝑘
)} .

(12)

Figure 3 graphically depicts the IQD policy for each
product in different periods.

Thus, the first objective function of the problem at hand
becomes
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𝑖,𝑗
) + 𝑇
󸀠

𝑖,𝑗
𝐿
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)𝐻
𝑖
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𝜋
𝑖,𝑗
𝑏
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𝑗
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𝑖,𝑗
) 𝛽
𝑖
)

+
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∑
𝑖=1

𝑁−1
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𝑗=1

(
𝜋̂
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𝑏
𝑖,𝑗

2
(𝑇
𝑗
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𝑖,𝑗
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𝐾
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𝑈
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𝑖,𝑘
)} .

(13)

The second objective of the problem is to minimize the
total required storage space. Since in each period, order
quantities 𝑄

𝑖,𝑗
enter the storage and the beginning inventory
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of a period is the remainder inventory of the previous period,
𝑋
𝑖,𝑗
, the second objective function of the problem is modeled

by

𝑍
2
=

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

(𝑋
𝑖,𝑗
+ 𝑄
𝑖,𝑗
) 𝑆
𝑖
. (14)

Finally, the fitness function is defined as the weighted
combination of the total inventory cost and the required
storage space as

TMF = 𝑤
1
𝑍
1
+ 𝑤
2
𝑍
2
. (15)

3.2. The Constraints. In real-world inventory planning prob-
lems, due to existing constraints on either supplying or
producing goods (e.g., budget, labor, production, carrying
equipment, and the like), objectives are not met simply.
This section presents formulations for some real-world con-
straints.

The first limitation is given in (4), where it relates the
beginning inventory of the items in a period to the beginning
inventory of the items in the previous period plus the order
quantity of the previous period minus the demand of the
previous period.

The second limitation is due to delivering the items in
packets of batches. Since𝑄

𝑖,𝑗
represents the purchase quantity

of item 𝑖 in period 𝑗; denoting the batch size by 𝐵
𝑖
and the

number of packets by 𝑉
𝑖,𝑗
, we have

𝑄
𝑖,𝑗
= 𝐵
𝑖
𝑉
𝑖,𝑗
. (16)

Furthermore, since 𝑄
𝑖,𝑗
can only be purchased based on one

price break point, the following constraint must hold:

𝐾

∑
𝑘=1

𝑈
𝑖,𝑗,𝑘
= 1. (17)

The prerequisite of using this strategy is that the lowest 𝑞
𝑖,𝑘
in

the AUD table must be zero (i.e., 𝑞
𝑖,1
= 0).

Since the total available budget is TB, the unit purchasing
cost of the product is 𝑃

𝑖
, and the order quantity is 𝑄

𝑖,𝑗
, the

budget constraint will be

𝑚

∑
𝑖=1

𝑁−1

∑
𝑗=1

𝑄
𝑖,𝑗
𝑃
𝑖
≤ TB. (18)

In real-world environments, the order quantity of an item
in a period may be limited. Defining𝑀

1
an upper bound for

this quantity, for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑁 − 1 we
have

𝑄
𝑖,𝑗
≤ 𝑀
1
. (19)

Moreover, due to transportation contract and the truck
capacity, the number of product orders and the total order
quantities in a period are limited as well. Hence, for 𝑗 =
1, 2, . . . , 𝑁 − 1, we have

𝑚

∑
𝑖=1

𝑄
𝑖,𝑗
𝑊
𝑖,𝑗
≤ 𝑀
2
, (20)

where if an order occurs for item 𝑖 in period 𝑗, 𝑊
𝑖,𝑗
= 1,

otherwise𝑊
𝑖,𝑗
= 0. Further,𝑀

2
is an upper boundon the total

number of orders and the total order quantities in a period.
As a result, the complete mathematical model of the

problem is

Min TMF = 𝑤
1
𝑍
1
+ 𝑤
2
𝑍
2 (21)

subject to
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=
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≤ 𝑀
1
;



8 The Scientific World Journal

(𝑖 = 1, 2, . . . , 𝑚) , (𝑗 = 1, 2, . . . , 𝑁 − 1)

𝑊
𝑖,𝑗
∈ {0, 1} ; (𝑗 = 1, 2, . . . , 𝑁 − 1)

𝑈
𝑖,𝑗,𝑘
∈ {0, 1} ;

(𝑖 = 1, 2, . . . , 𝑚) , (𝑗 = 1, 2, . . . , 𝑁 − 1) , (𝑘 = 1, 2, . . . , 𝐾)

𝑚

∑
𝑖=1

𝑄
𝑖,𝑗
𝑊
𝑖,𝑗
≤ 𝑀
2
; (𝑗 = 1, 2, . . . , 𝑁 − 1)

𝑄
𝑖,𝑗+1
≥ 𝑏
𝑖,𝑗
.

(22)

Inmost inventory-planningmodels that have been devel-
oped so far, researchers have imposed some unrealistic
assumptions such that the objective function of the model
becomes concave and the model can easily be solved by
some mathematical approaches like the Lagrangian or the
derivative methods. However, since the model in (22), which
is obtained based on assumptions that are more realistic,
is an integer nonlinear programming mixed with binary
variables, reaching an analytical solution (if any) to the
problem is difficult. In addition, efficient treatment of integer
nonlinear optimization is one of the most difficult problems
in practical optimization [52]. As a result, in the next section
a metaheuristic algorithm is proposed to solve the model in
(22).

4. The Proposed Multiobjective Particle
Swarm Optimization Algorithm

Many researchers have successfully usedmetaheuristicmeth-
ods to solve complicated optimization problems in different
fields of scientific and engineering disciplines; among them,
the particle swarmoptimization (PSO) algorithm is one of the
most efficient methods. That is why this approach is taken in
this research to solve the model in (22). The structure of the
proposedMOPSO that is based on the PSO algorithm for the
multiobjective inventory planning problem at hand is given
as follows.

4.1. Generating and Initializing the Particles Positions and
Velocities. PSO is initialized by a group of random particles
(solutions) called generation and then searches for optima by
updating generations.The initial population is constructed by
randomly generated 𝑅 particles (similar to the chromosomes
of a genetic algorithm). In a 𝑑-dimensional search space,
let 𝑥⃗𝑖
𝑘
= {𝑥𝑖
𝑘,1
, 𝑥𝑖
𝑘,2
, . . . , 𝑥𝑖

𝑘,𝑑
} and V⃗𝑖

𝑘
= {V𝑖
𝑘,1
, V𝑖
𝑘,2
, . . . , V𝑖

𝑘,𝑑
}

be, respectively, the position and the velocity of particle 𝑖 at
time 𝑘. Then, (23) is applied to generate initial particles, in
which 𝑥min and 𝑥max are the lower and the upper bounds on
the design variable values and RAND is a random number
between 0 and 1. Consider

𝑥
𝑖

0
= 𝑥min + RAND (𝑥max − 𝑥min)

V𝑖
0
= 𝑥min + RAND (𝑥max − 𝑥min) .

(23)

An important note for the generating and initializing step of
the PSO is that solutionsmust be feasible andmust satisfy the
constraints. As a result, if a solution vector does not satisfy a
constraint, the related vector solution will be penalized by a
big penalty on its fitness.

4.2. Selecting the Best Position andVelocity. For every particle,
denote the best solution (fitness) that has been achieved so far
as

󳨀󳨀󳨀󳨀󳨀→
𝑝best𝑖
𝑘
= {𝑝best𝑖

𝑘,1
, 𝑝best𝑖

𝑘,2
, . . . , 𝑝best𝑖

𝑘,𝑑
} , (24)

󳨀󳨀󳨀󳨀󳨀→
𝑔best𝑖
𝑘
= {𝑔best𝑖

𝑘,1
, 𝑔best𝑖

𝑘,2
, . . . , 𝑔best𝑖

𝑘,𝑑
} , (25)

where
󳨀󳨀󳨀󳨀󳨀→
𝑝best𝑖
𝑘
in (25) is the best position already found by

particle 𝑖 until time 𝑘 and
󳨀󳨀󳨀󳨀󳨀→
𝑔best𝑖
𝑘
in (24) is the best position

already found by a neighbor until time 𝑘.

4.3. Velocity and Position Update. The new velocities and
positions of the particles for the next fitness evaluation are
calculated using [53, 54]

V𝑖
𝑘+1,𝑑

= 𝑤 ⋅ V𝑖
𝑘,𝑑
+ 𝐶
1
⋅ 𝑟
1
⋅ (𝑝best𝑖

𝑘,𝑑
− 𝑥
𝑖

𝑘,𝑑
)

+ 𝐶
2
⋅ 𝑟
2
⋅ (𝑔best𝑖

𝑘,𝑑
− 𝑥
𝑖

𝑘,𝑑
) ,

𝑥
𝑖

𝑘+1,𝑑
= 𝑥
𝑖

𝑘,𝑑
+ V𝑖
𝑘+1,𝑑
,

(26)

where 𝑟
1
and 𝑟
2
are random numbers between 0 and 1, coef-

ficients 𝐶
1
and 𝐶

2
are given acceleration constants towards

󳨀󳨀󳨀󳨀→
𝑝best and

󳨀󳨀󳨀󳨀→
𝑔best, respectively, and 𝑤 is the inertia weight.

Introducing a linearly decreasing inertia weight into the
original PSO significantly improves its performance through
the parameter study of inertia weight [55, 56]. Moreover, the
linear distribution of the inertia weight is expressed as follows
[55]:

𝑤 = 𝑤max −
𝑤max − 𝑤min
iter max

iteration, (27)

where iter max is the maximum number of iterations and
iteration is the current number of iteration. Equation (27)
presents how the inertia weight is updated, considering 𝑤max
and𝑤min are the initial and the final weights, respectively.The
parameters 𝑤max = 0.9 and 𝑤min = 0.4 that were previously
investigated by Naka et al. [55] and Shi and Eberhart [56] are
used in this research as well.

4.4. Stopping Criterion. Achieving a predetermined solution,
steady-state mean, and standard deviations of a solution in
several consecutive generations, stopping the algorithm at a
certain computer CPU time, or stopping when a maximum
number of iterations is reached are usual stopping rules that
have been used so far in different research works. In current
research, the PSO algorithm stops when the maximum
number of iterations is reached.

Pseudocode 1 shows the pseudocode of the proposed
MOPSO algorithm. Moreover, since the problem and hence
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for 𝑖 = 1 to Pop
initialize position (𝑖)
initialize velocity (𝑖)
if position (𝑖) and velocity (𝑖) be a feasible candidate solution

penalty = 0
else penalty = a positive number
end if

end for
𝑤 = [0.4, 0.9]

do while Iter <= Gen
for 𝑗 = 1 to Pop

Calculate new velocity of the particle
Calculate new position of the particle
𝑝best(iter) = min(𝑝best(𝑖))

end for
𝑔best(iter) = min(𝑔best)
𝑤 = 𝑤max − ((𝑤max − 𝑤min)/iter max) × iter
modifying the velocity and position of the particle

end while

Pseudocode 1: The pseudocode of MOPSO algorithm.

Begin
Set 𝑃
𝐶
, 𝑃
𝑚
, Pop and Gen

𝑆 → 0

initialize Population (𝑆)
evaluate Population (𝑆)
while (non terminating condition)
repeat
𝑆 → 𝑆 + 1

select Population (𝑆) from Population with roulette wheel (𝑆 − 1)
uniform crossover
one point mutation
evaluate Population (𝑆)
end repeat
print optimum result
end

Pseudocode 2: The pseudocode of MOGA algorithm.

the model is new and there is no other available algorithm
to compare the results, a multiobjective genetic algorithm
(MOGA) is developed in this research for validation and
benchmarking. MOGA was coded using roulette wheel in
selection operator, population size of 40, uniform crossover
with probability of 0.64, one-point random mutation with
probability 0.2, and a maximum number of 500 iterations.
Pseudocode 2 shows the pseudocode of the proposedMOGA
algorithm. The computer programs of the MOPSO and
MOGAalgorithmswere developed inMATLAB software and
are executed on a computer with 2.50GHz of core 2 CPU
and 3.00GB of RAM. Furthermore, all the graphical and
statistical analyses are performed in MINITAB 15.

In the next section, some numerical examples are given to
illustrate the application of the proposed MOPSO algorithm
in real-world environments and to evaluate and compare its
performances with the ones obtained by a MOGAmethod.

5. Numerical Illustrations

The decision variables in the inventory model (22) are 𝑄
𝑖,𝑗
,

𝑋
𝑖,𝑗
,𝑉
𝑖,𝑗
, and 𝑏

𝑖,𝑗
. We note that the determination of the order

quantity of the items in different periods, that is, 𝑄
𝑖,𝑗
, results

in the determination of the other decision variables as well.
Hence, we first randomly generate 𝑄

𝑖,𝑗
, that is, modeled by

the particles’ position and velocity. Equation (28) shows a
pictorial representation of the matrix 𝑄 for a problem with
4 items in 4 periods, where rows and columns correspond to
the items and the periods, respectively.

The structure of a particle

𝑄
4,4
=
[
[
[

[

124 116 50 0

205 190 58 0

114 68 107 0

43 87 210 0

]
]
]

]

. (28)
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Table 2: Different problems and their optimal TMF values obtained by the two algorithms.

Problem 𝑚 𝑁 𝑀
1

TB Objective values MOPSO MOGA
MOPSO MOGA 𝐶

1
𝐶
2

Pop Gen 𝑃
𝐶

𝑃
𝑚

Pop Gen
1 1 3 2000 30000 18510 18510 2 2.5 30 200 0.6 0.1 40 500
2 2 3 3000 85000 44622 44943 1.5 2.5 20 200 0.5 0.08 30 200
3 3 3 5000 170000 85830 86089 1.5 2 30 500 0.6 0.08 50 300
4 2 4 3500 130000 92758 93423 2 2 30 100 0.7 0.2 50 200
5 3 4 5000 240000 147480 146450 1.5 2.5 40 100 0.6 0.2 50 200
6 4 3 6000 260000 132910 133400 2.5 1.5 20 200 0.6 0.08 40 500
7 5 3 9000 370000 153840 154550 2 2.5 40 200 0.6 0.2 50 200
8 6 3 8800 360000 214620 215510 1.5 2.5 30 500 0.5 0.1 30 200
9 7 3 10500 400000 265020 266020 2 2 30 200 0.7 0.1 40 300
10 8 5 12000 470000 322850 328250 2.5 2.5 30 500 0.6 0.08 50 200
11 8 8 15000 550000 431245 442100 2 2 20 200 0.7 0.2 30 300
12 9 5 15000 530000 438790 449835 1.5 2.5 40 100 0.7 0.2 50 300
13 9 8 18000 600000 495470 513725 2 2 40 500 0.7 0.08 50 500
14 9 9 20000 630000 553276 571250 1.5 2.5 20 100 0.5 0.1 40 500
15 10 5 20000 620000 579030 593167 2.5 2.5 20 200 0.5 0.2 30 200
16 10 8 25000 700000 642870 665890 1.5 2.5 40 200 0.7 0.08 30 200
17 10 10 34000 780000 710035 731280 1.5 1.5 30 200 0.5 0.08 50 500
18 10 15 45000 900000 823210 852400 2 2.5 20 500 0.6 0.1 40 500
19 11 10 40000 850000 827659 859080 1.5 2.5 30 500 0.6 0.1 30 500
20 11 15 45000 870000 867840 897500 2.5 2 40 100 0.7 0.2 50 200
21 12 10 48000 870000 902720 948956 1.5 2.5 30 200 0.5 0.2 50 300
22 12 12 53000 900000 932760 974380 1.5 2 30 100 0.6 0.2 40 200
23 12 15 58000 950000 965470 1023950 2 2.5 20 100 0.5 0.2 30 200
24 13 10 52000 890000 973200 1043569 1.5 1.5 20 500 0.7 0.08 40 300
25 13 13 55000 930000 985439 1089210 1.5 2.5 40 500 0.6 0.1 30 300
26 13 15 62000 980000 1056810 1104325 2 2.5 40 500 0.5 0.1 40 500
27 15 8 57000 900000 1059835 1110360 2 2 20 200 0.6 0.08 50 500
28 15 10 63000 900000 1095430 1176509 2.5 2.5 30 100 0.6 0.2 30 200
29 15 12 68000 950000 1198720 1332900 2.5 1.5 30 500 0.5 0.1 40 200
30 15 15 75000 1000000 1256980 1447905 1.5 2 20 500 0.6 0.08 50 200
31 16 12 70000 940000 1298750 1473400 2 1.5 40 100 0.7 0.1 50 500
32 16 15 80000 1050000 1454328 1772349 1.5 2.5 40 500 0.7 0.2 40 200
33 17 15 87000 1100000 1543890 1809850 2 2 40 200 0.7 0.1 50 500
34 17 17 93000 1140000 1630215 1865780 2.5 2.5 30 500 0.6 0.1 40 300
35 18 10 80000 1000000 1678345 1890437 1.5 1.5 30 100 0.7 0.08 50 300
36 18 15 98000 1150000 1768950 1924670 2 2.5 20 500 0.5 0.08 40 300
37 18 18 103000 1230000 1832450 1987320 1.5 2 30 100 0.7 0.1 40 200
38 20 10 100000 1200000 1876895 1998230 2.5 2.5 20 500 0.6 0.1 50 500
39 20 15 108000 1260000 1904564 2035689 1.5 2 30 500 0.7 0.2 50 500
40 20 20 115000 1330000 1987350 2154670 1.5 1.5 30 100 0.7 0.08 30 500
Mean — — — — 897145 971541 — — — — — — — —
St. Dev — — — — 581013 652778 — — — — — — — —

Table 2 shows partial data for 40 different problems
with different sizes along with their near optimal solutions
obtained by MOPSO and MOGA. In these problems, the
number of items varies between 1 and 20 and the number
of periods takes values between 3 and 15. In addition, the
total available budgets and the upper bounds for the order
quantities (𝑀

1
) are given in Table 1 for each problem.

In order to illustrate how the results are obtained, con-
sider a typical problem with 5 items and 3 periods (the
seventh row in Table 2), for which the complete input data is

given in Table 3. The parameters of the MOPSO and MOGA
algorithms are set by Taguchi method where𝐶

1
, 𝐶
2
the num-

ber of populations (Pop) and number of generations (Gen)
are the parameters of MOPSO and crossover probability and
their level values are shown in Table 4. Furthermore, the
rest of MOPSO’s parameters are set as 𝑤min = 0.4, 𝑤max =
0.9 and the time periods 𝑇

𝑗
= 3 for 𝑗 = 0, 1, 2, 3. The

above parameter settings are obtained performing intensive
runs. Furthermore, the amount of 𝑉

𝑖,𝑗
will be obtained

automatically after gaining the order quantity 𝑄
𝑖,𝑗
.
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Table 3: The general data for a problem with 5 items and 3 periods.

Product 𝐷
𝑖,1

𝐷
𝑖,2

𝜋
𝑖,1

𝜋
𝑖,2

𝜋̂
𝑖,1

𝜋̂
𝑖,2

𝐵
𝑖

𝐻
𝑖

𝐴
𝑖

𝛽
𝑖

𝑆
𝑖

1 1200 800 20 18 9 10 3 5 20 0.5 4
2 1300 900 20 18 9 10 7 5 15 0.5 6
3 1500 1200 11 14 8 12 5 6 25 0.8 7
4 2100 2000 11 14 8 12 8 6 18 0.8 5
5 1800 1600 12 15 9 11 7 7 19 0.6 6

0

1

Variable

𝜇

W̃a W̃b W̃c

Figure 4: The triangular fuzzy numbers.

Table 4: The parameters of the two algorithms and their levels.

Algorithms Factors Levels [1, 2, 3]

MOPSO

𝐶
1
(𝐴) [1.5, 2, 2.5]

𝐶
2
(𝐵) [1.5, 2, 2.5]

Pop(𝐶) [20, 30, 40]

Gen(𝐷) [100, 200, 500]

MOGA

𝑃
𝐶
(𝐴) [0.5, 0.6, 0.7]

𝑃
𝑚
(𝐵) [0.08, 0.1, 0.2]

Pop(𝐶) [30, 40, 50]

Gen(𝐷) [200, 300, 500]

Theweights associated with the objectives are as triangu-
lar fuzzy number 𝑤 = [𝑤

𝑎
, 𝑤
𝑏
, 𝑤
𝑐
] shown in Figure 4 where

membership function of variable 𝑥 is given by

𝜇 (𝑥) =

{{{{{{{{

{{{{{{{{

{

0 𝑥 < 𝑤
𝑎

𝑥 − 𝑤
𝑎

𝑤
𝑏
− 𝑤
𝑎

𝑤
𝑎
< 𝑥 < 𝑤

𝑏

𝑤
𝑐
− 𝑥

𝑤
𝑐
− 𝑤
𝑏

𝑤
𝑏
< 𝑥 < 𝑤

𝑐

0 𝑤
𝑐
< 𝑥.

(29)

Now, in order to get crisp interval by 𝛼-cut operation,
interval 𝑤

𝛼
can be obtained as follows (∀𝛼 ∈ [0, 1]):
𝑤(𝛼)
𝑎
− 𝑤
𝑎

𝑤
𝑏
− 𝑤
𝑎

= 𝛼,
𝑤
𝑐
− 𝑤(𝛼)
𝑐

𝑤
𝑐
− 𝑤
𝑏

= 𝛼. (30)

We have

𝑤
(𝛼)

𝑎
= (𝑤
𝑏
− 𝑤
𝑎
) 𝛼 + 𝑤

𝑎
;

𝑤
(𝛼)

𝑐
= 𝑤
𝑐
− (𝑤
𝑐
− 𝑤
𝑏
) 𝛼.

(31)

Therefore,

𝑤
𝛼
= [𝑤
(𝛼)

𝑎
, 𝑤
(𝛼)

𝑐
]

= [(𝑤
𝑏
− 𝑤
𝑎
) 𝛼 + 𝑤

𝑎
, 𝑤
(𝛼)

𝑐
= 𝑤
𝑐
− (𝑤
𝑐
− 𝑤
𝑏
) 𝛼] ,

(32)

where 𝑤
1
= [0.3, 0.5, 0.7], 𝑤

2
= [0.2, 0.3, 0.6], and 𝛼 = 0.5.

Table 5: The Taguchi 𝐿
9
design along with objective values of the

algorithms.

Run number 𝐴 𝐵 𝐶 𝐷 MOPSO MOGA
1 1 1 1 1 154040 154980
2 1 2 2 2 154367 154760
3 1 3 3 3 154220 155075
4 2 1 2 3 153944 154875
5 2 2 3 1 153985 155230
6 2 3 1 2 154568 155102
7 3 1 3 2 154215 154780
8 3 2 1 3 154320 154750
9 3 3 2 1 154100 155111

Table 6: The optimal levels of the algorithms’ parameters for
problem 7 of Table 2.

Algorithms Factors Optimal levels

MOPSO

𝐶
1

2
𝐶
2

2.5
Pop 40
Gen 200

MOGA

𝑃
𝐶

0.6
𝑃
𝑚

0.2
Pop 50
Gen 200

To perform Taguchi approach in this paper, a 𝐿
9
design is

utilized, based on which the results for problem 7 described
in Table 2 are shown in Table 5 as an example. The optimal
values of the levels of the algorithms’ parameters shown in
Table 5 are represented by Table 6. Figure 5 depicts the mean
S/N ratio plot each level of the factors ofMOPSO andMOGA
for problem 7 in Table 2.

Tables 7 and 8 show the best result obtained by MOPSO
and MOGA for the problem with 5 items and 3 periods
(problem 7), respectively, including the amounts of decision
variables and the optimal objective values. In these tables,
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Figure 5: The mean S/N ratio plot for parameter levels of MOPSO and MOGA in problem 7 of Table 2.
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Table 7: The best result of the MOPSO algorithm.

Product 𝑄
𝑖,1

𝑄
𝑖,2

𝑋
𝑖,2

𝑋
𝑖,3

𝑉
𝑖,1

𝑉
𝑖,2

𝑏
𝑖,1

𝑏
𝑖,2

TMF
1 1215 159 15 0 405 53 0 626 153840
2 1162 252 0 0 166 36 138 786
3 1555 190 55 0 311 38 0 955
4 1360 864 0 0 170 108 740 1876
5 1435 420 0 0 205 60 365 1545

Table 8: The best result of the MOGA algorithm.

Product 𝑄
𝑖,1

𝑄
𝑖,2

𝑋
𝑖,2

𝑋
𝑖,3

𝑉
𝑖,1

𝑉
𝑖,2

𝑏
𝑖,1

𝑏
𝑖,2

TMF
1 1221 168 21 0 407 56 0 611 154550
2 959 392 0 0 137 56 341 849
3 1220 390 0 0 244 78 280 1090
4 1168 960 0 0 146 120 932 1972
5 168 2254 0 0 24 322 1632 978

Table 9: The ANOVA analysis of the performances.

Source DF SS MS 𝐹 𝑃 value
Factor 1 1.11𝐸 + 11 1.11𝐸 + 11 0.28 0.6
Error 78 3.11𝐸 + 13 3.99𝐸 + 11 — —
Total 79 3.12𝐸 + 13 — — —

TMF is the best value of the biobjective inventory planning
problem, which is given in the last two columns of Table 2.
Similarly, the best TMF for the other problems is obtained
and is summarized in Table 2.

To compare the performances of the MOPSO and
MOGA, several statistical and graphical approaches are
employed. A one-way ANOVA analysis of the means of
the algorithms in confidence 0.95% is used to compare and
evaluate the objective values of the generated 40 problems.
Table 9 shows the ANOVA analysis of the results of the
two algorithms that demonstrates no significant difference
between both algorithms. Moreover, the mean and stan-
dard deviation (Std. Dev) of the objective values of the 30
generated problems shows that the MOPSO has the better
performance in terms of the objective values in comparison
with the MOGA. In addition, a pictorial presentation of
the performances of the two algorithms shown by Figure 6
displays that the MOPSO is more efficient than the MOGA
algorithm in the large number of the problems.

Figure 7 depicts the boxplot and the individual value plot
and Figure 8 shows the residual plots for the algorithms.

A comparison of the results in Table 2 shows that the
MOPSO algorithm performs better than theMOGA in terms
of the fitness functions values.

6. Conclusion and Recommendations for
Future Research

In this paper, a biobjective multi-item multiperiod inventory
planning problem with total available budget under all unit
discount for some items and incremental quantity discount

O
bj

ec
tiv

e v
al

ue

39373533312927252321191715131197531

22

20

18

16

14

12

10

8

6

4

2

0

Variable
MOPSO
MOGA

×105

Figure 6: The pictorial representation of the performances of the
algorithms.

for other items was considered. The orders were assumed
to be placed in batch sizes and the order quantities at the
end period were zeros. Shortages were allowed and contain
backorder and lost sale. It was assumed that the beginning
inventory level in primary period was zeros and the order
quantity in each period was more than the shortage quantity
in the previous period. Due to adopting decisions related to a
certain department of production planning (extending ware-
house or building a new manufacturing line), the manager
decided to build a new warehouse for the ordered items. The
objectives were to minimize both the total inventory costs
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Figure 7: The boxplot and the individual value plot of the performances of the algorithms.
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and the total required storage space, for which a weighted
combination was defined as the objective function. The aim
of the study was to determine the optimal order quantity and
the shortage quantity of each product in each period such
that the objective function is minimized and the constraints
hold.Thedevelopedmodel of the problemwas shown to be an
integer nonlinear programming mixed with binary variables.
To solve the model, both a multiobjective particle swarm
optimization and a multiobjective genetic algorithm were
applied. The results showed that for the 10 specific problems

the MOPSO performs better than the MOGA in terms of the
fitness function values.

Some recommendations for future works are to expand
the model to cover a supply chain environment, to consider
fuzzy or stochastic demands, and/or to take into account the
inflation and the time value of the money.
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