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We use the analytic methods and the properties of Gauss sums to study the computational problem of one kind hybrid mean value
involving the general Dedekind sums and the two-term exponential sums, and give an interesting computational formula for it.

1. Introduction

Let 𝑞 be a natural number and ℎ an integer prime to 𝑞. The
classical Dedekind sums

𝑆 (ℎ, 𝑞) =

𝑞

∑

𝑎=1

((
𝑎

𝑞
))((

𝑎ℎ

𝑞
)) , (1)

where

((𝑥)) =

{{{

{{{

{

𝑥 − [𝑥] −
1

2
, if 𝑥 is not an integer;

0, if 𝑥 is an integer,
(2)

describes the behaviour of the logarithm of the eta-function
(see [1, 2]) undermodular transformations. About the various
arithmetical properties of 𝑆(ℎ, 𝑞), many people had studied it
and obtained a series of interesting results; see [3–9].

For example, Wang and Zhang [6] and Wang and Pan
[7] had studied the hybrid mean value involving Dedekind

sums and two-term exponential sums and proved the com-
putational formulae

𝑝−1

∑

𝑚=1

𝑝−1

∑

𝑛=1

󵄨󵄨󵄨󵄨𝐶(𝑚, 𝑛, 3, 1; 𝑝)
󵄨󵄨󵄨󵄨
2
⋅ 𝑆 (𝑚𝑛, 𝑝)

=

{{{

{{{

{

𝑝 ⋅ ℎ
2

𝑝
, if 𝑝 = 12𝑘 + 7,

3𝑝 ⋅ ℎ
2

𝑝
, if 𝑝 = 12𝑘 + 11,

0, if 𝑝 = 4𝑘 + 1,
𝑝−1

∑

𝑚=1

𝑝−1

∑

𝑛=1

󵄨󵄨󵄨󵄨𝐶(𝑚, 𝑛, 4, 2; 𝑝)
󵄨󵄨󵄨󵄨
2
⋅ 𝑆 (𝑚𝑛, 𝑝)

= {
2𝑝 ⋅ ℎ

2

𝑝
, if 𝑝 = 8𝑘 + 7,

0, if 𝑝 = 4𝑘 + 1 or 8𝑘 + 3,

(3)

where ℎ𝑝 denotes the class number of the quadratic field
Q(√−𝑝), 𝑛 denotes the solution of the congruence equa-
tion 𝑛𝑥 ≡ 1 mod 𝑝, and the two-term exponential sums
𝐶(𝑚, 𝑛, ℎ, 𝑘; 𝑞) are defined as

𝐶 (𝑚, 𝑛, ℎ, 𝑘; 𝑞) =

𝑞

∑

𝑎=1

𝑒 (
𝑚𝑎
ℎ
+ 𝑛𝑎
𝑘

𝑞
) , (4)

𝑒(𝑦) = 𝑒
2𝜋𝑖𝑦. Some results related to 𝐶(𝑚, 𝑛, ℎ, 𝑘; 𝑞) can be

found in [10, 11].
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On the other hand, Zhang [12] introduced a generalized
Dedekind sums as follows:

𝑆 (ℎ, 𝑛; 𝑞) =

𝑞

∑

𝑎=1

𝐵𝑛 (
𝑎

𝑞
)𝐵𝑛 (

𝑎ℎ

𝑞
) , (5)

where

𝐵𝑛 (𝑥) = {
𝐵𝑛 (𝑥 − [𝑥]) , if 𝑥 is not an integer;
0, if 𝑥 is an integer,

(6)

𝐵𝑛(𝑥) denotes the 𝑛th Bernoulli polynomial and 𝐵𝑛(𝑥)

defined for all real 0<𝑥 ≤1 is called the 𝑛th Bernoulli periodic
function.

If 𝑛 = 1, then 𝑆(ℎ, 1; 𝑞) = 𝑆(ℎ, 𝑞), the classical Dedekind
sums. About the arithmetical properties of 𝑆(ℎ, 𝑛; 𝑞) and
𝐵𝑛(𝑥), one can find them in [3, 12]. In this paper as a note
of [6, 7], we consider the following hybrid mean value:

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑚, 𝑢, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (𝑚, V, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 𝑛; 𝑝)

(7)

and use the analytic methods and the properties of Gauss
sums to give an exact computational formula for (7). That is,
we will prove the following conclusion.

Theorem 1. Let 𝑝 ≥ 3 be a prime and 𝑛 any positive integer.
Then for any positive integers ℎ and 𝑘 with (ℎ𝑘, 𝑝 − 1) = 1 and
integer𝑚 with (𝑚, 𝑝) = 1, one has the identity

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 𝑛; 𝑝)

= 𝑝
2
⋅ 𝑆 (1, 𝑛; 𝑝) .

(8)

For 𝑛 = 1, 2, and 3, from our theorem we may immediately
deduce the following.

Corollary 2. Let 𝑝 ≥ 3 be a prime. Then for any positive
integers ℎ and 𝑘 with (ℎ𝑘, 𝑝 − 1) = 1 and integer 𝑚 with
(𝑚, 𝑝) = 1, one has the identity

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 1; 𝑝)

=
1

12
⋅ 𝑝 (𝑝 − 1) (𝑝 − 2) .

(9)

Corollary 3. Let 𝑝 ≥ 3 be a prime. Then for any positive
integers ℎ and 𝑘 with (ℎ𝑘, 𝑝 − 1) = 1 and integer 𝑚 with
(𝑚, 𝑝) = 1, one has the identity

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 2; 𝑝)

=
1

180
⋅
(𝑝 − 1) (𝑝

3
− 4𝑝
2
+ 6𝑝 + 6)

𝑝
.

(10)

Corollary 4. Let 𝑝 ≥ 3 be a prime. Then for any positive
integers ℎ and 𝑘 with (ℎ𝑘, 𝑝 − 1) = 1 and integer 𝑚 with
(𝑚, 𝑝) = 1, one has the identity

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 3; 𝑝)

=
1

840
⋅
(𝑝 − 2) (𝑝 − 1) (𝑝 + 1) (𝑝 + 2) (𝑝

2
+ 5)

𝑝3
.

(11)

For general integer 𝑞 > 3, whether there exists an exact
computational formula for the hybrid mean value
𝑞

∑

𝑢=1

󸀠

𝑞

∑

V=1

󸀠
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑞) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑞) ⋅ 𝑆 (𝑢 ⋅ V, 𝑛; 𝑞)

(12)

is an open problem, where ℎ and 𝑘 are positive integers with
(𝑘ℎ, 𝜙(𝑞)) = 1 and (𝑚, 𝑞) = 1.

2. Several Lemmas

In this section, we will give two lemmas, which are necessary
in the proof of our theorem. Hereinafter, we will use many
properties of character sums and Gauss sums; all of these can
be found in [13], so they will not be repeated here. First we
have the following.

Lemma 1. Let 𝑝 be an odd prime and 𝜒 any nonprincipal
character mod 𝑝. Then for any positive integers ℎ and 𝑘 ≥ 1

with (ℎ𝑘, 𝑝 − 1) = 1 and any integer𝑚, one has the identity

𝑝−1

∑

𝑢=1

𝜒 (𝑢) ⋅ 𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) = 𝜒
𝑘⋅ℎ
(𝑚) ⋅ 𝜏 (𝜒) ⋅ 𝜏 (𝜒

𝑘⋅ℎ
) ,

(13)

where 𝜏(𝜒) = ∑𝑝−1
𝑎=1

𝜒(𝑎) 𝑒 (𝑎/𝑝) denotes the Gauss sums.

Proof. From the definitions of 𝐶(𝑢,𝑚, ℎ, 𝑘; 𝑝) and Gauss
sums we have

𝑝−1

∑

𝑢=1

𝜒 (𝑢) ⋅ 𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝)

=

𝑝−1

∑

𝑢=1

𝜒 (𝑢)

𝑝

∑

𝑎=1

𝑒 (
𝑢𝑎
ℎ
+ 𝑚𝑎
𝑘

𝑝
)

=

𝑝

∑

𝑎=1

𝑝−1

∑

𝑢=1

𝜒 (𝑢) ⋅ 𝑒 (
𝑢𝑎
ℎ
+ 𝑚𝑎
𝑘

𝑝
)

= 𝜏 (𝜒)

𝑝−1

∑

𝑎=1

𝜒
ℎ
(𝑎) ⋅ 𝑒 (

𝑚𝑎
𝑘

𝑝
) .

(14)

Since (ℎ𝑘, 𝑝 − 1) = 1, then there exits one integer 𝑘 such
that 𝑘 ⋅ 𝑘 ≡ 1 mod (𝑝 − 1) and (𝑘, 𝑝 − 1) = 1. From the
properties of reduced residue system mod 𝑝 we know that if
𝑎 pass through a reduced residue system mod 𝑝, then 𝑎𝑘 also



The Scientific World Journal 3

pass through a reduced residue system mod𝑝. So from (14)
and Fermat little theorem we have

𝑝−1

∑

𝑢=1

𝜒 (𝑢) ⋅ 𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝)

= 𝜏 (𝜒)

𝑝−1

∑

𝑎=1

𝜒
ℎ
(𝑎
𝑘
) ⋅ 𝑒(

𝑚𝑎
𝑘⋅𝑘

𝑝
)

= 𝜏 (𝜒)

𝑝−1

∑

𝑎=1

𝜒
𝑘⋅ℎ
(𝑎) ⋅ 𝑒 (

𝑚𝑎

𝑝
)

= 𝜒
𝑘⋅ℎ
(𝑚) ⋅ 𝜏 (𝜒) ⋅ 𝜏 (𝜒

𝑘⋅ℎ
) .

(15)

This proves Lemma 1.

Lemma 2. Let 𝑞 ≥ 3 be an integer and ℎ any integer with
(ℎ, 𝑞) = 1.Then for any positive integer 𝑛, one has the following
identities.

(i) If 𝑛 is an odd number, then

𝑆 (ℎ, 𝑛; 𝑞) =
(𝑛!)
2

4𝑛−1𝑞2𝑛−1𝜋2𝑛
∑

𝑑|𝑞

𝑑
2𝑛

𝜙 (𝑑)
∑

𝜒 mod 𝑑
𝜒(−1)=−1

𝜒 (ℎ)
󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)

󵄨󵄨󵄨󵄨
2
.

(16)

(ii) If 𝑛 is an even number, then

𝑆 (ℎ, 𝑛; 𝑞) =
(𝑛!)
2

4𝑛−1𝑞2𝑛−1𝜋2𝑛
∑

𝑑|𝑞

𝑑
2𝑛

𝜙 (𝑑)

× ∑

𝜒 mod 𝑑
𝜒(−1)=1

𝜒 (ℎ)
󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)

󵄨󵄨󵄨󵄨
2
−

(𝑛!)
2

4𝑛−1𝜋2𝑛
⋅ 𝜁
2
(𝑛) ,

(17)

where 𝐿(1, 𝜒) denotes the Dirichlet 𝐿-function corresponding
to character 𝜒 mod 𝑑 and 𝜁(𝑠) is the famous Riemann zeta-
function.

Proof. See [12].

3. Proof of the Theorem

In this section, we will complete the proof of our theorem.
If 𝑛 is an odd number, then note that for any nonprincipal
character 𝜒 mod 𝑝, |𝜏(𝜒)| = √𝑝 and 𝜏(𝜒) ⋅ 𝜏(𝜒) =

𝜒(−1)𝜏(𝜒)𝜏(𝜒) = 𝜒(−1) ⋅ 𝑝. So for any integer 𝑢 with (𝑢, 𝑝) =
1, from (i) of Lemma 2 we have

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 𝑛; 𝑝)

=
(𝑛!)
2
⋅ 𝑝

4𝑛−1 (𝑝 − 1) 𝜋2𝑛

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝)

⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) 𝜒 (𝑢 ⋅ V) 󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)
󵄨󵄨󵄨󵄨
2

=
(𝑛!)
2
⋅ 𝑝

4𝑛−1 (𝑝 − 1) 𝜋2𝑛
∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (−1) 𝜒
𝑘⋅ℎ
(−1) ⋅ 𝑝

2

⋅
󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)

󵄨󵄨󵄨󵄨
2

=
(𝑛!)
2
⋅ 𝑝
3

4𝑛−1 (𝑝 − 1) 𝜋2𝑛
∑

𝜒 mod 𝑝
𝜒(−1)=−1

󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)
󵄨󵄨󵄨󵄨
2
= 𝑝
2
⋅ 𝑆 (1, 𝑛; 𝑝) .

(18)

If 𝑛 ≥ 2 is an even number, then note that (𝑘, 𝑝 − 1) = 1 and
the identity

𝑝−1

∑

𝑢=1

𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝)

=

𝑝

∑

𝑎=1

𝑝−1

∑

𝑢=1

𝑒 (
𝑢𝑎
ℎ
+ 𝑚𝑎
𝑘

𝑝
)

= 𝑝 − 1 +

𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
𝑘

𝑝
)

𝑝−1

∑

𝑢=1

𝑒 (
𝑢𝑎
ℎ

𝑝
)

= 𝑝 − 1 −

𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎

𝑝
) = 𝑝.

(19)

From (ii) of Lemma 2 and themethod of proving (18) we have

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 𝑛; 𝑝)

=
(𝑛!)
2
⋅ 𝑝

4𝑛−1 (𝑝 − 1) 𝜋2𝑛

× ∑

𝜒 mod 𝑝
𝜒(−1)=1

𝜒 ̸=𝜒0

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝)

⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) 𝜒 (𝑢 ⋅ V) 󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)
󵄨󵄨󵄨󵄨
2

+
(𝑛!)
2
⋅ 𝑝
2

4𝑛−1𝑝2𝑛−1𝜋2𝑛
⋅ 𝜁
2
(𝑛) +

(𝑛!)
2
⋅ 𝑝

4𝑛−1 (𝑝 − 1) 𝜋2𝑛

⋅ 𝑝
2
⋅
󵄨󵄨󵄨󵄨𝐿(𝑛, 𝜒0)

󵄨󵄨󵄨󵄨
2
−
(𝑛!)
2
⋅ 𝑝
2

4𝑛−1𝜋2𝑛
𝜁
2
(𝑛)
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=
(𝑛!)
2
⋅ 𝑝
3

4𝑛−1 (𝑝 − 1) 𝜋2𝑛
∑

𝜒 mod 𝑝
𝜒(−1)=1

󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)
󵄨󵄨󵄨󵄨
2

+
(𝑛!)
2
⋅ 𝑝
2

4𝑛−1𝑝2𝑛−1𝜋2𝑛
⋅ 𝜁
2
(𝑛) −

(𝑛!)
2
⋅ 𝑝
2

4𝑛−1𝜋2𝑛
𝜁
2
(𝑛)

=
(𝑛!)
2
⋅ 𝑝
2

4𝑛−1𝑝2𝑛−1𝜋2𝑛
∑

𝑑|𝑝

𝑑
2𝑛

𝜙 (𝑑)
∑

𝜒 mod 𝑑
𝜒(−1)=1

󵄨󵄨󵄨󵄨𝐿 (𝑛, 𝜒)
󵄨󵄨󵄨󵄨
2

−
(𝑛!)
2
⋅ 𝑝
2

4𝑛−1𝜋2𝑛
⋅ 𝜁
2
(𝑛)

= 𝑝
2
⋅ 𝑆 (1, 𝑛; 𝑝) .

(20)

Combining (18) and (20) we may immediately complete the
proof of our theorem.

From the definition of 𝑆(1, 1; 𝑝) we have

𝑆 (1, 1; 𝑝) =

𝑝−1

∑

𝑎=1

(
𝑎

𝑝
−
1

2
)

2

=
1

12
(𝑝 − 3 +

2

𝑝
)

=
(𝑝 − 1) (𝑝 − 2)

12𝑝
.

(21)

Combining (18) and (21) we can deduce the identity
𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 1; 𝑝)

=
1

12
⋅ 𝑝 (𝑝 − 1) (𝑝 − 2) .

(22)

This proves Corollary 2.
If 𝑛 = 2, then note that 𝐵2(𝑥) = 𝑥

2
− 𝑥 + 1/6; we have

𝑆 (1, 2; 𝑞) =

𝑞−1

∑

𝑎=1

𝐵
2

2
(
𝑎

𝑞
) =

𝑞−1

∑

𝑎=1

(
𝑎
2

𝑞2
−
𝑎

𝑞
+
1

6
)

2

=
𝑞

180
−
1

36
+

1

18𝑞
−

1

30𝑞3
.

(23)

From (20) and (23) we have the identity
𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 2; 𝑝)

=
1

180
⋅
(𝑝 − 1) (𝑝

3
− 4𝑝
2
+ 6𝑝 + 6)

𝑝
.

(24)

This proves Corollary 3.
If 𝑛 = 3, then note that 𝐵3(𝑥) = 𝑥

3
− (3/2)𝑥

2
+ (1/2)𝑥; we

have

𝑆 (1, 3; 𝑞) =

𝑞−1

∑

𝑎=1

𝐵
2

3
(
𝑎

𝑞
) =

𝑞−1

∑

𝑎=1

(
𝑎
3

𝑞3
−
3

2

𝑎
2

𝑞2
+
1

2

𝑎

𝑞
)

2

=
𝑞

840
−

1

40𝑞3
+

1

42𝑞5
.

(25)

From (18) and (23) we have the identity

𝑝−1

∑

𝑢=1

𝑝−1

∑

V=1
𝐶 (𝑢,𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝐶 (V, 𝑚, ℎ, 𝑘; 𝑝) ⋅ 𝑆 (𝑢 ⋅ V, 3; 𝑝)

=
1

840
⋅
(𝑝 − 2) (𝑝 − 1) (𝑝 + 1) (𝑝 + 2) (𝑝

2
+ 5)

𝑝3
.

(26)

This completes the proof of Corollary 4.
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