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To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis,
a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet
packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as
feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the
typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus,

provides a better way to diagnose mechanical faults under the condition of small fault samples.

1. Introduction

The bearing and gear are the most critical and frequently
encountered components in vast majority of rotating machin-
ery. Their operating state directly affects the machine per-
formance, efficiency, and life. Therefore, fault identification
of rolling element bearing and gear has been the subject of
extensive research.

Vibration analysis has been established as the most
common and reliable method of analysis. Generally, the
vibration signals can be used to detect the incipient fault
of the machine components and reduce the possibility of
catastrophic damage and the down time, through the on-line
monitoring and diagnosis system [1, 2]. The extracted features
include time domain features such as root mean square,
variance, skewness, and kurtosis [3-5], frequency domain
features such as content at the feature frequency and the
amplitudes of frequency spectrum [6, 7], and time frequency
domain features such as the statistical characteristics of short-
time Fourier transform (STFT), Wigner-Viller distribution
(WVD), wavelet transform (WT), and so forth [8-10]. The
WT method possesses perfect local property in both time
space and frequency space, and it is used widely in the region

of machinery fault detection and identification [11-13]. How-
ever, the WT cannot split the high frequency band where the
modulation information of machine fault is often involved
in. The wavelet package transform (WPT) can overcome
the difficulty. Nikolaou and Antoniadis proposed a method
for the analysis of vibration signals resulting from bearing
with localized defects using the wavelet packet transform
[14]. Fan and Zuo combined Hilbert transform and wavelet
packet transforms to extract modulating signal and detect the
early gear fault [15]. Wang and Lin investigated fault signals
denoising processing using wavelet packet decomposition
coeflicients to identify the weak fault characteristic frequency
of rolling bearings under strong background noise [16].
However, these investigations did not combine intelligent
fault diagnosis techniques to further recognize faults. The
carefully selected vibration signals are necessary to match the
theoretical fault frequency. For this reason, the advantages of
WPT are not reflected.

Many intelligent classification algorithms, such as artifi-
cial neural networks (ANNs) and support vector classifica-
tion (SVC), have been proposed to detect mechanical faults
and recognize machine conditions [1-3]. The main difference
between ANNs and SVC is in their risk minimization. In the
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case of SVC, structural risk minimization principle is used
to minimize an upper bound based on an expected risk. In
ANN:S, traditional empirical risk minimization is employed to
minimize the error in training of data. The difference in risk
minimization leads to a better generalization performance
for SVC than ANNs. Thukaram et al. [17] compared the
differences between the ANNs and SVC in identifying the
fault. Crampton and Mason [18] found that when the data
contains noise, the fault detection using support vector
machine (SVM) is more effective than other intelligent
techniques. However, only ANNs or SVC can not obtain
satisfactory classification results from high level ambient
noise. Therefore, in recent years, more and more researchers
focus on the hybrid approach using WPT and SVC for fault
classification. Bin et al. [19] combined WPT and empiri-
cal mode decomposition to extract fault feature frequency
and further employed ANNs to detect faults in rotating
machinery. Hu et al. [20] presented a hybrid approach for
bearing fault diagnosis using WPT and SVC. Xian and Zeng
developed Hu’s scheme for bearing fault diagnosis using
WPT and hybrid SVC [21]. Shen et al. proposed a new
scheme using the extraction of statistical parameters from
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WPT of original signals, a distance evaluation technique, and
a support vector regression (SVR) based generic multiclass
solver [22]. However, due to the limitation of machinery fault
simulator, the fault samples used in the above investigations
came from a single data source, mostly from the Case Western
Reserve University official website. Therefore, the superiority
of the hybrid approaches is not confirmed.

For the above reasons, this paper presents a hybrid
approach for bearing and gear fault diagnosis based on a
hybrid approach using wavelet packet decomposition and
SVC. To validate the proposed method, we carry out exper-
imental investigations using the machinery fault simulator
(MFS-MGQ). A large number of experimental data is collected
for bearing and gear under different working conditions. Our
test results have shown that the proposed approach is effective
and can further detect mechanical faults with an agreeable
precision.

2. Wavelet Packet Decomposition and Support
Vector Classification Diagnostic Principles

The fault pattern recognition flowchart based on wavelet
packet decomposition and SVC is shown in Figure 1. The
wavelet packet is employed to decompose the vibration signal
to obtain the energy ratio in each frequency band. Taking
these energy ratios as feature vectors, we can detect faults
from the determined fault type through the trained SVC. The
detailed procedures are described in Sections 2.1 and 2.2.

2.1. Wavelet Packet Decomposition to Extract Feature Vector

2.1.1. 3-Layer Decomposition for Each Signal Using Wavelet
Packet. When decomposing the vibration signal using
wavelet packet, the binary tree structure will be obtained.
The final layer of the binary tree structure of the energy
ratio in each frequency band can be obtained through calling
the wenergy function. According to WPT theory, index (i, j)
represents the ith layer and the jth node (j = 2°) as well as
a certain signal component (frequency band). For example,
(0, 1) represents the original signal, (I, 1) represents the low
frequency wavelet packet decomposition coefficients of the
first layer, and (1, 2) represents the high frequency wavelet
packet decomposition coeflicients of the same layer. For the
3-layer (i = 3) case, the corresponding node j = 1,2,...,8.
Therefore, we have eight indexes (3, j) representing eight
signal components (frequency bands).

2.1.2. Obtaining the Energy Ratio in Each Frequency Band.
Generally, the frequency bands are not arranged in accor-
dance with the frequency order from low to high. When the
original vibration signal is decomposed by wavelet packet
(through the high-pass filter and downsampling procedure),
the spectral sequence will be flipped. Therefore, to calculate
the energy ratios, we should adjust the order of the corre-
sponding frequency bands. For the 3-layer (i = 3) case, the
exact frequency bands in accordance with the frequency from
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(a) A bearing with compound faults (b) A bearing with rolling element fault

(c) A bearing with inner race fault (d) A bearing with outer race fault

FIGURE 3: Bearings with typical faults.
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FIGURE 4: Normal case of a bearing. Figurs 5: Rolling element fault
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FIGURE 7: Outer race fault.

low to high should be (3, 1), (3, 2), (3, 4), (3, 3), (3, 7), (3, 8),
(3,6),and (3, 5) [23].

2.1.3. Construct Feature Vector. The energy of the vibration
component in each band will be changed when the faults of
the mechanical system occurred. For the different faults, the
energy ratios will be changed accordingly. Therefore, for the
3-layer (i = 3) case of wavelet packet decomposition, a feature
vector T can be constructed by the eight energy ratios as

T= {E31’ E32’E33’E34’E35’E36’E37’ E38} . (1)

Here, E3; (j = 1,2,3,...,8) represent all of the energy
ratios for the 3rd layer and the jth node.
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2.2. Fault Pattern Recognition Using SVC. The basic theory
for SVC is summarized in this section [24].
Assume that a training set S is given by

S = {x, yi}?:l’ @)

where x; € R" and y; € {-1, +1}. The goal of SVMs is to find
an optimal hyper plane such that

T

wx;+b>1, fory, =+,

3)

wa,- +b<1, fory,=-1,

where the weight vector w € R" and the bias b is a scalar.

If the inequality in (3) holds for all training data, it will be
alinearity separable case. Therefore, to find the optimal hyper
plane, one can solve the following constrained optimization
problem:

1
Minimize © (w) = szw
(4)
. T .
Subject to yl-(w xi+b)21, i=12,...,n
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(a) A gear with broken teeth

(b) A gear with missing teeth

FIGURE 10: Typical fault gear.
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FIGURE 11: Normal case of a gear.

If inequality in (3) does not hold for some data points in
S, SVMs become linearly not separable. To find an optimal
hyper plane, we have to solve the following constrained
optimization problem:

1 ¢ z
Minimize O(w)=-ww+C ;
(w) = Zlf

©)

Subject to  y; (wai + b) >1-¢,

£20, i=1,2,...,n

By introducing a set of Lagrange multipliers «;, j3; for
constraints, the problem becomes the one to find the saddle
point of the Lagrangian. Therefore, the dual problem becomes
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FIGURE 12: Gear broken teeth.

n

S ¢y
Minimize Q(«) = 20@ -5 Z; Zl (x,-txjyiijiij (6)
i= i=1 j=
n
Subject to Z oy =0, (7)
i=1
0<o; <C, i=12,...,n (8)

If 0 < «; < C, the corresponding data points are called
support vectors (SVs).

SVMs map the input vector into a higher dimensional
feature and, thus, can solve the nonlinear case. By choosing
a nonlinear mapping function ¢(x) € R™, where M > N,
the SVM can construct an optimal hyper plane in the new



6

0.4 T T T Wear T T T

02t ]
Q
s
2
200 :
e

-0.2 1

_04 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500
Data points

1 T T T T T T T T

Energy ratio
[=}
v

0 ) )

1 2 3 4 5 6 7 8
Frequency band

FIGURE 13: Gear wear.
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FIGURE 14: Gear missing teeth.

feature space. K(x, x;) is the inner product kernel performing
the nonlinear mapping into feature space as

K (x,%;) = K (x;,%) = 9(x) 9 (). ©)
Therefore, the dual optimization problem becomes

n n n
Minimize Q(«x) = Z ;- % Z Z oy K (xi, xj)
i=1 i=1 j=1

(10)

and the constraints are the same as shown in (7) and (8);
the only requirement on the kernel K(x;, x;) is to satisfy the
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Mercer’s theorem [24]. Using Kernel functions, every data
will be classified as

it g(x)>0

if g(x) <0 ()

positive class,
negative class,

in which the decision function is

N
g(x;) =y (Z yoK (xi,xj) + b> ) (12)
=

The typical examples of kernel function are polynomial
kernel, radial basis function (RBF) kernel, sigmoid kernel,
and linear kernel. In many practical applications [25-27], the
RBF kernel obtains the highest classification accuracy rate
than other kernel functions. Therefore, the RBF kernel is
employed in the present investigation.

Support vector machines were originally designed for
binary classification. How to effectively extend it for multi-
class classification is still an ongoing research issue. Currently
there are several methods that have been proposed for multi-
class classification, such as one-against-one, one-against-all,
and directed acyclic graph (DAG). Hsu and Lin [28] gave a
comparison of these methods and pointed out that the one-
against-one method is more suitable for practical use than
others. In the present, the one-against-one method is applied
to detect the faults of bearings and gears.

3. Experimental Investigation

In this section, two typical fault diagnosis experiments for
bearings and gears are given to testify the performance of the
proposed hybrid approach.

3.1. Bearing Fault Diagnosis. The MFS-MG experimental
platform for the bearing fault simulation [29] is shown in
Figure 2. It includes speed monitor, manual speed governor,
acceleration sensors, speed sensor, motor, spindle, bearings,
and so forth. During the experiment, the data are acquired by
an accelerometer mounted on the top of the bearing holder
on left side. The vibration signals of the five fault types are
collected, that is, normal case, rolling element fault, inner
race fault, outer race fault, and compound fault (including
inner race, outer race, and rolling element faults). The spindle
speed is 1792 rpm and the end of the experimental bearing
(see Figure 2) is free of loading. The bearings with typical
faults are shown in Figure 3: the bearing model is ER-12K, the
bearing pitch diameter is 33.4772 mm, the number of rolling
element is 8, and the rolling element diameter is 7.9375 mm.
Figures 3(a), 3(b), 3(c), and 3(d) show four fault cases, that
is, a bearing with compound faults, a bearing with rolling
element fault, a bearing with inner race fault, and a bearing
with outer race fault, respectively.

In the present, the sampling frequency is 25.6 k. 163800
data points (bearing vibration signal) are collected at one
running in different cases and divided into 50 sections. Each
signal contains 3276 data points. Dbl8 wavelet [23] is used
to decompose each signal into three layers and gain 8 sub-
bands in the final layer. The energy ratio of each band
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TABLE 1: Bearing training samples.
Cases Energy ratios in each frequency band
1 2 3 4 5 6 7 8
0.5862 0.1738 0.0930 0.0252 0.0165 0.0263 0.0638 0.0155
Normal 0.4725 0.2200 0.1097 0.0295 0.0253 0.0338 0.0899 0.0193
0.5887 0.1845 0.0815 0.0210 0.0148 0.0219 0.0707 0.0168
0.0519 0.2047 0.1484 0.0389 0.0457 0.1648 0.3067 0.0390
Rolling element fault 0.0556 0.1537 0.1239 0.0471 0.0544 0.1664 0.3229 0.0761
0.0516 0.1457 0.0830 0.0415 0.0533 0.1692 0.4006 0.0551
0.1458 0.2153 0.1452 0.0272 0.0292 0.0757 0.3030 0.0586
Inner race fault 0.1691 0.2262 0.1234 0.0375 0.0446 0.0780 0.2779 0.0433
0.0857 0.1596 0.1210 0.0238 0.0343 0.1040 0.3967 0.0749
0.0664 0.0448 0.0259 0.0129 0.0277 0.1449 0.5550 0.1224
Outer race fault 0.0636 0.0410 0.0165 0.0111 0.0215 0.1190 0.5888 0.1386
0.0740 0.0311 0.0141 0.0090 0.0249 0.1745 0.5404 0.1321
0.0457 0.2360 0.2616 0.0623 0.0731 0.1457 0.1544 0.0213
Compound fault 0.0464 0.1528 0.1851 0.0691 0.0695 0.1925 0.2556 0.0291
0.0553 0.1896 0.2769 0.0748 0.0770 0.1263 0.1774 0.0228
TABLE 2: Bearing test samples.
Cases Energy ratios in each frequency band
1 2 3 4 5 6 7 8
0.5318 0.2206 0.0832 0.0256 0.0198 0.0292 0.0718 0.0180
Normal 0.5826 0.1843 0.0945 0.0200 0.0178 0.0232 0.0628 0.0148
0.5623 0.1877 0.0938 0.0209 0.0221 0.0251 0.0722 0.0160
0.0553 0.1541 0.1091 0.0403 0.0624 0.1990 0.3271 0.0528
Rolling element fault 0.1066 0.2799 0.0772 0.0219 0.0339 0.1315 0.3022 0.0469
0.0364 0.0993 0.0677 0.0355 0.0365 0.1707 0.4851 0.0686
0.1295 0.1626 0.1031 0.0294 0.0504 0.0944 0.3612 0.0693
Inner race fault 0.1548 0.2436 0.1546 0.0434 0.0392 0.0749 0.2385 0.0511
0.1403 0.1962 0.1596 0.0286 0.0309 0.0794 0.3197 0.0452
0.0428 0.0640 0.0319 0.0170 0.0190 0.1508 0.5503 0.1243
Outer race fault 0.0304 0.0416 0.0238 0.0117 0.0230 0.1421 0.5469 0.1805
0.0598 0.0867 0.0330 0.0135 0.0196 0.1422 0.5166 0.1285
0.0388 0.1612 0.1681 0.0670 0.0679 0.2692 0.1964 0.0313
Compound fault 0.0533 0.1979 0.2272 0.0811 0.0737 0.1538 0.1905 0.0224
0.0636 0.2239 0.1841 0.0691 0.0629 0.1777 0.1941 0.0246

is obtained through calling the wenergy function in the
wavelet toolbox of Matlab. Therefore, as shown in (1), a 1 x
8 vector (feature vector) is obtained. Figures 4, 5, 6, 7, and 8,
respectively, represent the graph of the original signals and
the corresponding eight energy ratios distribution maps for
five cases including normal case and four fault cases.

For each of the five cases, we collect two bearing vibration
signals (each signal contains 163800 data points) at two
runnings. The first signal is employed to train the SVM
and the second signal to be tested. According to the above
description, 50 feature vectors can be extracted from each
signal. Therefore, 50 feature vectors (samples) in the first
running are served as training samples and the other 50
feature vectors (samples) in the second running are the fault
samples to be tested (classified). Tables 1 and 2 give the

first three training samples of the first signal and the first
three test samples of the second signal. To represent the
five cases numerically, we label the normal case, the rolling
element fault, the inner race fault, the outer race fault, and
the compound fault as 1 to 5, respectively. It points out that
they are called standard labels.

In the present investigation, we adopt the SVM toolkit
programmed by Franc and Hlavac of the Czech Technical
University [30].

For general analysis, it is desirable to use normalized,
nondimensional parameters. The normalized parameters also
speed up the computational process. Therefore, prior to the
training of the SVC model, all samples data are normalized
to be bounded by [0, 1].
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TABLE 3: Bearing recognition results.
Cases Training samples Testing samples Classification label Recognition rate
Normal 50 50 1 100%
Rolling element fault 50 50 2 86%
Inner race fault 50 50 3 96%
Outer race fault 50 50 4 100%
Compound fault 50 50 5 100%
TABLE 4: Gear training samples.
Cases Energy ratios in each frequency band
1 2 3 4 5 6 7 8
0.5022 0.3977 0.0530 0.0077 0.0250 0.0098 0.0034 0.0012
Normal 0.4511 0.4109 0.0716 0.0079 0.0407 0.0128 0.0038 0.0013
0.4911 0.3799 0.0651 0.0080 0.0360 0.0150 0.0037 0.0011
0.5591 0.3319 0.0615 0.0152 0.0224 0.0065 0.0029 0.0007
Broken teeth 0.6000 0.2979 0.0578 0.0130 0.0226 0.0060 0.0023 0.0005
0.5589 0.3253 0.0686 0.0146 0.0216 0.0073 0.0031 0.0006
0.8194 0.1025 0.0226 0.0059 0.0266 0.0206 0.0018 0.0006
Wear 0.8289 0.0902 0.0178 0.0056 0.0380 0.0173 0.0016 0.0005
0.8080 0.1084 0.0209 0.0061 0.0391 0.0155 0.0018 0.0003
0.2358 0.1971 0.2427 0.0528 0.1688 0.0814 0.0177 0.0035
Missing teeth 0.1239 0.2404 0.1706 0.0746 0.2052 0.1422 0.0387 0.0044
0.2064 0.3353 0.1174 0.0537 0.1634 0.1051 0.0141 0.0046

According to the SVC algorithm, the samples and label
are

H},

ili=1’

X

Xi = {E31’E32’E33’E34’E35’E36’E37’E38} > (13)

for Hf =y,

where X; and H; are, respectively, the samples and label and
I is the number of samples. From the above, the data for
samples constitute a 50 x 8 matrix and the label lead to a
50 x 1 vector. Then, the first signal (50 segments) in all cases
inputs the support vector machine for training. That means it
includes two matrices, that is, the 250 x 8 matrix of samples
and the 250 x 1 vector of label. After training, the second
signal (50 segments) in all cases separately inputs the trained
SVM for testing. Therefore, it includes a 50 x 8 vector of
test samples. The predicted output (predicted label) will be
obtained when the test is completed, and the recognition
rate of every case can be obtained through the comparison
of the predicted label with the standard labels. For each
training and prediction, arg, C (arg = 1, C = 10, suggested
by Franc and Hlavdc [30]) and radial basis functions are
selected as kernel argument, regularization constant, and
kernel functions, respectively.

Table 3 shows the SVC results. From Table 3, we can see
that the recognition rate of rolling element fault is 86% and
the inner race fault is 96%. For the other three cases, that is,
the normal case, the outer race fault, and compound fault, we
obtain high performance results with 100% accuracy.

3.2. Gear Fault Diagnosis. The MFS-MG experimental plat-
form for the gear fault simulation [29] is shown in Figure 9.
Compared to the bearing fault simulator, the gear fault
simulator has a slight difference; that is, a gearbox and a
transmission belt are added. In addition, two normal bearings
are installed at both the bearing holder on left side and the
bearing holder on right side. During the experiment, the data
are acquired by an accelerometer mounted on the top of the
gearbox. The vibration signals of four cases are collected, that
is, normal case, broken teeth, wears, and gear missing teeth.
The spindle speed is 1764 rpm and the end of the gearbox is
free of loading, the gearbox transmission ratio is 1.5:1, the
gear teeth is 18, pitch diameter is 28.575 mm, and helix angle
is 33°41'. Two fault cases, that is, a gear with broken teeth and a
gear with missing teeth, are shown in Figures 10(a) and 10(b),
respectively.

Similar to bearing fault diagnosis, we use the same sam-
pling frequency and also 163800 data points (gear vibration
signal). To detect the faults using SVC, we proceed with the
same procedures as shown in Section 3.1. The original signals
and the corresponding eight energy ratios distribution maps
for four cases, including normal case and three fault cases
(broken teeth, wear and missing teeth), are shown in Figures
11,12, 13, and 14, respectively.

The first three training samples of the first signal and
the first three test samples of the second signal are shown
in Tables 4 and 5, respectively. To represent the four cases
numerically, we define the standard labels, that is, the normal
case, the broken teeth case, the wear case, and the missing
teeth case as 1to 4, respectively.
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TABLE 5: Gear test samples.
Cases Energy ratios in each frequency band
1 2 3 4 5 6 7 8

0.5055 0.3774 0.0664 0.0074 0.0285 0.0099 0.0034 0.0015

Normal 0.4699 0.3989 0.0656 0.0089 0.0345 0.0160 0.0048 0.0014
0.4881 0.4068 0.0555 0.0088 0.0257 0.0099 0.0038 0.0014
0.5709 0.3092 0.0712 0.0152 0.0235 0.0068 0.0027 0.0006

Broken teeth 0.5425 0.3387 0.0668 0.0163 0.0238 0.0069 0.0038 0.0012
0.5727 0.3254 0.0645 0.0111 0.0176 0.0059 0.0022 0.0006
0.8120 0.1040 0.0188 0.0055 0.0330 0.0255 0.0009 0.0003

Wear 0.8267 0.0975 0.0175 0.0055 0.0301 0.0215 0.0009 0.0003
0.8521 0.0831 0.0190 0.0061 0.0236 0.0141 0.0008 0.0010
0.1902 0.3251 0.1063 0.0116 0.1712 0.1581 0.0334 0.0041

Missing teeth 0.1932 0.3082 0.0844 0.0244 0.1607 0.1909 0.0299 0.0083
0.2200 0.2558 0.1340 0.0092 0.1816 0.1727 0.0212 0.0055

TABLE 6: Gear recognition results.

Cases Training samples Testing samples Classification label Recognition rate

Normal 50 50 1 94%

Broken teeth 50 50 2 96%

Wear 50 50 3 100%

Missing teeth 50 50 4 100%

The SVC results are shown in Table 6. The recognition ~ Acknowledgments

rates for the normal case, the broken teeth, the wear, and
the missing teeth are 94%, 96%, 100%, and 100%, respec-
tively.

Based on the above experimental investigations, the pro-
posed hybrid approach is reasonably effective for detecting
different kinds of faults in both bearings and gears.

4. Conclusion

This paper proposes a hybrid approach using wavelet packet
and SVC to classify faults for bears and gears. The collected
vibration signals are directly employed as inputs without
any pretreatment. The signals are decomposed by wavelet
packet and the energy ratios of all frequency bands are
calculated to construct the feature vectors so as to train
and test the support vector machines to predict the fault
type of bearings and gears. Experimental investigations for
bearing fault diagnosis and gear fault diagnosis are made
using MFS-MG experimental platform (the bearing fault
simulator and the gear fault simulator). The results show that
the proposed hybrid approach is effective to the rotating and
the transmission structures. Moreover, the present approach
has a good recognition rate not only for a single fault but also
for the compound fault.
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