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Analog-to-information converter (AIC) plays an important role in the compressed sensing system; it has the potential to
significantly extend the capabilities of conventional analog-to-digital converter.This paper evaluates the impact of AIC nonlinearity
on the dynamic performance in practical compressed sensing system, which included the nonlinearity introduced by quantization
as well as the circuit non-ideality. It presents intuitive yet quantitative insights into the harmonics of quantization output of AIC,
and the effect of other AIC nonlinearity on the spurious dynamic range (SFDR) performance is also analyzed. The analysis and
simulation results demonstrated that, compared with conventional ADC-based system, the measurement process decorrelates the
input signal and the quantization error and alleviate the effect of other decorrelates of AIC, which results in a dramatic increase in
spurious free dynamic range (SFDR).

1. Introduction

Traditional approaches to acquiring and sampling signal are
based on Nyquist sampling theory, which states that the
sampling rate must be at least twice the maximum frequency
of the input signal. The increasing demand for ADC with
both wider bandwidth and higher quantization bits seems to
contradict with each other. The new theory of compressed
sensing (CS) [1, 2] introduced an alternative data acquisition
framework, which states that CS enables the acquisition and
recover of sparse signals in some transform domains at a rate
proportional to their information content that is much below
the Nyquist rate.

Analog-to-information converter (AIC) is designed to
acquire samples at a lower rate for compressed sensing
system, and various architectures have been proposed of
the recent work in this area, such as the random demod-
ulator sampling architecture [3], the modulated-wideband
converter [4], and others [5–8]. However, in the view of
practical hardware implementation, the basic components
constitute an AIC consists of mixer, integrator/low passed
filter and ADC, and so forth. Among these components,
the ADC commonly has the lowest dynamic range; an A/D
converter’s deviation from its ideal “linear” performance is

commonly characterized by the spurious-free dynamic range
(SFDR) [9], which is defined as the difference in decibel,
between the full-scale fundamental tone and the largest
spurious harmonic component in the output spectrum. In
order to make this notion precise, we will ignore the effects of
any noise or nonlinearities from the other components except
of ADC, since the SFDR of an AIC is typically dominated by
the nonlinear process of ideal quantization and circuit-based
(e.g., buffer, sample-and-hold) nonlinearities of ADC.

However there have been little literatures for charac-
terizing and calculating the dynamic range performance of
compressed sensing. In [10] a deterministic approach to
dynamic range of a CS-based acquisition system is proposed,
and the parameter of signal-to-quantization noise ratio is
presented, whereas the dynamic parameter, that is, SFDR, is
not considered. In [11] the quantization noise and dynamic
range are considered for compressive imaging (CI) systems
design and evaluate the quantization depth requirements for
CI, while the quantization error and the SFDR performance
of CS are still undiscussed. In [12] the impact of ADC
nonlinearity in a mixed-signal CS system is studied, without
considering the effect of ADC quantization error.

In this paper, we use an analytical approach couple with
simulation results to formulate the SFDR performance of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 143693, 6 pages
http://dx.doi.org/10.1155/2014/143693



2 The Scientific World Journal

a compressed sensing system when considered with the
quantization and nonlinearity of ADC. The background of
compressed sensing is introduced firstly; then the power
spectrum of quantization noise of AIC is analyzed numer-
ically and the SFDR of ideal AIC-based system is derived.
Furthermore, a detailed analysis of the other ADC non-
linear effects in SFDR performance of AIC-based system
is presented. Finally, the behavioral simulations results are
presented that clearly verify the accuracy of the analysis.

2. Background

2.1. Quantization-Limited SFDR of ADC-Based System.
Quantization changes a sine wave from a smooth function
to a staircase signal; due to this nonlinear effect, the output
signal is composed of a large number of nonlinear distortion
products. The most important contribution to the output
distortion comes from the quantization process, because this
is an inherently nonlinear process. In an ideal quantizer,
suppose that there is no nonlinearity and noise exists except
for the nonlinearity due to quantization. In this case, the
spurious signal of ADC output is only produced by the
quantization. When a sine wave is passed through the ideal
quantizer, the Fourier series of the output signal leads to the
closed-form expression for the magnitudes of the harmonic
as [13]:

𝐴𝑝 = 𝛿𝑝,1𝐴 +

∞

∑

𝑚=1

2

𝑚𝜋
𝐽𝑝 (2𝑚𝜋𝐴) , (1)

where 𝐴𝑝 is the output amplitude of the 𝑝th harmonic, 𝛿𝑝,1
is the Kronecker delta function,𝐴 is the input amplitude, and
𝐽𝑝 is the 𝑝th-order Bessel function of the first kind. Although
the largest harmonic is always located roughly at 2𝜋𝐴 when
the quantization levels are larger than 20, we consider the
third harmonic as the largest and the power of the largest
harmonic as a function of the number of bits. As a result, the
quantization-limited SFDR performance of an ideal ADC-
based system is approximated by [13]:

SFDR = 8.07𝑏 + 3.29 dB. (2)

2.2. Nonlinear-Limited SFDR of ADC-Based System. Besides
the nonlinearity produced by quantization, the circuit imper-
fections such as capacitor mismatches and finite opamp DC
gains are considered.These nonlinearities of ADCwould also
influence the SFDR performance of the system. The simplest
form of a nonlinear system is the memoryless power series,
which is based on normal polynomials:

𝑧 =

𝐿

∑

𝑖=0

𝑎𝑖𝑦
𝑖
, (3)

where 𝑧 is the output signal, 𝑦 is the input signal, and 𝐿 is the
order of the circuit nonlinearity. If the input signal is a single
tone signal given by

𝑦 = 𝐴 cos (𝜔𝑡 + 𝜑0) , (4)

then the amplitudes of the harmonic terms can be computed
from (3). However in the case of analog circuits, the order

of a polynomial expression is mostly limited to third order,
polynomial coefficients of the 4th order and higher, and the
nonlinearity caused by saturation at full scale are neglected.

When substituting (4) into (3), we get

𝑧 =

𝐿

∑

𝑖=0

𝑎𝑖𝑦
𝑖

= 𝑎1 [𝐴 cos (𝜔𝑡 + 𝜑0)] + 𝑎2[𝐴 cos (𝜔𝑡 + 𝜑0)]
2

+ 𝑎3[𝐴 cos (𝜔𝑡 + 𝜑0)]
3
,

𝑧 ≅ 𝑎1 cos (𝜔𝑡 + 𝜑0) +
1

2
𝑎2𝐴
2
[cos (2𝜔𝑡 + 2𝜑0)]

+
1

4
𝑎3𝐴
2
[cos (3𝜔𝑡 + 3𝜑0)]

2
.

(5)

The specific relation between polynomial coefficients and
harmonic power can be expressed in general [14]. The same
analysis can be done when the input signal is supposed to
be two tone signals; it will cause the production of more
terms, the specific terms harmonics, and intermodulation.
Furthermore, the dynamic range performance of ADCs is
specified in terms of one-tone and two-tone SFDR [15].

While in practice, tests which have been developed to
measure the performance mostly rely on Fourier analysis
using discrete Fourier transform (DFT) and the fast Fourier
transform (FFT). The input analog signal is first sampled at
Nyquist rate; the harmonics and intermodulation distortion
are calculated through the input signal spectrum, which is
estimated from the time-domain samples with nonlinear
distortion via DFT. However the DFT-based method needs
to avoid the leakage of the input frequency and the number
of periods of the input waveform in the sample record should
not be a nonprime integer submultiple of the record length,
further the ADCneeds to have a high resolution, which limits
the maximum achievable sampling rate.

As an alternative solution to high-speed ADCs, AIC-
based system enables high resolution at high frequencies
while only using low frequency, sub-Nyquist ADCs [3–8]. In
this work, we investigate the effect of nonlinearity induced by
quantization and other circuit’s nonidealities of ADC on the
AIC-based system and examine the SFDRperformance in the
presence of these nonlinearities.

2.3. Analog-to-InformationConverter (AIC). There have been
many theoretical discussions on AIC system in the literature
[3–8], in this work, the block diagram of a typical AIC
implementation [3] called the random demodulator shown
in Figure 1 is considered to compare with the conventional
ADCs. In this architecture, the input signal 𝑥(𝑡) is mixed
by a different pseudorandom number 𝑝𝑐(𝑡) waveform; then
the mixer output is integrated over a time period of 1/𝑀.
Finally, the integrator outputs are sampled and quantized, by
a traditional integrate-and-dump ADC at𝑀Hz.

Note that this AIC architecture employs sub-Nyquist rate
ADCs, and the input signal is mixed with the PN sequence
and sent to integrator before sampling. As a result, the
spectrum of the signal sent to the ADC is relatively flat
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Figure 1: Block diagram of the random demodulator.

within the filter pass band, and then the harmonic and
intermodulation energy due to the nonlinearity of ADC is
spread along the signal bandwidth rather than concentrate on
a few tones, which can lead to a better SFDR performance
after reconstruction. In the following section we present
our framework for investigating the impacts of nonlinearity
caused by quantization and other circuits induced on the
SFDR performance of AIC-based system.

3. SFDR Performance of AIC-Based System

3.1. Quantization-Limited SFDR of AIC-Based System. In an
ideal case the dynamic range performance is mainly limited
by quantization error; the spectra of the AIC quantization
output is analyzed in this section.

As we know, the time-domain expression of the measur-
ing process of AIC is given by

𝑦𝑖 = ⟨𝑥, 𝜙𝑖⟩ =

𝑁

∑

𝑗=1

𝜙𝑖𝑗𝑥𝑗, (6)

where 𝜙𝑖𝑗 is the element of measurement matrix and 𝑥𝑗 is the
element of the input signal. Suppose that the measurement
matrix is sub-Gaussian random matrix; then the element 𝜙𝑖𝑗
is independent centered sub-Gaussian random variables with
variance 1/𝑀, given 𝑆𝑖,𝑗 = 𝜙𝑖,𝑗𝑥𝑗; then

𝑦𝑖 =

𝑁

∑

𝑗=1

𝑆𝑖𝑗. (7)

Then we can get the mean and variance of 𝑆𝑖,𝑗:

𝐸 [𝑆𝑖,𝑗] = 𝐸 [𝜙𝑖,𝑗𝑥𝑗] = 𝑥𝑗𝐸 [𝜙𝑖,𝑗] = 0.

𝐷 [𝑆𝑖,𝑗] = 𝐸 [𝑆
2

𝑖,𝑗
] = 𝑥
2

𝑗
𝐸 [𝜙
2

𝑖,𝑗
] =

𝑥
2

𝑗

𝑀
.

(8)

According to the central limit theorem, when 𝑁 → ∞,
the 𝑦𝑖 subject to Gaussian distribution with mean 0 and
variance ∑𝑁

𝑗=1
(𝑥
2

𝑗
/𝑀) = ‖X‖2

2
/𝑀.

As we know that when the input signal subjected to
Gaussian distribution withmean 0, then the relation between
autocorrelation function 𝑅𝑒(𝑚) of quantization error and
input signal can be expressed as follows:

𝑅𝑒 (𝑚) =
Δ
2

2𝜋2

∞

∑

𝑘=1

1

𝑘2
exp[−4𝜋2 𝜎

2

Δ2
𝑘
2
(1 − 𝑟𝑦 (𝑚))] , (9)

where Δ is the quantization step size and 𝜎2 is the variance
of the input signal. 𝑟𝑦(𝑚) = 𝑅𝑦(𝑚)/𝑅𝑦(0) represents the
normalized autocorrelation function. While the autocorrela-
tion function of the measurement value can be expressed as

𝑅𝑦 (𝑚) = 𝐸 [𝑦𝑖𝑦𝑖+𝑚]

= 𝐸[

[

𝑁

∑

𝑗=1

𝜙𝑖,𝑗𝑥𝑗

𝑁

∑

𝑘=1

𝜙𝑖+𝑚,𝑘𝑥𝑘
]

]

= 𝐸[

[

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝜙𝑖,𝑗𝜙𝑖+𝑚,𝑘𝑥𝑗𝑥𝑘
]

]

=

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐸 [𝜙𝑖,𝑗𝜙𝑖+𝑚,𝑘] 𝑥𝑗𝑥𝑘.

(10)

Because the element of the measurement matrix is inde-
pendent, then 𝑅𝑦(0) = ‖X‖

2

2
/𝑀, when 𝑗 = 𝑘 and 𝑚 = 0,

for others 𝑅𝑦(𝑚) equal to 0, so normalized autocorrelation
function is

𝑟𝑦 (𝑚) = {
1, 𝑚 = 0,

0, else.
(11)

So, the autocorrelation function 𝑅𝑒(𝑚) of quantization error
is

𝑅𝑒 (𝑚) =

{{{{

{{{{

{

Δ
2

2𝜋2

∞

∑

𝑘=1

1

𝑘2
, 𝑚 = 0,

Δ
2

2𝜋2

∞

∑

𝑘=1

1

𝑘2
exp[−4𝜋2 𝜎

2

Δ2
𝑘
2
] , else,

(12)

where 𝜎/Δ ≥ 1, and when 𝜎/Δ = 1 and 𝑚 ̸= 0,

𝑅𝑒 (𝑚) =
Δ
2

2𝜋2
[
𝑒
−4𝜋
2

1
+
𝑒
−16𝜋
2

4
+
𝑒
−36𝜋
2

9
+ ⋅ ⋅ ⋅ ] . (13)

For 𝑒−4𝜋
2

≈ 7×10
−18, 𝑒−16𝜋

2

≈ 2 × 10
−69, we get𝑅𝑒(𝑚) ≈

0, when 𝑚 ̸= 0, and 𝑅𝑒(0) = (Δ
2
/2𝜋
2
) ∑
∞

𝑘=1
(1/𝑘
2
) = (Δ

2
/12).

From the above analysis, we know that 𝑅𝑒(𝑚) is approxi-
mated to 𝛿 function, and according to the Fourier transform
relationship between power spectrum and autocorrelation
function, the power spectrum of quantization noise is white
noise spectrum. As a result, the spurious energy due to the
quantization effect of ADC is spread to the whole bandwidth,
and we can get a better SFDR performance of AIC-based
system compared with the conventional ADC-based system.

3.2. Nonlinear-Limited SFDR of AIC-Based System. Com-
pared with the analysis of the conventional ADC-based
system, in AIC-based system, the input signal goes through
random projection, filtering, and sampling.

A signal 𝑥 can be viewed as a 𝑁 × 1 column vec-
tor in R𝑁 with elements 𝑥[𝑛], 𝑛 = 1, 2, . . . , 𝑁. Let the
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matrix Ψ = [𝜓1, 𝜓2, . . . 𝜓𝑁] have columns which form a basis
of vectors in R𝑁. And then, any signal 𝑥 can be expressed as

𝑥 =

𝑁

∑

𝑖=1

𝑠𝑖𝜓𝑖 or 𝑥 = Ψ𝑠, (14)

where 𝑠 is the 𝑁 × 1 column vector of weighting coeffi-
cients 𝑠𝑖 = ⟨𝑥, 𝜓𝑖⟩.

Consider a generalized linear measurement process of a
signal 𝑥 which is 𝐾-sparse. When we say that 𝑥 is 𝐾-sparse,
we mean that it is well reconstructed or approximated by a
linear combination of just 𝐾 basis vectors fromΨ, with𝐾 ≪
𝑁. That is, there are only 𝐾 of the 𝑠𝑖 in (1) that are nonzero
and (𝑁 − 𝐾) are zero. Let Φ be an 𝑀 × 𝑁 measurement
matrix, 𝑀 ≪ 𝑁 where the rows of Φ are incoherentwith the
columns ofΨ.The incoherent measurements can be obtained
by computing 𝑀 inner products between 𝑥 and the rows
of Φ as in 𝑦𝑗 = ⟨𝑥, 𝜙𝑗⟩. It can also be expressed as

𝑦 = Φ𝑥 = ΦΨ𝑠 = Θ𝑠, (15)

where Θ: = ΦΨ is a 𝑀×𝑁matrix. It is proved that Φ does
not depend on the signal 𝑥 and it can be constructed as a
random matrix such as Gaussian matrix.

Then according to the nonlinearity model of ADC, we
substitute the transform-domain samples into (3), and then
we can get themeasurement output of theAICwith nonlinear
effect as follows:

𝑧 =

𝐿

∑

𝑖=0

𝑎𝑖𝑦
𝑖
= 𝑎1 [ΦΨ𝑠] + 𝑎2[ΦΨ𝑠]

2
+ 𝑎3[ΦΨ𝑠]

3
. (16)

3.3. Reconstruction of Frequency Sparse Signal. After quan-
tization and sampling of ADC, we get the measurement in
discrete values, in order to evaluate the SFDR performance
of the AIC-based system, we need to compute the spectrum
of the reconstruction signal. So, in this section, we frame the
reconstruction problem for the AIC-based system with the
nonlinearity effect.

Furthermore, the spectrum of the input signal is
estimated from the measurement value 𝑧 with nonlinear
distortion via solving the following optimization problem:

𝑠 = argmin ‖𝑠‖1 s.t. 󵄩󵄩󵄩󵄩𝑦 − ΦΨ𝑠
󵄩󵄩󵄩󵄩2
≤ 𝜀𝑛 + 𝜀𝑑, (17)

where 𝜀𝑛 is the error due to the noise and 𝜀𝑑 is the error due
to the nonlinear distortion.

Up to now, there are many mature algorithms to resolve
this convex optimization problem, including interior-point
algorithms [16, 17], gradient projection [18], iterative thresh-
olding [19, 20], and greedy approaches such as orthogonal
matching pursuit (OMP) [21, 22]. Here we use the algorithm
of basis pursuit with denoising [23] to resolve the recon-
struction problem for evaluation of SFDR performance of
AIC-based system.

4. Simulation Results

Figure 2 shows the SFDR performance of conventional ADC-
based system and AIC-based system of ideal ADC with
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with ideal ADC.

a single sinusoidal input for different quantization bits. Φ is
set to an 𝑀 × 𝑁 Gaussian random measurement;𝑀 = 256,
and 𝑁 = 1024 . The input signal frequency is 𝑓0 = 64Hz,
𝑓𝑠 = (5∗64−1)Hz, and use BPDN [23] as the reconstruction
algorithm. Everymeasurement was repeated 300 times to test
the reproducibility.

As shown in Figure 2, the SFDR performance of AIC-
based system outperforms that of conventional ADC-based
system. That is because in the conventional ADC-based
system, noise spectrumof sinusoid signals consists of discrete
components, and the harmonic is concentrated in the odd
multiple of its fundamental frequency, while in the AIC-
based system the spectrum of quantization error is uniformly
distributed. However the total quantization noise power
represented by the area under the noise spectrum is approx-
imately equal to Δ2/12, for AIC-based system the spurious
energy is spread along the whole signal bandwidth; then
each harmonic of the quantization error is thereby pulled
downward into a more dense portion of the noise spectrum
leading to increasing in SFDR performance. The observation
from this simulation was intuitively illustrated in Figure 2.

Figure 3 shows a snapshot of the single-tone recon-
structed error spectrum for conventional system and CS-
based system. The second-order 𝑎2 = 0.1 and third-order
distortion coefficients 𝑎3 = 0.1. As we can see, in the
conventional ADC-based system, the spurious harmonic due
to the ADC nonlinearity concentrates on the multiple of
fundamental frequency, whereas, in the CS-based system, the
spurious energy is spread along the whole signal bandwidth.
Meanwhile the amplitude of the spurious harmonic of AIC-
based is lower than that of ADC-based system.

Figures 4 and 5 show the SFDR performance of
ADC-based system and AIC-based system for two-tone
input with quantization and different nonlinear distortion
coefficients. 𝑓1 = 16Hz, 𝑓2 = 256Hz, 𝑓𝑠 = 1024Hz, and
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Figure 4: SFDR performance of conventional ADC-based system
with other nonlinear effects.

quantization bits 𝑁 = 4. The reconstruction algorithm and
other simulation conditions are set the same as in Figure 2.

As we can see, both of the SFDR performances decrease
when nonlinear distortion becomes large with the second-
and third-order distortion coefficients increase. The simu-
lation results also indicate that the second-order distortion
influences the SFDR performance more seriously than that
of the third-order distortion.

Comparing the results of Figure 4 with Figure 5, we
can see that the SFDR performance of AIC-based system
outperforms that of theADC-based systemwhen introducing
the nonlinearity with both the quantization and circuit
nonideality. This is because the randomization in AIC-based
system changes the distribution of the error power from
ADC nonlinear distortion; the signals sent to ADCs in
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the conventional Nyquist sampling architecture are original
sinusoid signals, whereas those in the AIC-based system have
relatively flat spectrum. As a result, by spreading the spurious
energy along the signal bandwidth, the CS randomization
relaxes the requirement on the ADC SFDR specification.

5. Conclusions

In this paper, we compare the SFDR performance of AIC-
based system and conventional ADC-based system when
considering both nonlinearity due to quantization and other
circuit nonideality of ADC. We demonstrate that the quan-
tization noise of AIC is spectrally white and uniformly
distributed, and the quantization harmonics of AIC-based
system is spread to the whole bandwidth, which means an
improvement of SFDR performance. We show that AIC-
based systems are less sensitive to the nonlinearity of ADC
because of the CS randomization, which provides improve-
ment of SFDR performance compared with conventional
ADC-based system. Our results suggest that the second-
and third-order distortion coefficients and quantization bits
are the main factors that affect the SFDR performance of
compressed sensing. The results presented in this paper can
also be easily extended to the case when the signals input to
AIC are multisinusoids.
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