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Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one
of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-
based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase
employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO
and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy
of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches,
20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO
performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate
that the proposed algorithm is competitive to some other optimization algorithms.

1. Introduction

Many real-life optimization problems are becomingmore and
more complex and difficult with the development of scientific
technology. So how to resolve these complex problems in an
exactmanner within a reasonable time cost is very important.
The traditional optimization algorithms are difficult to solve
these complex nonlinear problems. In recent years, nature-
inspired optimization algorithms which simulate natural
phenomena and have different design philosophies and
characteristics, such as evolutionary algorithms [1–3] and
swarm intelligence algorithms [4–7], are a research field
which simulates different natural phenomena to solve a wide
range of problems. In these algorithms the convergence rate
of the algorithm is given prime importance for solving real-
world optimization problems. The ability of the algorithms
to obtain the global optima value is one aspect and the faster
convergence is the other aspect.

As a stochastic search scheme, TLBO [8, 9] is a newly
population-based algorithm based on swarm intelligence and
has characters of simple computation and rapid convergence;
it has been extended to the function optimization, engineer-
ing optimization, multiobjective optimization, clustering,

and so forth [9–17]. TLBO is a parameter-free evolutionary
technique and is also gaining popularity due to its ability
to achieve better results in comparatively faster convergence
time to genetic algorithms (GA) [1], particle swarm optimizer
(PSO) [5], and artificial bee colony algorithm (ABC) [6].
However, in evolutionary computation research there have
been always attempts to improve any given findings further
and further. This work is an attempt to improve the con-
vergence characteristics of TLBO further without sacrificing
the accuracies obtained in TLBO and in some occasions
trying to even better the accuracies. The aims of this paper
are of threefold. First, authors propose an improved version
of TLBO, namely, BBTLBO. Next, the proposed technique
is validated on unimodal and multimodal functions based
on different performance indicators. The result of BBTLBO
is compared with other algorithms. Results of both the
algorithms are also compared using statistical paired 𝑡-test.
Thirdly, it is applied to solve the real-world optimization
problem.

The remainder of this paper is organized as follows.
The TLBO algorithm is introduced in Section 2. Section 3
presents a brief overview of some recently proposed
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(1) Begin
(2) Initialize𝑁 (number of learners) and𝐷 (number of dimensions)
(3) Initialize learners𝑋 and evaluate all learners𝑋
(4) Donate the best learner as Teacher and the mean of all learners𝑋 asMean
(5) while (stopping condition not met)
(6) for each learner𝑋

𝑖
of the class % Teaching phase

(7) TF = round(1 + rand(0, 1))
(8) for 𝑗 = 1 :𝐷
(9) 𝑛𝑒𝑤𝑋

𝑖𝑗
= 𝑋
𝑖𝑗
+ rand(0, 1) ∗ (𝑇𝑒𝑎𝑐ℎ𝑒𝑟(𝑗) − TF ∗𝑀𝑒𝑎𝑛(𝑗))

(10) endfor
(11) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋

𝑖
) is better than 𝑓(𝑋

𝑖
)

(12) endfor
(13) for each learner𝑋

𝑖
of the class % Learning phase

(14) Randomly select one learner𝑋
𝑘
, such that 𝑖 ̸= 𝑘

(15) if 𝑓(𝑋
𝑖
) better 𝑓(𝑋

𝑘
)

(16) for 𝑗 = 1 :𝐷
(17) 𝑛𝑒𝑤𝑋

𝑖𝑗
= 𝑋
𝑖𝑗
+ rand(0, 1) ∗ (𝑋

𝑖𝑗
− 𝑋
𝑘𝑗
)

(18) endfor
(19) else
(20) for 𝑗 = 1 :𝐷
(21) 𝑛𝑒𝑤𝑋

𝑖𝑗
= 𝑋
𝑖𝑗
+ rand(0, 1) ∗ (𝑋

𝑘𝑗
− 𝑋
𝑖𝑗
)

(22) endfor
(23) endif
(24) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋

𝑖
) is better than 𝑓(𝑋

𝑖
)

(25) endfor
(26) Update the Teacher and theMean
(27) endwhile
(28) end

Algorithm 1: TLBO( ).

bare-bones algorithms. Section 4 describes the improved
teaching-learning-based optimization algorithm using
neighborhood search (BBTLBO). Section 5 presents the tests
on several benchmark functions and the experiments are
conducted along with statistical tests. The applications for
training artificial neural network are shown in Section 6.
Conclusions are given in Section 7.

2. Teaching-Learning-Based Optimization

Rao et al. [8, 9] first proposed a novel teaching-learning-
based optimization (TLBO) inspired from the philosophy of
teaching and learning. The TLBO algorithm is based on the
effect of the influence of a teacher on the output of learners in
a class which is considered in terms of results or grades. The
process ofworking of TLBO is divided into twoparts.Thefirst
part consists of “teacher phase” and the second part consists
of “learner phase.” The “teacher phase” means learning from
the teacher and the “learner phase” means learning through
the interaction between learners.

A good teacher is one who brings his or her learners up to
his or her level in terms of knowledge. But in practice this is
not possible and a teacher can only move the mean of a class
up to some extent depending on the capability of the class.
This follows a random process depending on many factors.
Let𝑀 be the mean and let 𝑇 be the teacher at any iteration. 𝑇
will try tomovemean𝑀 toward its own level, so now the new

mean will be 𝑇 designated as𝑀new. The solution is updated
according to the difference between the existing and the new
mean according to the following expression:

𝑛𝑒𝑤𝑋 = 𝑋 + 𝑟 × (𝑀new − TF ×𝑀) , (1)

where TF is a teaching factor that decides the value of mean
to be changed and 𝑟 is a random vector in which each element
is a random number in the range [0, 1]. The value of TF can
be either 1 or 2, which is again a heuristic step and decided
randomly with equal probability as

TF = round [1 + rand (0, 1)] . (2)

Learners increase their knowledge by two different
means: one through input from the teacher and the other
through interaction between themselves. A learner interacts
randomly with other learners with the help of group discus-
sions, presentations, formal communications, and so forth.
A learner learns something new if the other learner has
more knowledge than him or her. Learner modification is
expressed as

𝑛𝑒𝑤𝑋
𝑖
= {

𝑋
𝑖
+ 𝑟 ∗ (𝑋

𝑖
− 𝑋
𝑗
) if𝑓 (𝑋

𝑖
) < 𝑓 (𝑋

𝑗
)

𝑋
𝑖
+ 𝑟 ∗ (𝑋

𝑗
− 𝑋
𝑖
) otherwise.

(3)

As explained above, the pseudocode for the implementa-
tion of TLBO is summarized in Algorithm 1.
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3. Bare-Bones Algorithm

In this section, we only presented a brief overview of some
recently proposed bare-bones algorithms.

3.1. BBPSO and BBExp. PSO is a swarm intelligence-based
algorithm, which is inspired by the behavior of birds flocking
[5]. In PSO, each particle is attracted by its personal best
position (𝑝best) and the global best position (𝑔best) found
so far. Theoretical studies [18, 19] proved that each particle
converges to the weighted average of 𝑝best and 𝑔best:

lim
𝑡→∞

𝑋
𝑖 (𝑡) =

𝑐
1
⋅ 𝑔best + 𝑐2 ⋅ 𝑝best

𝑐
1
+ 𝑐
2

, (4)

where 𝑐
1
and 𝑐
2
are two leaning factors in PSO.

Based on the convergence characteristic of PSO, Kennedy
[20] proposed a new PSO variant called bare-bones PSO
(BBPSO). Bare-bones PSO retains the standard PSO social
communication but replaces dynamical particle update with
sampling from a probability distribution based on 𝑔best and
𝑝best𝑖 as follows:

𝑥
𝑖,𝑗 (𝑡 + 1) = 𝑁(

𝑔best + 𝑝best𝑖,𝑗 (𝑡)

2
,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔best − 𝑝best𝑖,𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨
) , (5)

where 𝑥
𝑖,𝑗
(𝑡 + 1) is the 𝑗th dimension of the 𝑖th particle in

the population and𝑁 represents a Gaussian distributionwith
mean (𝑔best + 𝑝best𝑖,𝑗(𝑡))/2 and standard deviation |𝑔best −
𝑝best𝑖,𝑗(𝑡)|.

Kennedy [20] proposed also an alternative version of the
BBPSO, denoted by BBExp, where (5) is replaced by
𝑥
𝑖,𝑗 (𝑡 + 1)

=

{{{

{{{

{

𝑁(

𝑔best + 𝑝best𝑖,𝑗 (𝑡)

2
,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔best − 𝑝best𝑖,𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨
) rand (0, 1) > 0.5

𝑝best𝑖,𝑗 (𝑡) otherwise,

(6)
where rand (0,1) is a random value within [0, 1] for the 𝑗th
dimension. For the alternative mechanism, there is a 50%
chance that the search process is focusing on the previous best
positions.

3.2. BBDE, GBDE, and MGBDE. Inspired by the BBPSO
and DE, Omran et al. [21] proposed a new and efficient
DE variant, called bare-bones differential evolution (BBDE).
The BBDE is a new, almost parameter-free optimization
algorithm that is a hybrid of the bare-bones particle swarm
optimizer and differential evolution. Differential evolution is
used tomutate, for each particle, the attractor associated with
that particle, defined as a weighted average of its personal and
neighborhood best positions. For the BBDE, the individual is
updated as follows:
𝑥
𝑖,𝑗 (𝑡 + 1)

= {
𝑝
𝑖3 ,𝑗
(𝑡) + 𝑟2 ⋅ (𝑥𝑖1 ,𝑗

(𝑡) − 𝑥𝑖2 ,𝑗
(𝑡)) rand (0, 1) > CR

𝑝best𝑖3,𝑗 (𝑡) otherwise,
(7)

where 𝑖
1
, 𝑖
2
, and 𝑖

3
are three indices chosen from the set

{1, 2, . . . ,NP} with 𝑖
1
̸= 𝑖
2
̸= 𝑖, rand (0, 1) is a random value

within [0, 1] for the 𝑗th dimension, and 𝑝
𝑖,𝑗
(𝑡) is defined by

𝑝
𝑖,𝑗 (𝑡 + 1) = 𝑟1,𝑗 ⋅ 𝑝best𝑖,𝑗 (𝑡) + (1 − 𝑟2,𝑗) 𝑔best𝑖 (𝑡) , (8)

where 𝑝best and 𝑔best are personal best position and the global
best position, 𝑟

1,𝑗
, is a random value within [0, 1] for the 𝑗th

dimension.
Based on the idea that the Gaussian sampling is a fine

tuning procedure which starts during exploration and is
continued to exploitation, Wang et al. [22] proposed a new
parameter-freeDE algorithm, calledGBDE. In theGBDE, the
mutation strategy uses a Gaussian sampling method which is
defined by

V𝑖,𝑗 (𝑡 + 1)

=

{{{{{{

{{{{{{

{

𝑁(

𝑋best,𝑗 (𝑡) + 𝑥𝑖,𝑗 (𝑡)

2
, rand (0, 1) ≤ CR ∨ 𝑗 = 𝑗rand

󵄨󵄨󵄨󵄨󵄨
𝑋best,𝑗 (𝑡) − 𝑥𝑖,𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
)

𝑥𝑖,𝑗 (𝑡) otherwise,
(9)

where 𝑁 represents a Gaussian distribution with mean
(𝑋best,𝑗(𝑡)+𝑥𝑖,𝑗(𝑡))/2 and standard deviation |𝑋best,𝑗(𝑡)−𝑥𝑖,𝑗(𝑡)|
and CR is the probability of crossover.

To balance the global search ability and convergence rate,
Wang et al. [22] proposed amodifiedGBDE (calledMGBDE).
The mutation strategy uses a hybridization of GBDE and
DE/best/1 as follows:

V
𝑖,𝑗 (𝑡 + 1)

=

{{{

{{{

{

𝑋best,𝑗 (𝑡)+𝐹 ⋅ (𝑥𝑖1,𝑗 (𝑡)−𝑥𝑖2,𝑗 (𝑡)) rand (0, 1) ≤ 0.5

𝑁(

𝑋best,𝑗 (𝑡)+𝑥𝑖,𝑗 (𝑡)

2
,
󵄨󵄨󵄨󵄨󵄨
𝑋best,𝑗 (𝑡)−𝑥𝑖,𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
) otherwise.

(10)

4. Proposed Algorithm: BBTLBO

The bare-bones PSO utilizes this information by sampling
candidate solutions, normally distributed around the for-
mally derived attractor point. That is, the new position is
generated by a Gaussian distribution for sampling the search
space based on the 𝑔best and the 𝑝best at the current iteration.
As a result, the new position will be centered around the
weighted average of 𝑝best and 𝑔best. Generally speaking, at
the initial evolutionary stages, the search process focuses on
exploration due to the large deviation. With an increasing
number of generations, the deviation becomes smaller, and
the search process will focus on exploitation. From the search
behavior of BBPSO, the Gaussian sampling is a fine tuning
procedure which starts during exploration and is continued
to exploitation. This can be beneficial for the search of many
evolutionary optimization algorithms. Additionally, the bare-
bones PSO has no parameters to be tuned.

Based on a previous explanation, a new bare-bones TLBO
(BBTLBO) with neighborhood search is proposed in this
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Begin

Initialize learners size (NP), dimension (D), and hybridization 
factor (u)

Calculate the NTeacher and NMean of each learner

Modify each learner Xi in the class
= + r ∗ (NTeacher − TF ∗ NMean)
= N((NTeacher + Xi)/2, (NTeacher − Xi))

newXi = u ∗ newX1 + (1 − u) ∗ newX2Teacher phase

newXi better Xi

Xi = newXi Xi = Xi

Yes

Yes

Yes

Yes

No

No

No

No

Denote the NTeacheri and randomly select a Xk for each Xi

Learner
 phase

rand(0, 1) < 0.5

The original TLBO learning Neighborhood search strategy

newXi better Xi

Xi = newXi Xi = Xi

Termination criteria satisfied

End

gen = gen + 1

XiV1
V2

Figure 1: Flow chart showing the working of BBTLBO algorithm.

paper. In fact, for TLBO, if the new learner has a better
function value than that of the old learner, it is replaced
with the old one in the memory. Otherwise, the old one is
retained in the memory. In other words, a greedy selection
mechanism is employed as the selection operation between
the old and the candidate one. Hence, the new teacher and the
new learner are the global best (𝑔best) and learner’s personal
best (𝑝best) found so far, respectively. The complete flowchart
of the BBTLBO algorithm is shown in Figure 1.

4.1. Neighborhood Search. It is known that birds of a feather
flock together and people of a mind fall into the same
group. Just like evolutionary algorithms themselves, the
notion of neighborhood is inspired by nature. Neighborhood
technique is an efficient method to maintain diversity of

the solutions. It plays an important role in evolutionary
algorithms and is often introduced by researchers in order
to allow maintenance of a population of diverse individuals
and improve the exploration capability of population-based
heuristic algorithms [23–26]. In fact, learners with similar
interests form different learning groups. Because of his or
her favor characteristic, the learner maybe learns from the
excellent individual in the learning group.

For the implementation of grouping, various types of
connected distances may be used. Here we have used a
ring topology [27] based on the indexes of learners for the
sake of simplicity. In a ring topology, the first individual
is the neighbor of the last individual and vice versa. Based
on the ring topology, a 𝑘-neighborhood radius is defined,
where 𝑘 is a predefined integer number. For each individual,
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NeighborhoodiXi

Xi−1

Xi+1

Figure 2: Ring neighborhood topology with three members.

its 𝑘-neighborhood radius consists of 2𝑘 + 1 individuals
(including oneself), which are 𝑋

𝑖−𝑘
, . . . , 𝑋

𝑖
, . . . , 𝑋

𝑖+𝑘
. That is,

the neighborhood size is 2𝑘 + 1 for a 𝑘-neighborhood. For
simplicity, 𝑘 is set to 1 (Figure 2) in our algorithm.Thismeans
that there are 3 individuals in each learning group. Once
groups are constructed, we can utilize them for updating the
learners of the corresponding group.

4.2. Teacher Phase. To balance the global and local search
ability, a modified interactive learning strategy is proposed in
teacher phase. In this learning phase, each learner employs an
interactive learning strategy (the hybridization of the learning
strategy of teacher phase in the standard TLBO and Gaussian
sampling learning) based on neighborhood search.

In BBTLBO, the updating formula of the learning for a
learner 𝑋

𝑖
in teacher phase is proposed by the hybridization

of the learning strategy of teacher phase and the Gaussian
sampling learning as follows:

𝑉
1,𝑗 (𝑡 + 1) = 𝑋𝑖,𝑗 (𝑡) + rand (0, 1)

⋅ (𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑖,𝑗 (𝑡) − TF ⋅ 𝑁𝑀𝑒𝑎𝑛

𝑖,𝑗 (𝑡)) ,

𝑉
2,𝑗 (𝑡 + 1) = 𝑁(

𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑖,𝑗 (𝑡) + 𝑁𝑀𝑒𝑎𝑛𝑖,𝑗 (𝑡)

2
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟
𝑖,𝑗 (𝑡) − 𝑁𝑀𝑒𝑎𝑛𝑖,𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) ,

𝑛𝑒𝑤𝑋
𝑖,𝑗 (𝑡 + 1) = 𝑢 ⋅ 𝑉1,𝑗 (𝑡 + 1) + (1 − 𝑢) ⋅ 𝑉2,𝑗 (𝑡 + 1) ,

(11)

where 𝑢 called the hybridization factor is a random number
in the range [0, 1] for the 𝑗th dimension, 𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟 and
𝑁𝑀𝑒𝑎𝑛 are the existing neighborhood best solution and the
neighborhood mean solution of each learner, and TF is a
teaching factor which can be either 1 or 2 randomly.

In the BBTLBO, there is a (𝑢 ∗ 100)% chance that the
𝑗th dimension of the 𝑖th learner in the population follows the
behavior of the learning strategy of teacher phase, while the
remaining (100 − 𝑢∗ 100)% follow the search behavior of the
Gaussian sampling in teacher phase. This will be helpful to
balance the advantages of fast convergence rate (the attraction

of the learning strategy of teacher phase) and exploration (the
Gaussian sampling) in BBTLBO.

4.3. Learner Phase. At the same time, in the learner phase, a
learner interacts randomly with other learners for enhancing
his or her knowledge in the class. This learning method can
be treated as the global search strategy (shown in (3)).

In this paper, we introduce a new learning strategy in
which each learner learns from the neighborhood teacher and
the other learner selected randomly of his or her correspond-
ing neighborhood in learner phase.This learningmethod can
be treated as the neighborhood search strategy. Let 𝑛𝑒𝑤𝑋

𝑖

represent the interactive learning result of the learner𝑋
𝑖
.This

neighborhood search strategy can be expressed as follows:

𝑛𝑒𝑤𝑋
𝑖,𝑗
= 𝑋
𝑖,𝑗
+ 𝑟
1
∗ (𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟

𝑖,𝑗
− 𝑋
𝑖,𝑗
)

+ 𝑟
2
∗ (𝑋
𝑖,𝑗
− 𝑋
𝑘,𝑗
) ,

(12)

where 𝑟
1
and 𝑟
2
are random vectors in which each element

is a random number in the range [0, 1], 𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟 is the
teacher of the learner 𝑋

𝑖
’s corresponding neighborhood,

and the learner 𝑋
𝑘
is selected randomly from the learner’s

corresponding neighborhood.
In BBTLBO, each learner is probabilistically learning by

means of the global search strategy or the neighborhood
search strategy in learner phase.That is, about 50%of learners
in the population execute the learning strategy of learner
phase in the standard TLBO (shown in (3)), while the
remaining 50%execute neighborhood search strategy (shown
in (12)). This will be helpful to balance the global search and
local search in learner phase.

Moreover, compared to the original TLBO, BBTLBOonly
modifies the learning strategies. Therefore, both the original
TLBO and BBTLBO have the same time complexity 𝑂 (NP ⋅
𝐷 ⋅ Genmax), where NP is the number of the population, 𝐷
is the number of dimensions, and Genmax is the maximum
number of generations.

As explained above, the pseudocode for the implementa-
tion of BBTLBO is summarized in Algorithm 2.

5. Functions Optimization

In this section, to illustrate the effectiveness of the proposed
method, 20 benchmark functions are used to test the effi-
ciency of BBTLBO. To compare the search performance of
BBTLBO with some other methods, other different algo-
rithms are also simulated in the paper.

5.1. Benchmark Functions. Thedetails of 20 benchmark func-
tions are shown in Table 1. Among 20 benchmark functions,
𝐹
1
to 𝐹
9
are unimodal functions, and 𝐹

10
to 𝐹
20

are multi-
modal functions. The searching range and theory optima for
all functions are also shown in Table 1.

5.2. Parameter Settings. All the experiments are carried out
on the same machine with a Celoron 2.26GHz CPU, 2GB
memory, andWindows XP operating system withMatlab 7.9.
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(1) Begin
(2) Initialize𝑁 (number of learners),𝐷 (number of dimensions) and hybridization factor 𝑢
(3) Initialize learners 𝑋 and evaluate all learners𝑋
(4) while (stopping condition not met)
(5) for each learner𝑋

𝑖
of the class % Teaching phase

(6) TF = round(1 + rand(0, 1))
(7) Donate the𝑁 𝑇𝑒𝑎𝑐ℎ𝑒𝑟 and the𝑁 𝑀𝑒𝑎𝑛 in its neighborhood for each learner
(8) Updating each learner according (11)
(9) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋

𝑖
) is better than 𝑓(𝑋

𝑖
)

(10) endfor
(11) for each learner𝑋

𝑖
of the class % Learning phase

(12) Randomly select one learner𝑋
𝑘
, such that 𝑖 ̸= 𝑘

(13) if rand(0, 1) < 0.5
(14) Updating each learner according (3)
(15) else
(16) Donate the𝑁𝑇𝑒𝑎𝑐ℎ𝑒𝑟 in its neighborhood for each learner
(17) Updating each learner according (12)
(18) endif
(19) Accept 𝑛𝑒𝑤𝑋

𝑖
if 𝑓(𝑛𝑒𝑤𝑋𝑖) is better than 𝑓(𝑋

𝑖
)

(20) endfor
(21) endwhile
(22) end

Algorithm 2: BBTLBO( ).

For the purpose of reducing statistical errors, each algorithm
is independently simulated 50 times. For all algorithms, the
population size was set to 20. Population-based stochastic
algorithms use the same stopping criterion, that is, reaching
a certain number of function evaluations (FEs).

5.3. Effect of Variation in Parameter 𝑢. The hybridization
factor u is set to {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Comparative
tests have been performed using different 𝑢. In our exper-
iment, the maximal FEs are used as ended condition of
algorithm, namely, 40,000 for all test functions. Table 2 shows
the mean optimum solutions and the standard deviation of
the solutions obtained using different hybridization factor
𝑢 in the 50 independent runs. The best results among
the algorithms are shown in bold. Figure 3 presents the
representative convergence graphs of different benchmark
functions in terms of the mean fitness values achieved by
using different hybridization factor 𝑢 on all test functions.
Due to the tight space limitation, some sample graphs are
illustrated.

The comparisons in Table 2 and Figure 3 show that when
the hybridization factor 𝑢 is set to 0.9, BBTLBOoffers the best
performance on 20 test functions. Hence, the hybridization
factor 𝑢 is set to 0.9 in the following experiments.

5.4. Comparison of BBTLBO with Some Similar Bare-Bones
Algorithms. In this section, we compare BBTLBO with five
other recently proposed three bare-bones DE variants and
two bare-bones PSO algorithms. Our experiment includes
two series of comparisons in terms of the solution accuracy
and the solution convergence (convergence speed and success
rate). We compared the performance of BBTLBO with other

similar bare-bones algorithms, including BBPSO [20], BBExp
[20], BBDE [21], GBDE [22], and MGBDE [22].

5.4.1. Comparisons on the Solution Accuracy. In our exper-
iment, the maximal FEs are used as ended condition of
algorithm, namely, 40,000 for all test functions. The results
are shown in Table 3 in terms of the mean optimum solution
and the standard deviation of the solutions obtained in the 50
independent runs by each algorithm on 20 test functions.The
best results among the algorithms are shown in bold. Figure 4
presents the convergence graphs of different benchmark
functions in terms of the mean fitness values achieved by 7
algorithms for 50 independent runs. Due to the tight space
limitation, some sample graphs are illustrated.

From Table 3 it can be observed that the mean optimum
solution and the standard deviation of all algorithms perform
well for the functions 𝐹

15
and 𝐹
17
. Although BBExp performs

better than BBTLBO on function 𝐹
9
and MGBDE performs

better than BBTLBO on function 𝐹
20
, our approach BBTLBO

achieves better results than other algorithms on the rest of test
functions. Table 3 and Figure 4 conclude that the BBTLBO
has a good performance of the solution accuracy for test
functions in this paper.

5.4.2. Comparison of the Convergence Speed and SR. In order
to compare the convergence speed and successful rate (SR)
of different algorithms, we select a threshold value of the
objective function for each test function. For other functions,
the threshold values are listed in Table 4. In our experiment,
the stopping criterion is that each algorithm is terminated
when the best fitness value so far is below the predefined
threshold value (𝑇 Value) or the number of FEs reaches to
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Table 1: Details of numerical benchmarks used.

Function Formula 𝐷 Range Optima

Sphere 𝐹
1
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100] 0

Sum square 𝐹
2
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
2

𝑖
30 [−100, 100] 0

Quadric 𝐹
3
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random(0, 1) 30 [−1.28, 1.28] 0

Step 𝐹
4
(𝑥) =

𝐷

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 30 [−100, 100] 0

Schwefel 1.2 𝐹
5
(𝑥) =

𝐷

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

30 [−100, 100] 0

Schwefel 2.21 𝐹
6
(𝑥) = max {󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
, 1 ≤ 𝑖 ≤ 𝐷} 30 [−100, 100] 0

Schwefel 2.22 𝐹
7
(𝑥) =

𝐷

∑

𝑖=1

󵄨󵄨󵄨󵄨
𝑥
𝑖

󵄨󵄨󵄨󵄨
+

𝐷

∏

𝑖=1

󵄨󵄨󵄨󵄨
𝑥
𝑖

󵄨󵄨󵄨󵄨
30 [−10, 10] 0

Zakharov 𝐹
8
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
+ (

𝐷

∑

𝑖=1

0.5𝑖𝑥
𝑖
)

2

+ (

𝐷

∑

𝑖=1

0.5𝑖𝑥
𝑖
)

4

30 [−100, 100] 0

Rosenbrock 𝐹
9
(𝑥) =

𝐷−1

∑

𝑖=1

⌊100(𝑥
2

𝑖
− 𝑥
𝑖+1
)
2

+ (𝑥
𝑖
− 1)
2

⌋ 30 [−2.048, 2.048] 0

Ackley 𝐹
10
(𝑥) = 20 − 20 exp((−1

5
)√(

1

𝐷
)

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp(( 1

𝐷
)

𝐷

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 𝑒 30 [−32, 32] 0

Rastrigin 𝐹
11
(𝑥) =

𝐷

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) 30 [−5.12, 5.12] 0

Weierstrass
𝐹
12
(𝑥) =

𝐷

∑

𝑖=1

(

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 (𝑥

𝑖
+ 0.5))]) − 𝐷

𝑘max
∑

𝑘=0

[𝑎
𝑘 cos (2𝜋𝑏𝑘 × 0.5)]

𝑎 = 0.5 𝑏 = 3 𝑘max = 20

30 [−0.5, 0.5] 0

Griewank 𝐹
13
(𝑥) =

𝐷

∑

𝑖=1

(
𝑥
2

𝑖

4000
) −

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 30 [−600, 600] 0

Schwefel 𝐹
14
(𝑥) = 418.9829𝐷 +

𝐷

∑

𝑖=1

(−𝑥
𝑖
sin√abs(𝑥

𝑖
)) 30 [−500, 500] 0

Bohachevsky1 𝐹
15
(𝑥) = 𝑥

2

1
+ 2𝑥
2

2
− 0.3 cos (3𝜋𝑥

1
) − 0.4 cos (4𝜋𝑥

2
) + 0.7 2 [−100, 100] 0

Bohachevsky2 𝐹
16
(𝑥) = 𝑥

2

1
+ 2𝑥
2

2
− 0.3cos (3𝜋𝑥

1
) ∗ cos (4𝜋𝑥

2
) + 0.3 2 [−100, 100] 0

Bohachevsky3 𝐹
17
(𝑥) = 𝑥

2

1
+ 2𝑥
2

2
− 0.3cos((3𝜋𝑥

1
) + (4𝜋𝑥

2
)) + 0.3 2 [−100, 100] 0

Shekel5 𝐹
18
(𝑥) = −

5

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]

−1

4 [0, 10] −10.1532

Shekel7 𝐹
19
(𝑥) = −

7

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]

−1

4 [0, 10] −10.4029

Shekel10 𝐹
20
(𝑥) = −

10

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇
+ 𝑐
𝑖
]

−1

4 [0, 10] −10.5364

the maximal FEs 40,000. The results are shown in Table 4
in terms of the mean number of FEs (MFEs) required to
converge to the threshold and successful rate (SR) in the
50 independent runs. “NaN” represents that no runs of the
corresponding algorithm converged below the predefined
threshold before meeting the maximum number of FEs. The
best results among the six algorithms are shown in boldface.

FromTable 5 it can be observed that all algorithms hardly
converge to the threshold for unimodal functions 𝐹

3
, 𝐹
5
, 𝐹
6
,

and 𝐹
8
and multimodal functions 𝐹

11
, 𝐹
12
, and 𝐹

14
. BBTLBO

converges to the threshold except for functions 𝐹
3
, 𝐹
9
, and

𝐹
14
. From the results of total average FEs, BBTLBO converges

faster than other algorithms on all unimodal functions and
the majority of multimodal functions except for functions
𝐹
15
,𝐹
16
,𝐹
19
, and𝐹

20
.The acceleration rates between BBTLBO

and other algorithms are mostly 10 for functions 𝐹
1
, 𝐹
2
, 𝐹
4
,

𝐹
7
, 𝐹
9
, 𝐹
10
, and 𝐹

13
. From the results of total average SR,

BBTLBO achieves the highest SR for those test functions of
which BBTLBO successfully converges to the threshold value.
It can be concluded that the BBTLBOhas a good performance
of convergence speed and successful rate (SR) of the solutions
for test functions in this paper.



8 The Scientific World Journal

Ta
bl
e
2:
C
om

pa
ris

on
sm

ea
n
±
std

of
th
es

ol
ut
io
ns

us
in
g
di
ffe
re
nt
𝑢
.

Fu
n

BB
TL

BO
(𝑢
=
0
.0
)

BB
TL

BO
(𝑢
=
0
.1
)

BB
TL

BO
(𝑢
=
0
.3
)

BB
TL

BO
(𝑢
=
0
.5
)

BB
TL

BO
(𝑢
=
0
.7
)

BB
TL

BO
(𝑢
=
0
.9
)

BB
TL

BO
(𝑢
=
1
.0
)

𝐹
1

1
.7
5
𝑒
−
0
0
1
±
1
.2
1
𝑒
+
0
0
0

6
.8
9
𝑒
−
0
7
1
±
1
.0
1
𝑒
−
0
7
0

1
.2
3
𝑒
−
1
6
3
±
0
0

1
.2
1
𝑒
−
2
5
6
±
0
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
2

8
.9
8
𝑒
−
0
0
5
±
5
.7
3
𝑒
−
0
0
4

5
.6
2
𝑒
−
0
6
9
±
2
.7
2
𝑒
−
0
6
8

2
.2
0
𝑒
−
1
6
1
±
1
.1
2
𝑒
−
1
6
0

2
.4
3
𝑒
−
2
5
4
±
0
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
3

1
.2
0
𝑒
−
0
0
1
±
6
.3
4
𝑒
−
0
0
2

5
.9
1
𝑒
−
0
0
3
±
1
.4
4
𝑒
−
0
0
3

1
.0
1
𝑒
−
0
0
3
±
3
.4
8
𝑒
−
0
0
4

4
.3
5
𝑒
−
0
0
4
±
1
.9
7
𝑒
−
0
0
4

2
.3
5
𝑒
−
0
0
4
±
1
.3
0
𝑒
−
0
0
4

2
.2
7
𝑒
−
0
0
4
±
1
.2
6
𝑒
−
0
0
4

1.
99

e−
00

4
±
1.
13

e−
00

4
𝐹
4

7
.6
5
𝑒
+
0
0
2
±
5
.8
3
𝑒
+
0
0
2

4
.8
0
𝑒
−
0
0
1
±
8
.8
6
𝑒
−
0
0
1

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
5

5
.5
8
𝑒
+
0
0
2
±
6
.5
3
𝑒
+
0
0
2

1
.8
7
𝑒
−
0
2
8
±
5
.7
3
𝑒
−
0
2
8

3
.5
3
𝑒
−
0
5
4
±
1
.8
6
𝑒
−
0
5
3

3
.6
9
𝑒
−
0
7
3
±
2
.2
7
𝑒
−
0
7
2

9
.5
3
𝑒
−
0
9
6
±
6
.7
4
𝑒
−
0
9
5

2.
16

e−
11

5
±
1.
10

e−
11

4
2
.5
6
𝑒
−
1
0
0
±
1
.3
0
𝑒
−
0
9
9

𝐹
6

2
.5
1
𝑒
+
0
0
1
±
5
.3
4
𝑒
+
0
0
0

6
.6
7
𝑒
−
0
2
1
±
8
.8
1
𝑒
−
0
2
1

2
.8
1
𝑒
−
0
6
1
±
6
.3
6
𝑒
−
0
6
1

8
.2
2
𝑒
−
1
0
0
±
1
.8
0
𝑒
−
0
9
9

8
.1
8
𝑒
−
1
3
7
±
1
.4
1
𝑒
−
1
3
6

3.
63

e−
15

4
±
1.
34

e−
15

3
8
.8
6
𝑒
−
1
4
7
±
3
.2
2
𝑒
−
1
4
6

𝐹
7

1
.3
7
𝑒
−
0
0
3
±
9
.5
4
𝑒
−
0
0
3

8
.7
2
𝑒
−
0
4
3
±
1
.5
2
𝑒
−
0
4
2

5
.6
8
𝑒
−
0
8
8
±
8
.7
6
𝑒
−
0
8
8

1
.0
1
𝑒
−
1
3
3
±
2
.3
8
𝑒
−
1
3
3

2
.6
0
𝑒
−
1
7
5
±
0
0

1.
16

e−
18

8
±
00

8
.3
3
𝑒
−
1
8
0
±
0
0

𝐹
8

2
.4
1
𝑒
+
0
0
0
±
3
.0
7
𝑒
+
0
0
0

1
.3
2
𝑒
−
0
1
9
±
2
.9
8
𝑒
−
0
1
9

2
.1
3
𝑒
−
0
2
8
±
7
.6
9
𝑒
−
0
2
8

3
.4
4
𝑒
−
0
3
7
±
1
.2
4
𝑒
−
0
3
6

2
.2
0
𝑒
−
0
5
0
±
9
.1
2
𝑒
−
0
5
0

1.
07

e−
05

6
±
4.
39

e−
05

6
2
.0
3
𝑒
−
0
4
9
±
8
.9
4
𝑒
−
0
4
9

𝐹
9

2.
66

e+
00

1
±
1.
79

e+
00

0
2
.7
2
𝑒
+
0
0
1
±
3
.1
7
𝑒
−
0
0
1

2
.7
7
𝑒
+
0
0
1
±
3
.1
8
𝑒
−
0
0
1

2
.8
3
𝑒
+
0
0
1
±
2
.7
8
𝑒
−
0
0
1

2
.8
4
𝑒
+
0
0
1
±
2
.6
7
𝑒
−
0
0
1

2
.8
3
𝑒
+
0
0
1
±
3
.4
1
𝑒
−
0
0
1

2
.8
0
𝑒
+
0
0
1
±
3
.8
7
𝑒
−
0
0
1

𝐹
1
0
8
.3
0
𝑒
+
0
0
0
±
1
.7
6
𝑒
+
0
0
0

1
.7
7
𝑒
−
0
0
1
±
6
.1
0
𝑒
−
0
0
1

5
.9
0
𝑒
−
0
1
5
±
1
.7
0
𝑒
−
0
1
5

3.
55

e−
01

5
±
00

3.
55

e−
01

5
±
00

3.
55

e−
01

5
±
00

3.
55

e−
01

5
±
00

𝐹
1
1
3
.7
4
𝑒
+
0
0
1
±
9
.0
5
𝑒
+
0
0
0

3
.3
3
𝑒
+
0
0
1
±
1
.1
8
𝑒
+
0
0
1

2
.7
1
𝑒
+
0
0
1
±
8
.0
0
𝑒
+
0
0
0

1
.8
9
𝑒
+
0
0
1
±
1
.1
4
𝑒
+
0
0
1

5
.7
3
𝑒
+
0
0
0
±
1
.0
6
𝑒
+
0
0
1

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
2
8
.1
5
𝑒
+
0
0
0
±
1
.9
3
𝑒
+
0
0
0

3
.3
8
𝑒
−
0
0
1
±
1
.1
6
𝑒
+
0
0
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
3
5
.0
6
𝑒
−
0
0
1
±
8
.0
8
𝑒
−
0
0
1

6
.5
2
𝑒
−
0
0
3
±
8
.8
6
𝑒
−
0
0
3

1
.7
8
𝑒
−
0
0
3
±
3
.6
8
𝑒
−
0
0
3

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
4

4.
33

e+
00

3
±
6.
79

e+
00

2
4
.6
7
𝑒
+
0
0
3
±
6
.1
0
𝑒
+
0
0
2

5
.1
7
𝑒
+
0
0
3
±
6
.6
8
𝑒
+
0
0
2

5
.5
9
𝑒
+
0
0
3
±
6
.8
5
𝑒
+
0
0
2

5
.5
3
𝑒
+
0
0
3
±
7
.1
0
𝑒
+
0
0
2

5
.5
8
𝑒
+
0
0
3
±
7
.8
0
𝑒
+
0
0
2

5
.4
0
𝑒
+
0
0
3
±
6
.5
3
𝑒
+
0
0
2

𝐹
1
5

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
6

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
7

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
8
−
7
.7
1
𝑒
+
0
0
0
±
3
.4
7
𝑒
+
0
0
0
−
8
.0
6
𝑒
+
0
0
0
±
3
.3
9
𝑒
+
0
0
0
−
9
.6
4
𝑒
+
0
0
0
±
1
.8
1
𝑒
+
0
0
0
−
9
.6
5
𝑒
+
0
0
0
±
1
.7
6
𝑒
+
0
0
0
−
1.
02

e+
00

1
±
6.
77

e−
00

3
−
9
.8
5
𝑒
+
0
0
0
±
1
.2
2
𝑒
+
0
0
0
−
9
.9
3
𝑒
+
0
0
0
±
1
.1
2
𝑒
+
0
0
0

𝐹
1
9
−
7
.6
9
𝑒
+
0
0
0
±
3
.5
2
𝑒
+
0
0
0
−
8
.1
3
𝑒
+
0
0
0
±
3
.3
6
𝑒
+
0
0
0
−
9
.8
7
𝑒
+
0
0
0
±
1
.8
3
𝑒
+
0
0
0
−
1.
03

e+
00

1
±
9.
45

e−
00

1
−
9
.7
6
𝑒
+
0
0
0
±
1
.9
5
𝑒
+
0
0
0
−
9
.8
2
𝑒
+
0
0
0
±
1
.7
8
𝑒
+
0
0
0
−
9
.6
1
𝑒
+
0
0
0
±
1
.9
9
𝑒
+
0
0
0

𝐹
2
0
−
8
.1
2
𝑒
+
0
0
0
±
3
.5
3
𝑒
+
0
0
0
−
9
.3
8
𝑒
+
0
0
0
±
2
.6
9
𝑒
+
0
0
0
−
1
.0
1
𝑒
+
0
0
1
±
1
.6
5
𝑒
+
0
0
0
−
1.
01

e+
00

1
±
1.
61

e+
00

0
−
9
.7
0
𝑒
+
0
0
0
±
2
.2
8
𝑒
+
0
0
0
−
9
.4
1
𝑒
+
0
0
0
±
2
.4
3
𝑒
+
0
0
0
−
1
.0
0
𝑒
+
0
0
1
±
1
.6
9
𝑒
+
0
0
0



The Scientific World Journal 9

Ta
bl
e
3:
C
om

pa
ris

on
sm

ea
n
±
std

of
th
es

ol
ut
io
ns

us
in
g
di
ffe
re
nt

al
go
rit
hm

s.

Fu
n

BB
PS

O
BB

Ex
p

BB
D
E

G
BD

E
M
G
BD

E
BB

TL
BO

𝐹
1

5
.4
4
𝑒
−
0
2
7
±
1
.8
7
𝑒
−
0
2
6

2
.6
2
𝑒
−
0
2
4
±
5
.0
0
𝑒
−
0
2
4

3
.9
0
𝑒
−
0
3
5
±
2
.0
0
𝑒
−
0
3
4

4
.3
5
𝑒
−
0
2
2
±
1
.1
3
𝑒
−
0
2
1

3
.3
5
𝑒
−
0
3
5
±
2
.1
1
𝑒
−
0
3
4

0.
0
±
0.
0

𝐹
2

1
3
8
0
0
±
2
.1
1
𝑒
+
0
0
4

1
0
0
0
±
4
.6
3
𝑒
+
0
0
3

6
.2
0
𝑒
−
0
2
1
±
4
.3
8
𝑒
−
0
2
0

1
4
0
0
±
4
.5
2
𝑒
+
0
0
3

1
.2
8
𝑒
−
0
3
2
±
8
.3
7
𝑒
−
0
3
2

0.
0
±
0.
0

𝐹
3

1
.3
2
𝑒
+
0
0
0
±
3
.1
8
𝑒
+
0
0
0

2
.2
2
𝑒
−
0
0
2
±
7
.5
5
𝑒
−
0
0
3

1
.6
4
𝑒
−
0
0
2
±
9
.5
7
𝑒
−
0
0
3

2
.4
9
𝑒
−
0
0
2
±
9
.8
8
𝑒
−
0
0
3

1
.1
6
𝑒
−
0
0
2
±
5
.2
6
𝑒
−
0
0
3

2.
27
e−

00
4
±
1.
26

e−
00
4

𝐹
4

5
.6
0
𝑒
+
0
0
0
±
9
.2
8
𝑒
+
0
0
0

9
.6
0
𝑒
−
0
0
1
±
4
.2
7
𝑒
+
0
0
0

7
.8
9
𝑒
+
0
0
1
±
3
.0
5
𝑒
+
0
0
2

8
.4
0
𝑒
−
0
0
1
±
9
.1
2
𝑒
−
0
0
1

1
.0
8
𝑒
+
0
0
0
±
1
.2
8
𝑒
+
0
0
0

0.
0
±
0.
0

𝐹
5

1
.2
4
𝑒
+
0
0
4
±
6
.6
6
𝑒
+
0
0
3

4
.4
1
𝑒
+
0
0
3
±
3
.3
7
𝑒
+
0
0
3

2
.0
9
𝑒
+
0
0
0
±
4
.0
0
𝑒
+
0
0
0

5
.3
6
𝑒
+
0
0
3
±
3
.2
6
𝑒
+
0
0
3

7
.5
7
𝑒
+
0
0
2
±
1
.1
6
𝑒
+
0
0
3

2.
16
e−

11
5
±
1.
10

e−
11
4

𝐹
6

1
.6
7
𝑒
+
0
0
1
±
9
.1
9
𝑒
+
0
0
0

1
.2
0
𝑒
+
0
0
0
±
5
.2
2
𝑒
−
0
0
1

1
.3
9
𝑒
+
0
0
1
±
4
.4
7
𝑒
+
0
0
0

3
.6
0
𝑒
−
0
0
1
±
1
.9
5
𝑒
−
0
0
1

1
.1
0
𝑒
+
0
0
0
±
2
.9
4
𝑒
+
0
0
0

3.
63
e−

15
4
±
1.
34

e−
15
3

𝐹
7

2
.3
4
𝑒
+
0
0
1
±
1
.3
2
𝑒
+
0
0
1

1
.0
0
𝑒
+
0
0
0
±
3
.0
3
𝑒
+
0
0
0

4
.0
6
𝑒
−
0
1
9
±
2
.1
5
𝑒
−
0
1
8

6
.0
0
𝑒
−
0
0
1
±
2
.4
0
𝑒
+
0
0
0

2
.0
0
𝑒
−
0
0
1
±
1
.4
1
𝑒
+
0
0
0

1.
16
e−

18
8
±
00

𝐹
8

1
.8
7
𝑒
+
0
0
2
±
1
.3
4
𝑒
+
0
0
2

1
.5
8
𝑒
+
0
0
2
±
7
.0
0
𝑒
+
0
0
1

1
.1
6
𝑒
−
0
0
1
±
2
.3
5
𝑒
−
0
0
1

1
.7
2
𝑒
+
0
0
2
±
6
.6
7
𝑒
+
0
0
1

2
.4
9
𝑒
+
0
0
1
±
1
.9
9
𝑒
+
0
0
1

1.
07
e−

05
6
±
4.
39

e−
05
6

𝐹
9

7
.0
7
𝑒
+
0
0
1
±
1
.4
8
𝑒
+
0
0
2

3.
57
e+

00
1
±
2.
50
e+

00
1

2
.7
6
𝑒
+
0
0
1
±
1
.0
6
𝑒
+
0
0
1

3
.1
7
𝑒
+
0
0
1
±
2
.0
7
𝑒
+
0
0
1

2
.7
6
𝑒
+
0
0
1
±
1
.4
6
𝑒
+
0
0
1

2
.8
3
𝑒
+
0
0
1
±
3
.4
1
𝑒
−
0
0
1

𝐹
1
0

1
.0
6
𝑒
+
0
0
1
±
9
.2
9
𝑒
+
0
0
0

1
.5
2
𝑒
+
0
0
0
±
5
.1
1
𝑒
+
0
0
0

1
.3
4
𝑒
+
0
0
0
±
1
.1
5
𝑒
+
0
0
0

2
.5
9
𝑒
+
0
0
0
±
6
.4
5
𝑒
+
0
0
0

5
.5
4
𝑒
−
0
0
1
±
2
.7
9
𝑒
+
0
0
0

3.
55
e−

01
5
±
00

𝐹
1
1

1
.1
6
𝑒
+
0
0
2
±
3
.5
3
𝑒
+
0
0
1

1
.8
1
𝑒
+
0
0
1
±
7
.2
8
𝑒
+
0
0
0

6
.7
6
𝑒
+
0
0
1
±
3
.8
9
𝑒
+
0
0
1

1
.5
5
𝑒
+
0
0
1
±
5
.9
6
𝑒
+
0
0
0

2
.0
3
𝑒
+
0
0
1
±
9
.2
3
𝑒
+
0
0
0

0.
0
±
0.
0

𝐹
1
2

2
.7
3
𝑒
+
0
0
0
±
2
.1
1
𝑒
+
0
0
0

1
.2
0
𝑒
−
0
0
1
±
4
.4
2
𝑒
−
0
0
1

1
.7
3
𝑒
+
0
0
0
±
1
.3
2
𝑒
+
0
0
0

1
.2
1
𝑒
−
0
0
1
±
3
.3
7
𝑒
−
0
0
1

5
.1
7
𝑒
−
0
0
1
±
8
.6
7
𝑒
−
0
0
1

0.
0
±
0.
0

𝐹
1
3

2
.1
4
𝑒
−
0
0
2
±
4
.1
1
𝑒
−
0
0
2

2
.3
0
𝑒
−
0
0
3
±
4
.2
9
𝑒
−
0
0
3

4
.0
7
𝑒
−
0
0
2
±
4
.8
9
𝑒
−
0
0
2

3
.0
8
𝑒
−
0
0
3
±
7
.4
2
𝑒
−
0
0
3

4
.6
3
𝑒
−
0
0
3
±
7
.1
6
𝑒
−
0
0
3

0.
0
±
0.
0

𝐹
1
4

3
.6
4
𝑒
+
0
0
3
±
6
.2
8
𝑒
+
0
0
2

2
.5
8
𝑒
+
0
0
3
±
5
.5
1
𝑒
+
0
0
2

2
.3
0
𝑒
+
0
0
3
±
4
.0
9
𝑒
+
0
0
2

2
.4
9
𝑒
+
0
0
3
±
5
.4
1
𝑒
+
0
0
2

2
.6
0
𝑒
+
0
0
3
±
5
.0
5
𝑒
+
0
0
2

5.
58
e+

00
3
±
7.
80

e+
00
2

𝐹
1
5

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
6

4
.3
7
𝑒
−
0
0
3
±
3
.0
9
𝑒
−
0
0
2

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
7

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

0.
0
±
0.
0

𝐹
1
8

−
5
.6
0
𝑒
+
0
0
0
±
3
.4
1
𝑒
+
0
0
0

−
7
.9
0
𝑒
+
0
0
0
±
2
.7
4
𝑒
+
0
0
0

−
7
.0
9
𝑒
+
0
0
0
±
3
.3
3
𝑒
+
0
0
0

−
7
.6
3
𝑒
+
0
0
0
±
2
.8
6
𝑒
+
0
0
0

−
8
.0
1
𝑒
+
0
0
0
±
3
.0
0
𝑒
+
0
0
0

−
9.
85
e+

00
0
±
1.
22
e+

00
0

𝐹
1
9

−
5
.9
7
𝑒
+
0
0
0
±
3
.3
1
𝑒
+
0
0
0

−
7
.8
7
𝑒
+
0
0
0
±
3
.0
3
𝑒
+
0
0
0

−
6
.2
1
𝑒
+
0
0
0
±
3
.6
6
𝑒
+
0
0
0

−
8
.6
0
𝑒
+
0
0
0
±
2
.6
8
𝑒
+
0
0
0

−
8
.3
7
𝑒
+
0
0
0
±
2
.9
0
𝑒
+
0
0
0

−
9.
82
e+

00
0
±
1.
78
e+

00
0

𝐹
2
0

−
5
.8
1
𝑒
+
0
0
0
±
3
.6
5
𝑒
+
0
0
0

−
9
.4
0
𝑒
+
0
0
0
±
2
.4
2
𝑒
+
0
0
0

−
6
.0
2
𝑒
+
0
0
0
±
3
.7
7
𝑒
+
0
0
0

−
9.
46
e+

00
0
±
2.
24
e+

00
0

−
9
.3
8
𝑒
+
0
0
0
±
2
.5
1
𝑒
+
0
0
0

−
9
.4
1
𝑒
+
0
0
0
±
2
.4
3
𝑒
+
0
0
0



10 The Scientific World Journal

0 0.5 1 1.5 2 2.5 3 3.5 4

0

50

FEs

−200

−150

−100

−50

lo
g
10

(m
ea

n 
fit

ne
ss

)

×104

u = 0.0

u = 0.1

u = 0.3

u = 0.5

u = 0.7

u = 0.9

u = 1.0

(a) 𝐹7 Schwefel 2.22

0 0.5 1 1.5 2 2.5 3 3.5 4

0

10

FEs ×104

u = 0.0

u = 0.1

u = 0.3

u = 0.5

u = 0.7

u = 0.9

u = 1.0

−60

−50

−40

−30

−20

−10

lo
g
10

(m
ea

n 
fit

ne
ss

)
(b) 𝐹8 Zakharov

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

FEs

−6

−5

−4

−3

−2

−1

lo
g
10

(m
ea

n 
fit

ne
ss

)

×104

u = 0.0

u = 0.1

u = 0.3

u = 0.5

u = 0.7

u = 0.9

u = 1.0

(c) 𝐹18 Shekel5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

FEs

M
ea

n 
fit

ne
ss

−12

−10

−8

−6

−4

−2

×104

u = 0.0

u = 0.1

u = 0.3

u = 0.5

u = 0.7

u = 0.9

u = 1.0

(d) 𝐹11 Rastrigin

Figure 3: Comparison of the performance curves using different 𝑢.

5.5. Comparison of BBTLBO with DE Variants, PSO Variants,
and Some TLBO Variants. In this section, we compared
the performance of BBTLBO with other optimization algo-
rithms, including jDE [28], SaDE [29], PSOcfLocal [27],
PSOwFIPS [30], and TLBO [8, 9]. In our experiment, the
maximal FEs are used as the stopping criterion of all algo-
rithms, namely, 40,000 for all test functions. The results are
shown in Table 5 in terms of the mean optimum solution
and the standard deviation of the solutions obtained in the
50 independent runs by each algorithm on 20 test functions,

where “𝑤/𝑡/𝑙” summarizes the competition results among
BBTLBO and other algorithms. The best results among the
algorithms are shown in boldface.

The comparisons in Table 5 show that that all algorithms
perform well for 𝐹

15
, 𝐹
16
, and 𝐹

17
. Although SaDE outper-

forms BBTLBOon𝐹
14
, PSOcfLocal outperforms BBTLBOon

𝐹
9
and PSOwFIPS outperforms BBTLBO on 𝐹

19
and 𝐹
20
, and

BBTLBO offers the highest accuracy on functions 𝐹
3
, 𝐹
4
, 𝐹
5
,

𝐹
7
, 𝐹
8
, 𝐹
10
, 𝐹
11
, and 𝐹

18
. “𝑤/𝑡/𝑙” shows that BBTLBO offers

well accuracy for the majority of test functions in this paper.
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Figure 4: Comparison of the performance curves using different algorithms.

Table 5 concludes that BBTLBO has a good performance of
the solution accuracy for all unimodal optimization problems
and most complex multimodal optimization problems.

6. Two Real-World Optimization Problems

In this section, to show the effectiveness of the proposed
method, the proposed BBTLBO algorithm is applied to
estimate parameters of two real-world problems.

6.1. Nonlinear Function Approximation. The artificial neural
network trained by our BBTLBO algorithm is a three-layer

Input x Output y

Desired output dBBTLBO algorithm

ANN

−

Figure 5: BBTLBO-based ANN.

feed-forward network and the basic structure of the proposed
scheme is depicted in Figure 5. The inputs are connected
to all the hidden units, which in turn all connected to all
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Table 4: The mean number of FEs and SR with acceptable solutions using different algorithms.

Fun 𝑡 value BBPSO BBExp BBDE GBDE MGBDE BBTLBO
MFEs SR MFEs SR MFEs SR MFEs SR MFEs SR MFEs SR

𝐹
1

1𝐸 − 8 15922 100 17727 100 11042 100 19214 100 11440 100 1390 100
𝐹
2

1𝐸 − 8 17515 54 19179 94 12243 100 20592 90 12634 100 1500 100
𝐹
3

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0
𝐹
4

1𝐸 − 8 11710 24 8120 84 3634 6 7343 40 4704 34 525 100
𝐹
5

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 4100 100
𝐹
6

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 2603 100
𝐹
7

1𝐸 − 8 17540 6 21191 90 17314 100 22684 94 15322 98 2144 100
𝐹
8

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 9286 100
𝐹
9

1𝐸 − 2 17073 62 18404 42 14029 24 18182 52 17200 80 NaN 0
𝐹
10

1𝐸 − 8 24647 26 27598 90 18273 26 29172 82 18320 84 2110 100
𝐹
11

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 2073 100
𝐹
12

1𝐸 − 8 NaN 0 25465 50 NaN 0 27317 64 19704 24 2471 100
𝐹
13

1𝐸 − 8 16318 32 21523 58 11048 16 22951 64 14786 58 1470 100
𝐹
14

1𝐸 − 8 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0
𝐹
15

1𝐸 − 8 658 100 1176 100 1274 100 1251 100 1206 100 799 100
𝐹
16

1𝐸 − 8 657 98 1251 100 1294 100 1343 100 1308 100 813 100
𝐹
17

1𝐸 − 8 995 100 2626 100 1487 100 2759 100 1921 100 973 100
𝐹
18

−10.15 1752 34 6720 44 2007 52 4377 32 8113 64 1684 94
𝐹
19

−10.40 2839 34 8585 48 1333 42 6724 50 3056 66 2215 90
𝐹
20

−10.53 1190 36 8928 74 1115 40 6548 76 5441 80 2822 82

the outputs. The variables consist of neural network weights
and biases. Suppose a three-layer forward neural network
architecture with 𝑀 input units, 𝑁 hidden units, and 𝐾

output units, and the number of the variables is shown as
follows:

𝐿 = (𝑀 + 1) ∗ 𝑁 + (𝑁 + 1) ∗ 𝐾. (13)

For neural network training, the aim is to find a set of
weights with the smallest error measure. Here the objective
function is the mean sum of squared errors (MSE) over all
training patterns which is shown as follows:

MSE = 1

𝑄 ∗ 𝐾

𝑄

∑

𝑖=1

𝐾

∑

𝑗

1

2
(𝑑
𝑖𝑗
− 𝑦
𝑖𝑗
)
2

, (14)

where 𝑄 is the number of training data set, 𝐾 is the number
of output units, 𝑑

𝑖𝑗
is desired output, and 𝑦

𝑖𝑗
is output inferred

from neural network.
In this example, a three-layer feed-forward ANN with

one input unit, five hidden units, and one output unit is
constructed tomodel the curve of a nonlinear functionwhich
is described by the following equation [31]:

𝑦 = sin (2𝑥) exp (−2𝑥) . (15)

In this case, activation function used in the output layer is
the sigma function and activation function used in the output
layer is linear. The number (dimension) of the variables is
16 for BBTLBO-based ANN. In order to train the ANN,

200 pairs of data are chosen from the real model. For each
algorithm, 50 runs are performed. The other parameters
are the same as those of the previous investigations. The
results are shown in Table 6 in terms of the mean MSE
and the standard deviation obtained in the 50 independent
runs for three methods. Figure 6 shows the predicted time
series for training and test using different algorithms. It can
conclude that the approximation achieved by BBTLBO has
good performance.

6.2. Tuning of PID Controller. The continuous form of a
discrete-type PID controller with a small sampling period Δ𝑡
is described as follows [32]:

𝑢 [𝑘] = 𝐾𝑃 ⋅ 𝑒 (𝑘) + 𝐾𝐼 ⋅

𝑘

∑

𝑖=1

𝑒 [𝑖] ⋅ Δ𝑡 + 𝐾𝐷 ⋅
𝑒 [𝑘] − 𝑒 [𝑘 − 1]

Δ𝑡
,

(16)

where 𝑢[𝑘] is the controlled output, respectively. 𝑒[𝑘] = 𝑟[𝑘]−
𝑦[𝑘] is the error signal, 𝑟[𝑘] and 𝑦[𝑘] are the reference signal
and the system output, and 𝐾

𝑃
, 𝐾
𝐼
, and 𝐾

𝐷
represent the

proportional, integral and derivate gains, respectively.
For an unknown plant, the goal of this problem is to

minimize the integral absolute error (IAE), which is given as
follow [32, 33]:

𝑓 (𝑡) = ∫

∞

0

(𝜔
1 |𝑒 (𝑡)| + 𝜔2𝑢

2
(𝑡)) 𝑑𝑡 + 𝜔3𝑡𝑟, (17)
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Figure 6: Comparison of the performance curves using different algorithms.

Table 6: Comparisons between BBTLBO and other algorithms on
MSE.

Algorithm Training error Testing error
Mean Std Mean Std

TLBO 9.85𝑒 − 004 9.26𝑒 − 004 9.43𝑒 − 004 9.18𝑒 − 004

BBTLBO 3.45𝑒 − 004 2.02𝑒 − 004 2.76𝑒 − 004 1.82𝑒 − 004

where 𝑒(𝑡) and 𝑢(𝑡) are used to represent the system error and
the control output at time 𝑡, 𝑡

𝑟
is the rising time, and 𝜔

𝑖
(𝑖 = 1,

2, 3) are weight coefficients.
To avoid overshooting, a penalty value is adopted in the

cost function. That is, once overshooting occurs, the value

of overshooting is added to the cost function, and the cost
function is given as follows [32, 33]:

if 𝑑𝑦 (𝑡) < 0

𝑓 (𝑡) = ∫

∞

0

(𝜔
1 |𝑒 (𝑡)| + 𝜔2𝑢

2
(𝑡)

+𝜔
4

󵄨󵄨󵄨󵄨
𝑑𝑦 (𝑡)

󵄨󵄨󵄨󵄨
) 𝑑𝑡 + 𝜔

3
𝑡
𝑟

else

𝑓 (𝑡) = ∫

∞

0

(𝜔
1 |𝑒 (𝑡)| + 𝜔2𝑢

2
(𝑡)) 𝑑𝑡 + 𝜔3𝑡𝑟

end,

(18)
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Table 7: Comparisons of parameters of PID controllers using different algorithms.

Algorithm 𝐾
𝑃

𝐾
𝐼

𝐾
𝐷

Overshoot (%) Peak time (s) Rise time (s) Cost function CPU time (s)
GA 0.11257 0.02710 0.28792 2.90585 1.65000 1.05000 16.34555 7.05900
PSO 0.11772 0.01756 0.27737 1.04808 1.65000 0.65000 11.60773 6.91000
BBTLBO 0.11605 0.01661 0.25803 0.34261 1.80000 0.70000 11.34300 7.04500
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Figure 7: Performance curves using different methods.

where 𝜔
4
is a coefficient and 𝜔

4
≫ 𝜔
1
, 𝑑𝑦(𝑡) = 𝑦(𝑡) −𝑦(𝑡− 1),

and 𝑦(𝑡) is the output of the controlled objective.
In our simulation, the formulas for the plant examined

are given as follows [34]:

𝐺 (𝑠) =
1958

𝑠
3
+ 17.89𝑠

2
+ 103.3𝑠 + 190.8

. (19)

The system sampling time is Δ𝑡 = 0.05 second and the
control value 𝑢 is limited in the range of [−10, 10]. Other rel-
evant system variables are 𝐾

𝑃
∈ [0, 1], 𝐾

𝐼
∈ [0, 1], and 𝐾

𝐷
∈

[0, 1]. The weight coefficients of the cost function are set as
𝜔
1
= 0.999, 𝜔

2
= 0.001 𝜔

3
= 2, and 𝜔 = 100 in this example.

In the simulations, the step response of PID control
system tuned by the proposed BBTLBO is compared with
that tuned by the standard genetic algorithm (GA) and the
standard PSO (PSO). The population sizes of GA, PSO, and
BBTLBO are 50, and the corresponding maximum numbers
of iterations are 50, 50, and 50, respectively. In addition, the
crossover rate is set as 0.90 and the mutation rate is 0.10 for
GA.

The optimal parameters and the corresponding perfor-
mance values of the PID controllers are listed in Table 7 and
the corresponding performance curves and step responses
curves are given in Figures 7 and 8. It can be seen from
Figure 7 and Table 7 that the PID controller tuned by
BBTLBO has the minimum cost function and CPU time.
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Figure 8: Step response curves using different methods.

Although PID controllers tuned by PSO have a smaller peak
time and rise time, their maximum overshoots are much
larger than the overshoot tuned by BBTLBO. It concludes that
the PID controller tuned by the BBTLBO could perform the
best control performance in the simulations.

7. Conclusion

In this paper, TLBO has been extended to BBTLBO which
uses the hybridization of the learning strategy in the stan-
dard TLBO and Gaussian sampling learning to balance the
exploration and the exploitation in teacher phase and uses a
modified mutation operation so as to eliminate the duplicate
learners in learner phase. The proposed BBTLBO algorithm
is utilized to optimize 20 benchmark functions and two
real-world optimization problems. From the analysis and
experiments, the BBTLBO algorithm significantly improves
the performance of the original TLBO, although it needs to
spend more CPU time than the standard TLBO algorithm
in each generation. From the results compared with other
algorithms on the 20 chosen test problems, it can be observed
that the BBTLBO algorithm has good performance by using
neighborhood search more effectively to generate better
quality solutions, although the BBTLBO algorithm does not
always have the best performance in all experiments cases of
this paper. It can be also observed that the BBTLBOalgorithm
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gives the best performance on two real-world optimization
problems compared with other algorithms in the paper.

Further work includes research into neighborhood search
based on different topological structures. Moreover, the
algorithm may be further applied to constrained, dynamic,
and noisy single-objective and multiobjective optimization
domain. It is expected that BBTLBOwill be used tomore real-
world optimization problems.
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