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The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is
to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee
colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic
technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony

algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

1. Introduction

The set covering problem (SCP) is a classic problem in
combinatorial analysis, computer science, and theory of
computational complexity. It is a problem that has led to
the development of fundamental technologies for the field of
the approximation algorithms. Also it is one of the problems
from the list of 21 Karp's NP-complete problems; its NP-
completeness was demonstrated in 1972 [1].

SCP has many applications, including those involving
routing, scheduling, stock cutting, electoral redistricting, and
other important real life situations [2]. Although the best
known application of the SCP is airline crew scheduling [3],
where a given set of trips has to be covered by a minimum-
cost set of pairings, a pairing being a sequence of trips that
can be performed by a single crew.

Different solving methods have been proposed in the
literature for the set covering problem. Exact algorithms
are mostly based on branch-and-bound and branch-and-cut
techniques [4-6], linear programing, and heuristic methods
[7]. However, these algorithms are rather time consuming
and can only solve instances of very limited size. For this

reason, many research efforts have been focused on the
development of heuristics to find a good result or near-
optimal solutions within a reasonable period of time.

Classical greedy algorithms are very simple, fast, and easy
to code in practice, but they rarely produce high quality
solutions for their myopic and deterministic nature [8]. In
[9] a greedy algorithm was improved incorporating random-
ness and memory into it and obtained promising results.
Compared with classical greedy algorithms, heuristics based
on Lagrangian relaxation with subgradient optimization are
much more effective. The most efficient ones are those
proposed by [10, 11].

Metaheuristics were also applied to the SCP as top-level
general search strategies. An incomplete list of this kind
of metaheuristics for the SCP includes genetic algorithms
[12, 13], simulated annealing [14], tabu search [15], cultural
algorithms [16, 17], and ant colony optimization [18]. For a
deeper comprehension of effective algorithms for the SCP in
the literature, we refer the interested reader to the survey by
[7].

In this paper we propose a novel application of artificial
bee colony (ABC) to solve SCP. This paper is organized as



TABLE 1: Incidence matrix example.
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follows. In Section 2, we explain the problem. In Section 3, we
describe the ABC framework. Our ABC proposal is described
in Section 4. In Section 5, we present the experimental results
obtained. Finally, in Section 6, we conclude the paper and give
some perspectives for further research.

2. Problem Description

The set covering problem is a fundamental problem in the
class of covering problems. Given a finite set X and a family
F=S§.,5,...,5, of subsets of X (ie.,S; € X, j=1,...,n),
the SCP aims to find a minimum cardinality J < {1,...,n}
such that (J;¢;S; = X. The elements of X are called points.
Givena J < {1,...,n}, a point is set to be covered if belongs
to Ujes S;- In the minimum-cost set covering problem each
set §;, 1 < j < n, has a cost ¢; and the problem is to find
aJ < {1,...,n}, where each point is covered and Zje] ¢ is
minimum. This minimum-cost optimization version of SCP
is NP-hard.

Let us define the incidence matrix A of a set covering
problem as follows. There are | X| rows in A, one for each point
of x; € X, and n columns in A, one for each set S.. The entry
a;; at A (the entry at the intersection of the ith row and the
jth column) is one if point x; is in set S ;; otherwise a; is zero.
Table 1 shows an example of an incidence matrix.

For the upcoming reference cases, a general mathematical
model of the SCP can be formulated as follows:

n
Minimize Z = ) ¢;x; 1)
j=1

Vi={1,2,3,....m} (2

n
Subject to Zaijxj >1
j=1

x;e{0,1} Vji={1,2,3,..,n}. (3)

Equation (1) is the objective function of the SCP, where c;
refers to the weight or cost of j-column and x; is the decision
variable. Equation (2) is a constraint to ensure that each row
is covered by at least one column; m x n matrix A = (a;;)
is a constraint coeflicient matrix whose elements can be “1”
or “0” to indicate the covering possibilities. Finally, (3) is the
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integrality constraint where the value x; can be “1” if column
j is activated (selected) or “0” otherwise.

3. Artificial Bee Colony Algorithm

ABC s one of the most recent algorithms in the domain of the
collective intelligence. It was created by Dervis Karaboga in
2005, who was motivated by the intelligent behavior observed
in the domestic bees to take the process of foraging [19].

ABC s an algorithm of combinatorial optimization based
on populations, in which the solutions of the problem
of optimization, the sources of food, are modified by the
artificial bees that function as operators of variation. The aim
of these bees is to discover the food sources with major nectar.

In the ABC algorithm, an artificial bee moves in a
multidimensional search space choosing sources of nectar
depending on its past experience and its companions of
beehive or fitting its position. Some bees (exploratory) fly
and choose food sources randomly without using experience.
When they find a source of major nectar, they memorize their
positions and forget the previous ones. Thus, ABC combines
methods of local search and global search, trying to balance
the process of the exploration and exploitation of the search
space.

Although, the performance of different optimization
algorithm is dependent on applications, some recent works
demonstrate that the artificial bee colony is more rapid
than either genetic algorithm or particle swarm optimization
solving certain problems [20-24]. Additionally, ABC has
demonstrated an ability to attack problems with a lot of
variables (high-dimensional problems) [25].

3.1. Elements and Behavior. The model defines three principal
components which are enunciated as follows.

Food Source. The value of a food source depends on many
different factors, as its proximity to the beehive, wealth or the
concentration of the energy, and the facility of extraction of
this energy.

Employed Bees or Workers. They are associated with a current
food source, or in exploitation, they take with them informa-
tion about this source, especially the distance, location, and
profitability, to share this with a certain probability with other
companions.

Unemployed or Exploratory Bees. They are in constant search
of a food source. There are two types:

(i) scouts: they are the ones in charge of searching in
the environment that surrounds the beehive for new
sources of food.

(ii) onlookers (curious or in wait): they look for a food
source across the information shared by the employ-
ees or by other explorers in the nest.

3.2. Biological Behavior. The exchange of information be-
tween the bees is the most important incident in the for-
mation of a collective knowledge, since the meaning of this
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TABLE 2: Summary of ABC main elements.

Generation of food sources

A solution to the optimization problem is a food source. It moves in a random way and with base in the

low and superior limits of every variable of the problem

Their number is proportional to the number of food sources, where for every source there is a working

Working bees

position

bee, and its function is to evaluate and to modify the current solutions to improve them (it looks for new
sources near the current one). If the new position is not better than the current, it will keep the original

The number of bees in wait must be proportional to the number of sources. These bees will choose a food

Bees in wait

source, based on the information of the working bees by means of the waggle dance, where the food

source with better value of objective function is selected

Scout bees .
improved

These bees generate new sources of food in a random way to replace existing sources that have not been

It defines the maximum number of cycles that a food source can keep without improving before being
replaced. The limit increases from the source that is not modified by the bees; already they are used or in

Limit

wait, up to obtaining its maximum allowed value. After this, the scout bees take charge of initializing the

limit to 0 for every new generated position. The limit is initialized to 0 whenever a source is modified

(improved) by a used bee or in wait

Column adding

When solving SCP, it defines the number of columns to be added to the current food source

Column elimination

When solving SCP, it defines the number of columns to be eliminated from the current food source

(1) Begin
(2) InitPopulation()

9) UpdateOptimum()
(10) End While

(12) End

(3)  While remain iterations do

(4) Select sites for the local search

(5) Recruit bees for the selected sites and to evaluate fitness
(6) Select the bee with the best fitness

(7) Assign the remaining bees to looking for randomly

(8) Evaluate the fitness of remaining bees

(11) Return BestSolution

ALrGgoriTHM 1: ABC pseudocode.

interaction the bees will decide the behavior that must take
the beehive. The principal ways of bee behaviour are

(i) the incorporation to a source of nectar: the commu-
nication between the bees related to the quality of
food sources is realized in the zone of dance (dance of
the bees), where with the information obtained about
all the sources of food that are available, they decide
which of all the sources is the most profitable to join.

(ii) the abandon of a source: by means of the dance it
is determined if a source is no longer profitable and
consequently it must be abandoned.

3.3. Artificial Behavior. In Table 2 the elements of the ABC
are described in a general way.

The pseudocode of artificial bee colony is as in Algo-
rithm 1.

The procedure for determining a food source in the
neighborhood of a particular food source which depends on
the nature of the problem. Karaboga [26] developed the first
ABC algorithm for continuous optimization. The method

for determining a food source in the neighborhood of a
particular food source is based on changing the value of
one randomly chosen solution variable while keeping other
variables unchanged. This is done by adding to the current
value of the chosen variable the product of a uniform variable
in [-1,1] and the difference in values of this variable—
current food source—and some other randomly chosen
food source. This approach cannot be used for discrete
optimization problems for which it generates at besta random
effect.

Singh [27] subsequently proposed a method, which is
appropriate for subset selection problems. In his model,
to generate a neighboring solution, an object is randomly
dropped from the solution and in its place another object,
which is not already present in the solution, is added. The
object to be added is selected from another randomly chosen
solution. If there are more than one candidate object for
addition, then ties are broken arbitrarily.

This approach is based on the idea that if an object is
present in one good solution, then it is highly likely that
this object is present in many good solutions. This method
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FIGURE 1: Representation of a solution.

provides another advantage, consisting in that if the method
fails to find an object different from the others objects in the
original solution, this means that the two solutions are equal,
such situation is called “collision” and it is resolved by making
the employed bee associated with the original solution, a
scout bee eliminating duplication.

4. Description of the Proposed Approach to
Solve SCP

Step 1 (initialization). This step includes initializing the
parameters of ABC as size of the colony, number of workers
and curious (onlookers or “in wait”) bees, limit of attempts,
and maximum number of cycles.

Step 2 (generation of initial population). To generate the ini-
tial population by every row—SCP constraint—a column—
SCP variable—is selected at random from the set of columns
with covering possibilities. A solution is represented by
means of an entire vector as shown in Figure 1 keeping the
columns considered in the solution. Then, we use an integer
encoding as the encoding rule.

Step 3 (evaluation of the fitness of the population). The fitness
function is equal to the objective function of the SCP (1).

Step 4 (modification of position and selection of sites for
worker bees). A hard-working bee modifies its position by
means of the creation of a new solution based on a different
food source selected randomly. It sees if at least it has a
different column, in case of having not even a different
column, the hard-working bee is transformed to an explorer
in order to eliminate duplicated solutions. In opposite case,
it proceeds to add a certain random number of columns
between 0 and the maximum number of columns to be added.

After this, it proceeds to eliminate a certain random
number of columns between 0 and the maximum number
of columns to be eliminated. In case that new solution
does not meet constraints, it is repaired. The fitness of the
solution is evaluated; if the fitness (cost) is minor than the
solution obtained in the beginning, the solution is replaced.
In opposite case, it increases the number of attempts for
improving this solution (limit).

Step 5 (recruiting curious bees for the selected sites). A
curious bee evaluates the information of the nectar through
the workers and it chooses a source of food with the fitness
proportionate selection method or roulette-wheel selection.

Step 6 (modification of position for the curious bees). They
work alike to hard-working bees in Step 4.

Step 7 (leaving a source exploited by the bees). If the so-
lution representing a source of food does not improve for
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a predetermined number of attempts (limit), then the source
of food is left and is replaced by a new source of food
generated as in Step 1.

Step 8. This step involves memorizing the best solution and
increasing the counter of the cycle.

Step 9. The process stops if the criteria of satisfaction expire;
in opposite case return to Step 3.

5. Experimental Results

The ABC algorithm has been implemented in C in a 2.5 GHz
Dual Core with 4 GB RAM computer, running windows 7.

Parameter values have a profound influence on the per-
formance of ABC. The parameters were empirically adjusted,
we determined their values in an experimental way, and for
each parameter, a set of candidate values were considered.
We modified the value of one parameter while keeping the
others fixed. According to the best results, as parameter values
in our experiments, we use ABC runs 1000 iterations with
a population of 200 bees, where 100 corresponds to hard-
working and 100 to curious. Limit = 50, maximum number
of columns to add = 0.5% of columns in the SCP instance,
and maximum number of columns to eliminate = 1.2% of the
SCP instance.

These parameters showed good results, but they cannot
be the ideal ones for all the instances. ABC has been tested
on 65 standard non-unicost SCP instances available from OR
Library at http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
Table 3 summarizes the characteristics of each of these sets of
instances, each set contains 5 or 10 problems and the column
labeled Density shows the percentage of nonzero entries in
the matrix of each instance. ABC was executed 30 times on
each instance, each trial with a different random seed.

5.1. Comparison with Other Works. In comparison with very
recent works solving SCP—with cultural algorithms [16] and
ant colony + constraint programming techniques [28]—our
proposal performs better than the SCP instances reported
in those works. In order to bring out the efficiency of our
proposal, the solutions of the complete set of instances have
been compared with other metaheuristics. We compared
our algorithm solving the complete set of 65 standard non-
unicost SCP instances from OR Library with the newest
ACO-based algorithm for SCP in the literature: ant-cover
+ local search (ANT + LS) [29], genetic algorithm (GA)
proposed by Beasley and Chu (1996) [13], and simulated
annealing (SA) proposed by Brusco et al. (1999) [14].

Tables 4 and 5 show the detailed results obtained by
four algorithms. Column 2 reports the optimal or the best
known solution value of each instance. The third and fourth
columns show the best value and the average obtained by
our ABC algorithm in the 30 runs (trials). The next columns
show the average values obtained by GA, SA, and ANT + LS,
respectively. The last column shows the relative percentage
deviation (RPD) value over the instances tested with ABC.
The quality of solutions can be evaluated using the RPD; its
value quantifies the deviation of the objective value Z from
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TABLE 3: Details of the 65 test instances.

Instance set Number of instances m n Cost range Density (%) Optimal solution
4 10 200 1000 [1,100] Known
5 10 200 2000 [1,100] 2 Known
6 5 200 1000 [1,100] 5 Known
A 5 300 3000 [1,100] 2 Known
B 5 300 3000 [1,100] 5 Known
C 5 400 4000 [1,100] 2 Known
D 5 400 4000 [1,100] 5 Known
NRE 5 500 5000 [1,100] 10 Unknown
NRF 5 500 5000 [1,100] 20 Unknown
NRG 5 1000 10000 [1,100] Unknown
NRH 5 1000 10000 [1,100] Unknown
1800 1 1600 -
1600 1400 -
14007 1200 A
1200
{ 1000 -
1000 -
800
800 - \ :
6004\ - 600
400 - : B 400 - . .
200 200
0- 0
1 1 21 31 41 51 61 71 81 91 1 11 21 31 41 51 61 71 81 91
— SCP4l SCP43 —— SCPs1 SCP53
T SCra —— SCP52

FIGURE 2: Convergence analysis to a better solution (benchmarks:
SCP41, SCP42, and SCP43).

Z e Which in our case is the best known cost value for each

instance. This measure is computed as follows:

(Z B ZOPt)

opt

RPD = % 100. (4)

Examining Tables 4 and 5, we observe the following.

(i) ABC is able to find the optimal solution consistently,
that is, in every trial, for 43 of 65 problems.

(i) ABC is able to find the best known value in all
instances of Table 5.

(iii) ABC is able to find the best known value in all trials
of Table 5.

(iv) ABC has higher success rate compared to genetic
algorithm, simulated annealing, and ants in sets NRE,
NRE NRG, and NRH. The RPD of BEE is 0.00%, the
RPD of GA is 1.04%, the RPD of SA is 0.72%, and the
RPD of ANT + LS is 0.86%.

(v) ABC can obtain optimal solutions in some instances
where the other metaheuristics failed.

FIGURE 3: Convergence analysis to a better solution (benchmarks:
SCP51, SCP52, and SCP53).

5.2. Convergence to the Best Solution. Our approach shows
an excellent tradeoff between the quality of the solutions
obtained and the computational effort required. In all cases,
ABC converged very quickly (mainly from the 10th iteration)
and its computation time in the runs was less than 2 seconds
(except for NRG and NRH instances where the computation
time was less than 30 secs).

Figures 2 and 3 illustrate how ABC converges through the
iterations to a better solution. We consider only 3 problems
per chart in favor of clarity and readability: scp4l, scp42, and
scp43 for the first chart and scp51, scp52, and spc53 for the
second one. x-axis represents the iteration number while y-
axis represents the reached fitness value.

6. Conclusion

In this paper we have presented an ABC algorithm for
the SCP. We have performed experiments throught several
ORLIB instances; our approach has been shown to be
very effective, providing an unattended solving method, for
quickly producing solutions of a good quality. Experiments
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TABLE 4: Experimental results—instances with optimal.

Instance Optimum Best value found ABC Avg. GA Avg. SA Avg. ANT-LS Avg. RPD (%)
4.1 429 430 430.5 429.7 — 429 0.35
4.2 512 512 512 512 — 512 0
4.3 516 516 516 516 — 516 0
4.4 494 494 494 494.8 — 494 0
4.5 512 512 512 512 — 512 0
4.6 560 561 561.7 560 — 560 0.30
4.7 430 430 430 430.2 — 430 0
4.8 492 493 494 4921 — 492 0.41
4.9 641 643 645.5 643.1 — 641 0.70
4.10 514 514 514 514 — 514 0
5.1 253 254 255 253 — 253 0.79
52 302 309 310.2 303.5 — 302 2.72
53 226 228 228.5 228 — 226 11
54 242 242 242 242.1 — 242 0
5.5 211 211 211 211 — 211 0
5.6 213 213 213 213 — 213 0
5.7 293 296 296 293 — 293 1.02
5.8 288 288 288 288.8 — 288 0
59 279 280 280 279 — 279 0.36
5.10 265 266 267 265 — 265 0.75
6.1 138 140 140.5 138 — 138 1.81
6.2 146 146 146 146.2 — 146 0
6.3 145 145 145 145 — 145 0
6.4 131 131 131 131 — 131 0
6.5 161 161 161 161.3 — 161 0
Al 253 254 254 253.2 — 253 0.40
A2 252 254 254 253 — 252 0.79
A3 232 234 234 232.5 — 232.8 0.86
A4 234 234 234 234 — 234 1.10
A5 236 237 238.6 236 — 236 0
B1 69 69 69 69 — 69 0
B2 76 76 76 76 — 76 0
B.3 80 80 80 80 — 80 0
B.4 79 79 79 79 — 79 0
B.5 72 72 72 72 — 72 0
Cl 227 230 231 2272 — 227 1.76
C2 219 219 219 220 — 219 0
C3 243 244 244.5 246.4 — 243 0.62
C4 219 220 224 219.1 — 219 2.28
C5 215 215 215 215.1 — 215 0
D.1 60 60 60 60 — 60 0
D.2 66 67 67 66 — 66 1.52
D.3 72 73 73 72.2 — 72 1.39
D.4 62 63 63 62 — 62 1.61

D.5 61 62 62 61 — 61 1.64
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TABLE 5: Experimental results—instances with best known solution.
Instance Optimum Best value found ABC Avg. GA Avg. SA Avg. ANT-LS Avg. RPD (%)
NRE.1 29 29 29 29 29 29 0
NRE.2 30 30 30 30.6 30 30 0
NRE.3 27 27 27 277 27 27 0
NRE.4 28 28 28 28 28 28 0
NRE.5 28 28 28 28 28 28 0
NRE1 14 14 14 14 14 14 0
NRE.2 15 15 15 15 15 15 0
NRE3 14 14 14 14 14 14 0
NREFE.4 14 14 14 14 14 14 0
NRES5 13 13 13 13.7 13.7 13.5 0
NRG.1 176 176 176 177.7 176.6 176 0
NRG.2 154 154 154 156.3 155.3 155.1 0
NRG.3 166 166 166 167.9 167.6 167.3 0
NRG.4 168 168 168 170.3 170.7 168.9 0
NRG.5 168 168 168 169.4 168.4 168.1 0
NRH.1 63 63 63 64 64 64 0
NRH.2 63 63 63 64 63.7 67.9 0
NRH.3 59 59 59 59.1 59.4 59.4 0
NRH.4 58 58 58 58.9 58.9 58.7 0
NRH.5 55 55 55 55.1 55 55 0

showed interesting results in terms of robustness, where using
the same parameters for different instances gave good results.

The promising results of the experiments open up oppor-
tunities for further research. We visualize different directions
for future work as follows.

(i) The fact that the presented algorithm is easy to
implement clearly implies that ABC could also be
effectively applied to other combinatorial optimiza-
tion problems.

(ii) An interesting proposal by Teodor Crainic et al. at
[30] involves parallelizing strategies for metaheuris-
tics. The author sets a basis on the idea that the central
goal of parallel computing is to speed up computation
by dividing the work load among several threads of
simultaneous execution; then a type of metaheuris-
tic parallelism could come from the decomposition
of the decision variables into disjoint subsets. The
particular heuristic is applied to each subset and the
variables outside the subset are considered fixed.

(iii) An interesting extension of this work would be
related to hybridization with other metaheuristics or
applying a hyperheuristic approach [31].

(iv) The use of autonomous search (AS) represents a
new research field, and it provides practitioners with
systems that are able to autonomously self-tune their
performance while effectively solving problems. Its
major strength and originality consist in the fact that
problem solvers can now perform self-improvement
operations based on analysis of the performances of
the solving process [32-34].

(v) Furthermore, we are considering to use different
preprocessing steps from the OR literature, which
allow to reduce the problem size [35].
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