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The free vibration response of double-walled carbon nanotubes (DWCNTs) is investigated. The DWCNTs are modelled as two
beams, interacting between them through the van der Waals forces, and the nonlocal Euler-Bernoulli beam theory is used. The
governing equations of motion are derived using a variational approach and the free frequencies of vibrations are obtained
employing two different approaches. In the first method, the two double-walled carbon nanotubes are discretized by means of
the so-called “cell discretization method” (CDM) in which each nanotube is reduced to a set of rigid bars linked together by elastic
cells. The resulting discrete system takes into account nonlocal effects, constraint elasticities, and the van der Waals forces. The
second proposed approach, belonging to the semianalytical methods, is an optimized version of the classical Rayleigh quotient, as
proposed originally by Schmidt. The resulting conditions are solved numerically. Numerical examples end the paper, in which the
two approaches give lower-upper bounds to the true values, and some comparisons with existing results are offered. Comparisons
of the present numerical results with those from the open literature show an excellent agreement.

1. Introduction

Carbon nanotubes (CNTs) constitute a prominent example
of nanomaterials and nanostructures which have stimulated
extensive research activities in science and engineering field.
It is well known that CNTs are hollow cylindrical tubules
composed of concentric graphitic shells with diameters on
the scale of nanometers and, based on the number of walls,
are designed as single-walled, double-walled andmultiwalled
nanotubes. In particular, the double-walled nanotubes can
be viewed as two concentrically nested seamless grapheme
cylinders bonded together by van der Waals forces.

Their discovery, since the publication of Iijima’s paper
[1] in 1991, has attracted much attention by many researches
and several studies have shown that the carbon nanotubes
possess extraordinary mechanical, physical, and electrical
properties. As has been pointed out in the literature, extensive
studies have been conducted on studying the mechanical

properties of single-walled carbon nanotubes (SWNTs) or
multiwalled carbon nanotubes (MWNTs), and several inves-
tigations have been performed by employing computational
and experimental methods [2, 3]. In this context, an excellent
review article on the mechanical properties of nanotubes
was published by Ruoff et al. [4], in which experimental
measurements as well as theoretical predictions can be found.

In the earlier studies, the investigations on carbon nan-
otubes have mainly focused on numerous experiments [5]
although these texts, at nanoscale, are very cumbersome.
In addition, two different theoretical approaches have been
developed: the atomistic and the continuum mechanics.
Among the methods of atomistic simulations, the classical
molecular dynamic (MD) simulations is the most common
method in investigating the behaviour of CNTs [6, 7].
Since this approach is restricted to small-scale systems, the
continuum modelling is considered to be a more appro-
priate method of investigating the structural behaviour of
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nanotubes. In the literature, there exist a lot of studies on
analysing the bending, buckling, and postbuckling problems
of nanotubes using Euler-Bernoulli [8, 9] and Timoshenko
[10] beam models.

In recent years, due to the remarkable importance of
nanostructures for many engineering and medical devices,
research interest has grown on evaluating the vibrational
properties of carbon nanotubes.The literature concerning the
vibrational properties in CNTs is very rich and it is devoted
to the dynamic problem of single and multiwalled carbon
nanotubes. In this topic, the state of the art can be found in a
review work by Gibson et al. [11]. In this paper, the authors
report a coherent yet concise review of as many of these
publications as possible and the main themes treated are the
modelling and simulation of vibrating nanotubes. Extensive
studies have been conducted to investigate the vibration
behaviour by means of molecular dynamic simulations: for
example, Ansari et al. in [12] have analyzed the vibrations
characteristics of SWCNTs and DWCNTs under various lay-
erwise boundary conditions at different lengths. The analysis
performed and the results obtained show that the natural
frequency of carbon nanotubes is strongly dependent on
their boundary conditions especially when tubes are shorter
in length. Moreover, several researchers implemented the
elastic models of beams to study the dynamic problems,
such as vibration and wave propagation, of carbon nanotubes
[13, 14]. Xu et al. in [15, 16], for example, studied the free
vibration of DWCNTs which consist of two coaxial single-
walled CNT with interacting each other by the interlayer van
der Waals forces. Therefore, the inner and outer tubes are
modeled as two individual elastic beams and by using the
Euler-Bernoulli beam model the exact solutions for natural
frequencies, at different boundary conditions, have been
derived. Also Elishakoff and Pentaras [17] deal with the
evaluation of fundamental natural frequencies of DWCNTs
under various boundary conditions and the expressions for
the natural frequencies have been derived by applying the
Bubnov-Galerkin and Petrov-Galerkinmethods. In the paper
by Natsuki et al. [18], instead, a theoretical approach to vibra-
tion characteristic analysis of CNTs with simply supported
boundary condition has been presented. Applying the Euler-
Bernoulli beam theory, the authors obtained the resonant
frequencies of DWCNTs with different vibrational modes
and they showed that the resonant frequencies decrease with
increasing length of nanotubes.

Although the classical continuummethods are efficient in
performing mechanical analysis of CNTs, their applicability
to identify the small-scale effects on carbon nanotubes
mechanical behaviours is questionable. The importance of
size effect has been pointed out in a number of studies
where the size dependence of the properties of nanotubes
has been investigated. For example, Sun and Zhang, in [19],
discussed the scarce applicability of continuous models to
nanotechnology and proposed a semicontinuum model in
studying nano-materials. The authors demonstrated that the
values of the Young’s modulus and Poisson’s ratios depend
on the number of atom layers in the thickness direction.
These results show that the nanostructures and nanomaterials
cannot be homogenized into a continuum. At this point, the

nonlocal elastic continuum models are more pertinent in
predicting the structural behaviour of nanotubes because of
being capable of taking in the small-scale effects. It is well
known that the nonlocal elasticity theory assumes that the
stress state, at a given reference point, is considered to be a
function of the strain field at all points of the body.Theorigins
of the nonlocal theory of elasticity go to pioneering works,
published in early 80s, by Eringen [20]. In [21] Reddy reports
a complete development of the classical and shear deforma-
tion beam theories using the nonlocal constitutive differential
equations and derived the solutions for bending, buckling,
and natural frequencies problems of simply supported beams.

In recent years, many researchers have applied the
nonlocal elasticity concept for the bending, buckling, and
vibration analysis of nanostructures. Peddieson et al. [22]
have used nonlocal Euler-Bernoulli model for static analysis
of nanobeams and particular attention is paid to cantilever
beams which are often used as actuators in small-scale
systems. Further applications of the nonlocal elasticity theory
have been employed in studying the buckling problem [23,
24] and vibration problems, by applying Euler-Bernoulli
beam and shell theories and Timoshenko beam theory, in
CNTs [23–32].

It is worth mentioning that, in the literature, most of
the attention has been focused on deriving the variational
formulation of equations and boundary conditions for single-
and double-walled nanotubes undergoing vibrations with
nonlocal elastic continuum methods. Reddy and Pang [33]
reformulated the equation of motion of the Euler-Bernoulli
and Timoshenko beam theories, using the nonlocal differen-
tial constitutive relations of Eringen. Following this approach,
the equations of motion are used to evaluate the static bend-
ing, vibration, and buckling responses of beams with various
boundary conditions. Adali [34] proposed a continuum
model for studying the mechanical behaviour of multiwalled
carbon nanotubes under compressive loads; the nonlocal
theory of Euler-Bernoulli beams has been employed and the
results are extended to multiwalled nanotubes subjected to
transverse vibrations.

In this paper the free vibration frequencies of coaxial
DWCNTs are detected, using two different approaches. The
first method has already been used by the authors [35]
and by Raithel and Franciosi [36] for different structural
problems, and it has been properly modified for the title
problem.The nanotube is reduced to a set of rigid bars, linked
together by elastic cells, where masses and stiffnesses are
supposed to be concentrated.The resulting discrete system is
simple enough to allow to take into account nonlocal effects,
constraint elasticities, and van derWalls forces, and a classical
eigenvalue problem is reached, which can be easily handled
by Mathematica [37].

The second proposed approach belongs to the semian-
alytical methods, and more precisely it can be considered
an optimized version of the classical Rayleigh quotient,
as proposed originally by Schmidt and then employed for
various eigenvalue problems [38–40]. Basically, the trial
function in the Rayleigh quotient is allowed to depend on
parameters, and the resulting quotient is properly optimized.
The resulting conditions can be solved numerically.
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Numerical examples end the paper, in which the two
approaches give lower-upper bounds to the true values, and
some comparisons with existing values are offered.

2. Theoretical Approach

The beam structure, under consideration in Figure 1, is a
concentric system of two nanotubes of cylindrical shape of
length 𝐿, with Young’s modulus 𝐸 and mass density 𝜌. For
each nanotube the cross-sectional area 𝐴𝑗 and the moment
of inertia 𝐼𝑗 are defined, where the index 𝑗 = 1, 2 refers to
the order of the nanotubes with the inner tube indicated by
𝑗 = 1 and the outer tube by 𝑗 = 2. For the DWCNTs, the
main point in the analysis is the consideration of van der
Waals (vdW) forces between the inner and outer tubes: the
interaction pressure at any point between any two adjacent
tubes depends on the difference of their deflections at that
point. To take in to account the vdW forces, one defines
the interaction coefficient 𝑐12 between the inner and outer
nanotubes, which can be estimated approximately as [14]

𝑐12 =
320 (2𝑅1) erg/cm

2

0.16𝑎2
, with 𝑎 = 1.42 × 10

−9m, (1)

where 𝑅1 is the inner radius of the wall and 𝑎 is the carbon-
carbon bond length.

As already said, the small-scale effect is taken into account
by using the nonlocal theory for Euler-Bernoulli beams, so
that the parameter 𝜂 = 𝑒0𝑎 is introduced, where 𝑒0 is a
constant which has to be experimentally determined for each
material. In turn, 𝑎 is an internal characteristic length, as
already defined.

In order to analyze the dynamic behaviour of the system
under consideration, the governing equations of motion, by
considering the vdW forces and the small-scale effect, have
been derived using a variational approach:
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where 𝑘𝑗𝑅𝐿 and 𝑘𝑗𝑇𝐿, with 𝑗 = 1, 2, as already defined
above, are rotational and translational stiffness, respectively,
at 𝑧 = 0, while, analogously, 𝑘𝑗𝑅𝑅 and 𝑘𝑗𝑇𝑅 are rotational
and translational stiffness at 𝑧 = 𝐿, respectively. In the above
equations, the abscissa 𝑧 represents the spatial coordinate
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Figure 1: Geometry of double-walled carbon nanotubes (DWC-
NTs).

while 𝑡 is the time; in (2), (3), and (4) 𝑇 denotes the kinetic
energy, 𝐸1 is the strain energy and 𝐸2 is the potential energy
due to vdW forces between the two nanotubes.

3. Discretization of DWCNTs by means
of CDM Method

In this section the so-called “cell discretization method”
(CDM), employed to analyze the dynamic behaviour of
structure under consideration, is discussed. As already said,
the two nanotubes are reduced to a set of 𝑡 rigid bars with the
same length 𝑙, linked together by 𝑛 = 𝑡 + 1 elastic cells (see
Figure 2). The moment of inertia 𝐼𝑗 and the cross-sectional
area 𝐴𝑗 with 𝑗 = 1, 2 will be evaluated at the cells abscissae,
obtaining the concentrated stiffness 𝑘1𝑖 = 𝐸𝐼1𝑖/𝑙, 𝑘2𝑖 = 𝐸𝐼2𝑖/𝑙

and the concentrated masses 𝑚1𝑖 = 𝜌𝐴1𝑖𝑙, 𝑚2𝑖 = 𝜌𝐴2𝑖𝑙 for
the inner and outer tubes, respectively. Both these quantities
can be organized into the so-called unassembled stiffness
diagonal matrix k𝑗 and the unassembled mass diagonal
matrix m𝑗, with dimension (𝑛 × 𝑛), 𝑗 = 1, 2, for each of two
nanotubes.

In this way, the structure is reduced to a classical holo-
nomic system, with 2𝑛 degrees of freedom, in particular,
𝑛 vertical displacements V1,𝑖, for inner tube, and 𝑛 vertical
displacements V2,𝑖, for outer tube, at the cells abscissae will be
conveniently assumed as Lagrangian coordinates and will be
organized into the 2𝑛-dimensional vector v.Moreover, for the
inner and outer nanotubes the 𝑛−1 rotations of the rigid bars
can be calculated as a function of the Lagrangian coordinates
as follows:

𝜙1,𝑖 =
V1,𝑖+1 − V1,𝑖

𝑙
,

𝜙2,𝑖 =
V2,𝑖+1 − V2,𝑖

𝑙

(5)

or, in matrix form: 𝜙1 = Vv1 and 𝜙2 = Vv2 where V is a
rectangular transfer matrix with 𝑛 − 1 rows and 𝑛 columns.

The relative rotations between the two faces of the elastic
cells are given by

𝜓𝑗,1 = 𝜙𝑗,1, 𝜓𝑗,𝑖 = 𝜙𝑗,𝑖 − 𝜙𝑗,𝑖−1, 𝜓𝑗,𝑛 = −𝜙𝑗,𝑛−1 (6)

or inmatrix form:𝜓1 = Δ𝜙1 for inner rigid bar and𝜓2 = Δ𝜙2
for outer rigid bar, where Δ is another rectangular transfer
matrix with 𝑛 rows and 𝑛 − 1 columns.
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Figure 2: Structural system CDM.

The strain energies, 𝐿𝑗𝑒 with 𝑗 = 1, 2, (the first terms of
(3)), are given by

𝐿1𝑒 =
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(7)

and they are concentrated at the cells of the inner and outer
tubes, respectively.

The strain energies should be expressed as functions of
the Lagrangian coordinates as follows:
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so that, the total strain energy can be expressed as

𝐿𝑒 =
1

2
k𝑇 (K1 0

0 K2
) k (9)

with K1 = (V𝑇Δ𝑇k1ΔV) and K2 = (V𝑇Δ𝑇k2ΔV). The global
assembled stiffness matrix assumes the following form:

K = (
K1 0
0 K2

) . (10)

The last term of (3), as function of the Lagrangian
coordinates, assumes the following form:
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or:
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1
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𝜂
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By assembling the terms of the (12), one gets

𝑃𝑒 =
1

2
k̈𝑇 (m1𝑛𝑙 0

0 m2𝑛𝑙
) k, (13)

where m1𝑛𝑙 = (𝜂
2m1ΔV) and m2𝑛𝑙 = (𝜂

2m2ΔV). The
assembled mass matrix assumes the following form

M𝑛𝑙 = (
m1𝑛𝑙 0
0 m2𝑛𝑙

) . (14)

The kinetic energy, (2), can be expressed as the sum of the
following form terms:

𝑇1 =
1
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k̇𝑇1m1k̇1,
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1
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or, in assembled form

𝑇 =
1
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The global assembled mass matrix is given by

M = (
m1 0
0 m2

) . (17)

The strain energy due to the vdW forces, (4), can be
expressed as
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where C2𝑎 = (V𝑇C2V), so that (18) becomes
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with Ct equal to
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The terms of matrix C1 are given by
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and the terms of the matrixC2 assume, instead, the following
form:

𝐶2,𝑖𝑖 = 𝜂
2
𝑐12𝑙, 𝑖 = 1, 𝑛 − 1. (22)

C1 and C2a are two matrices with 𝑛 rows and 𝑛 columns and
have half-bandwidths equal to 2 and they can be organized
into amatrix with 2𝑛 rows and 2𝑛 columns; so that thematrix
C takes the following form:

C = (
Ct −Ct
−Ct Ct

) . (23)

Finally, the strain energy terms of the flexible constraints
at the ends are given by

𝐿𝑗𝑇𝐿 =
1

2
𝑘𝑗𝑇𝐿V
2
𝑗1,

𝐿𝑗𝑇𝑅 =
1

2
𝑘𝑗𝑇𝑅V
2
𝑗𝑛

(24)

with 𝑗 = 1, 2, so that the assembled stiffness matrix K must
be modified as follows:

𝐾 [1, 1] = 𝐾 [1, 1] + 𝑘1𝑇𝐿,

𝐾 [𝑛, 𝑛] = 𝐾 [𝑛, 𝑛] + 𝑘1𝑇𝑅,

𝐾 [𝑛 + 1, 𝑛 + 1] = 𝐾 [𝑛 + 1, 𝑛 + 1] + 𝑘2𝑇𝐿,

𝐾 [2𝑛, 2𝑛] = 𝐾 [2𝑛, 2𝑛] + 𝑘2𝑇𝑅.

(25)
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The rotational stiffness of the constraints of each nan-
otube can be taken into account by summing up the corre-
sponding flexibilities with the flexibilities of the rigid bars; for
example, for the end constraints one gets

𝑘1 [1, 1] =
𝑘1 [1, 1] 𝑘1𝑅𝐿

𝑘1𝑅𝐿 + 𝑘1 [1, 1]
,

𝑘1 [𝑛, 𝑛] =
𝑘1 [𝑛, 𝑛] 𝑘1𝑅𝑅

𝑘1𝑅𝑅 + 𝑘1 [𝑛, 𝑛]
,

𝑘2 [1, 1] =
𝑘2 [1, 1] 𝑘2𝑅𝐿

𝑘2𝑅𝐿 + 𝑘2 [1, 1]
,

𝑘2 [𝑛, 𝑛] =
𝑘2 [𝑛, 𝑛] 𝑘2𝑅𝑅

𝑘2𝑅𝑅 + 𝑘2 [𝑛, 𝑛]
.

(26)

These terms will be organized in two matrices k1 and k2
furnished in (9).

Finally, the equation of motion can be written as

Mtk̈ + Ktk = 0, (27)

where Kt is the global assembled stiffness matrix

Kt = K+C (28)

andMt the global assembled mass matrix

Mt = −M𝑛𝑙 +M. (29)

4. Numerical Comparisons

In order to show the potentialities of the proposed approach
(CDM), several numerical examples have been performed,
using a general code developed inMathematica [37], and the
obtained results are comparedwith those of availableworks in
the literature and listed in bibliography. In the present study,
the vibration analysis was carried out for DWCNTs with the
same and different boundary conditions between inner and
outer nanotubes, respectively. Some numerical comparisons
have been performed with reference to Adali’s paper [34] in
which the fundamental frequencies of clamped-free double-
walled nanotubes have been computed by Rayleigh-Ritz (R-
R) method.

As first numerical example, the free frequencies of vibra-
tion of simply supported-simply supported DWCNTs have
been calculated using as approximation function 𝜙(𝑧) =

sin(𝜋𝑧/𝐿) and with the vertical displacement of the inner and
outer nanotubes given by

V1 (𝑧) = 𝑎𝜙 (𝑧) ,

V2 (𝑧) = 𝑏𝜙 (𝑧)

(30)

which satisfy the boundary conditions at the simply sup-
ported ends. According to the to the Rayleigh-Ritz method,

Table 1: Numerical comparison among R-R and CDM of simply
supported DWCNTs: in columns 3 and 5 the first two dimensionless
fundamental frequencies 𝜆1 and 𝜆2, with 𝑐12 = 0, are reported, while
in column 4, the first frequency 𝜆, with 𝑐12 = 0.0694TPa, is listed.

𝜂0 Method 𝜆1 𝜆 𝜆2

0 R-R 9.870 15.759 18.025
CDM 9.870 15.759 18.025

0.1 R-R 9.416 15.035 17.197
CDM 9.416 15.035 17.197

0.2 R-R 8.357 13.344 15.262
CDM 8.357 13.344 15.262

0.3 R-R 7.182 11.468 13.117
CDM 7.182 11.468 13.117

0.4 R-R 6.146 9.813 11.224
CDM 6.146 9.813 11.224

0.5 R-R 5.300 8.463 9.680
CDM 5.300 8.463 9.680

the following equation is obtained, corresponding to (45) of
the paper [34]:

(
𝐸𝐼1

𝜌𝐴1𝐿
4

𝜉2

𝜉
+

𝑐12

𝜌𝐴1

− 𝜔
2
1)(

𝐸𝐼2

𝜌𝐴1𝐿
4

𝜉2

𝜉
+

𝑐12

𝜌𝐴1

−
𝐴2

𝐴1

𝜔
2
1)

− (
𝑐12

𝜌𝐴1

) = 0,

(31)

where

𝜉0 = 𝐿
−1
∫

𝐿

0

𝜙(𝑧)
2
𝑑𝑧,

𝜉1 = 𝐿∫

𝐿

0

(
𝑑𝜙 (𝑧)

𝑑𝑧
)

2

𝑑𝑧,

𝜉2 = 𝐿
3
∫

𝐿

0

(
𝑑
2
𝜙 (𝑧)

𝑑𝑧2
)

2

𝑑𝑧,

𝜉 = 𝜉0 + 𝜂
2
0𝜉1, 𝜂0 =

𝜂

𝐿

(32)

with 𝜂 = 𝑒0𝑎. Substituting (32) into (31), the two fundamental
frequencies values are deduced. As first case, setting the
interaction coefficient 𝑐12 equal to zero, one obtains the first
two frequencies values, 𝜆𝑖 = √𝜔

2
𝑖 (𝜌𝐴1𝐿

4/𝐸𝐼1), for inner
and outer nanotubes, respectively. In the second one, putting
𝑐12 = 0.0694TPa (31) gives the first fundamental frequency
for DWCNTs.

The simply supported-simply supported nanotubes,
under consideration, have the following mechanical and
geometric properties: 𝐸 = 1.2TPa, 𝜌 = 2.3 g/cm3, 𝐿 =

100 nm, 𝑅1 = 0.35 nm, 𝑅2 = 0.69 nm, and 𝑡 = 0.34 nm,
where 𝑅1 and 𝑅2 are the average radii of the inner and outer
nanotubes and 𝑡 is the thickness of the two nanotubes. In
Table 1 the numerical comparisons with the results of the
proposed method (CDM) and those obtained applying
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Table 2: Numerical comparison among [33, 34] and CDM of
clamped-free DWCNTs: in columns 3 and 5 the first two dimension-
less fundamental frequencies 𝜆1 and 𝜆2, with 𝑐12 = 0, are reported,
while in column 4 the first frequency 𝜆, with 𝑐12 = 0.0694TPa, is
listed.

𝜂0 Method 𝜆1 𝜆 𝜆2

0
[34] 3.664 5.850 6.692
[33] 3.516 — 6.422
CDM 3.516 5.614 6.421

0.1
[34] 3.568 5.697 6.517
[33] 3.531 — 6.449
CDM 3.531 5.638 6.448

0.2
[34] 3.320 5.302 6.064
[33] 3.579 — 6.537
CDM 3.570 5.702 6.520

0.3
[34] 3.002 4.793 5.483
[33] 3.669 — 6.700
CDM 3.615 5.772 6.602

Table 3: Numerical comparison among R-R, R-S, and CDM of
clamped-clamped DWCNTs: in columns 3 and 5, the first two
dimensionless fundamental frequencies 𝜆1 and 𝜆2, with 𝑐12 =

0, are reported, while in column 4 the first frequency 𝜆, with
𝑐12 = 0.0694TPa, is listed.

𝜂0 Method 𝜆1 𝜆 𝜆2

0
R-R 22.793 36.394 41.628
R-S 22.410 35.783 —
CDM 22.373 35.722 40.859

0.1
R-R 21.427 34.212 39.132
R-S 21.137 33.750 —
CDM 21.109 33.704 38.551

0.2
R-R 18.449 29.458 33.694
R-S 18.303 29.225 —
CDM 18.289 29.202 33.402

0.3
R-R 15.422 24.625 28.166
R-S 15.359 24.525 —
CDM 15.353 24.515 27.001

0.4
R-R 12.934 20.652 23.622
R-S 12.907 20.609 —
CDM 12.905 20.605 21.139

0.5
R-R 11.005 17.571 20.098
R-S 10.992 17.552 —
CDM 10.991 17.550 17.273

Rayleigh-Ritz method are reported. As it can be seen, the
fundamental frequencies show that there is an excellent
agreement among the results obtained by the two different
numerical procedures.

This system has been already solved by Reddy and Pang
[33], in the absence of van der Waals interactions, using an
exact approach. On the other hand, the van der Waals forces
have been taken into account in [34], where an approximate

Table 4: Numerical comparison among R-R, R-S, and CDM of
clamped-simply supported DWCNTs: in columns 3 and 5, the first
two dimensionless fundamental frequencies 𝜆1 and 𝜆2, with 𝑐12 = 0,
are reported, while in column 4, the first frequency 𝜆, with 𝑐12 =

0.0694TPa, is listed.

𝜂0 Method 𝜆1 𝜆 𝜆2

0
R-R 15.799 25.227 28.855
R-S 15.723 25.105 —
CDM 15.418 24.618 28.158

0.1
R-R 14.901 23.801 27.224
R-S 14.846 23.705 —
CDM 14.600 23.311 26.662

0.2
R-R 12.928 20.642 23.611
R-S 12.893 20.587 —
CDM 12.746 20.351 23.278

0.3
R-R 10.876 17.366 19.863
R-S 10.857 17.336 —
CDM 10.777 17.208 19.682

0.4
R-R 9.162 14.628 16.732
R-S 9.151 14.612 —
CDM 9.106 14.540 16.630

0.5
R-R 7.818 12.483 13.228
R-S 7.881 12.473 —
CDM 7.784 12.428 14.216

Rayleigh-Ritz method has been adopted, using a single-term
trial function.

In order to check the correctness of the numerical calcula-
tions of CDM, a numerical comparison with the results given
by [34] is proposed applying an optimized version of the
classical Rayleigh quotient, as proposed originally by Schmidt
and then employed for various eigenvalue problems in [40].
In the Rayleigh-Schmidt (R-S) method, the components of
displacement and rotation as suitable analytical approxima-
tion functions are assumed, in which one or more unknown
parameters are presented. For example, the two-beam dis-
placement approximation functions can be expressed as

V1 (𝑧) = 𝜙1 (𝑧) + 𝑎2𝜙2 (𝑧) + 𝑎3𝜙3 (𝑧) ,

V2 (𝑧) = 𝜙1 (𝑧) + 𝑏2𝜙2 (𝑧) + 𝑏3𝜙3 (𝑧) .

(33)

The kinetic and strain energies and the elastic energy
associated to the vdW forces can be expressed as

𝑇 =
1

2
∫

𝐿

0

[𝜌𝐴1𝜔
2V21 (𝑧) + 𝜌𝐴2𝜔

2V22 (𝑧)] 𝑑𝑧,

𝐸1 =
1

2
∫

𝐿

0

[𝐸𝐼1V
󸀠󸀠2
2 (𝑧) + 𝐸𝐼2V

󸀠󸀠2
2 (𝑧)

− 𝜂
2
𝜌𝐴1𝜔

2V1V
󸀠󸀠
1 (𝑧)

−𝜂
2
𝜌𝐴2𝜔

2V2V
󸀠󸀠
2 (𝑧)] 𝑑𝑧,

𝐸2 =
1

2
∫

𝐿

0

[𝑐12(V2 (𝑧) − V1 (𝑧))
2
+ 𝜂
2
𝑐12(V
󸀠
2 (𝑧) − V󸀠1 (𝑧))

2
] 𝑑𝑧.

(34)
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Table 5: Numerical comparison between the results obtained with CDM and [23, 24, 30] of a SWCNT and for different values of parameter
𝜂0.

𝜂0 Method SS-SS Cl-SS Cl-Cl Cl-FR

0

[23] 9.8696 15.4182 22.3733 3.5160
[30] 9.8697 15.4182 22.3733 3.5160
[24] 9.8696 15.4182 22.3733 3.5160
CDM 9.8696 15.4180 22.3728 3.5160

0.5
[23] 5.3003 7.7837 10.9914 4.0882
[30] 5.3001 7.7835 10.9912 4.0881
CDM 5.3002 7.7837 10.9913 3.5874

0.7
[23] 4.0854 5.9362 8.3483 —
[30] 4.0852 5.9362 8.3483 —
CDM 4.0854 5.9362 8.3482 —

Table 6: Numerical results for clamped-sliding end DWCNTs: in
columns 1 and 3, the first two dimensionless fundamental frequen-
cies 𝜆1 and 𝜆2, with 𝑐12 = 0, are reported, while in column 2, the first
frequency 𝜆, with 𝑐12 = 0.0694TPa, is listed.

𝜂0 𝜆1 𝜆 𝜆2

0 5.593 8.931 10.215
0.1 5.509 8.797 10.062
0.2 5.278 8.428 9.640
0.3 4.949 7.902 9.038
0.4 4.575 7.304 8.355
0.5 4.197 6.702 7.666

Table 7: Numerical results for sliding end-simply supported DWC-
NTs: in columns 1 and 3, the first two dimensionless fundamental
frequencies 𝜆1 and 𝜆2, with 𝑐12 = 0, are reported, while in column 2,
the first frequency 𝜆, with 𝑐12 = 0.0694TPa, is listed.

𝜂0 𝜆1 𝜆 𝜆2

0 2.467 3.940 4.506
0.1 2.438 3.892 4.452
0.2 2.354 3.759 4.299
0.3 2.232 3.564 4.077
0.4 2.090 3.336 3.816
0.5 1.941 3.099 3.545

After same algebra, one can write

𝜔
2
= (∫

𝐿

0

[𝐸𝐼1V
󸀠󸀠2
1 (𝑧) + 𝐸𝐼2V

󸀠󸀠2
2 (𝑧)] 𝑑𝑧

+ ∫

𝐿

0

[𝑐12 ((V2 (𝑧) − V1 (𝑧))
2

+ 𝜂
2
(V󸀠2 (𝑧) − V󸀠1 (𝑧))

2
)] 𝑑𝑧)

× (∫

𝐿

0

[𝜌𝐴1V
2
1 (𝑧) + 𝜌𝐴2V

2
2 (𝑧)] 𝑑𝑧

+ 𝜂
2
∫

𝐿

0

[𝜌𝐴1V1V
󸀠󸀠
1 (𝑧) + 𝜌𝐴2V2V

󸀠󸀠
2 (𝑧)] 𝑑𝑧)

−1

.

(35)

Substituting in appropriate way (33) into (4), one gets

𝑇 =
1

2
𝜔
2
∫

𝐿

0

[𝜌𝐴1(𝜙1 (𝑧) + 𝑎2𝜙2 (𝑧) + 𝑎3𝜙3 (𝑧))
2

+ 𝜌𝐴2(𝜙1 (𝑧) + 𝑏2𝜙2 (𝑧) + 𝑏3𝜙3 (𝑧))
2
] 𝑑𝑧,

𝐸1 =
1

2
∫

𝐿

0

[ 𝐸𝐼1(𝜙
󸀠󸀠
1 (𝑧) + 𝑎2𝜙

󸀠󸀠
2 (𝑧) + 𝑎3𝜙

󸀠󸀠
3 (𝑧))

2

+ 𝐸𝐼2 (𝜙
󸀠󸀠
1 (𝑧) + 𝑏2𝜙

󸀠󸀠
2 (𝑧) + 𝑏3𝜙

󸀠󸀠
3 (𝑧))

2

− 𝜂
2
𝐴1𝜌 (𝜙1 (𝑧) + 𝑎2𝜙2 (𝑧) + 𝑎3𝜙3 (𝑧))

× (𝜙
󸀠󸀠
1 (𝑧) + 𝑎2𝜙

󸀠󸀠
2 (𝑧) + 𝑎3𝜙

󸀠󸀠
3 (𝑧))

− 𝜂
2
𝐴2𝜌 (𝜙1 (𝑧) + 𝑏2𝜙2 (𝑧) + 𝑏3𝜙3 (𝑧))

× (𝜙
󸀠󸀠
1 (𝑧) + 𝑏2𝜙

󸀠󸀠
2 (𝑧) + 𝑏3𝜙

󸀠󸀠
3 (𝑧)) ] 𝑑𝑧,

𝐸2 =
1

2
∫

𝐿

0

[𝑐12 ((𝜙1 (𝑧) + 𝑏2𝜙2 (𝑧) + 𝑏3𝜙3 (𝑧))

− (𝜙1 (𝑧) + 𝑎2𝜙2 (𝑧)

+ 𝑎3𝜙3 (𝑧)))
2
] 𝑑𝑧

+
1

2
∫

𝐿

0

[𝜂
2
𝑐12 ((𝜙

󸀠
1 (𝑧) + 𝑏2𝜙

󸀠
2 (𝑧) + 𝑏3𝜙

󸀠
3 (𝑧))

− (𝜙
󸀠
1 (𝑧) + 𝑎2𝜙

󸀠
2 (𝑧)

+ 𝑎3𝜙
󸀠
3 (𝑧)))

2
] 𝑑𝑧.

(36)

Therefore, 𝜔2 depends on the unknown parameters 𝑎2, 𝑎3,
𝑏2, 𝑏3 which, in turn, can be obtained by minimizing (35). In
fact, the properties of the Rayleigh quotient allow us to obtain
the minimizing parameters by putting equal to zero the first
derivatives of 𝜔2.

Let us consider a clamped-clamped double-walled nan-
otubes having the same geometric and mechanical prop-
erties of the Example 1. The analysis is carried out
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Table 8: Numerical comparison between the results obtained with
CDM and [27, 28, 32] of a DWCNT and for different values of
parameter 𝜂0.

Boundary condition Ω1 Ω2 Ω3

Simply supported
𝜂0 = 0

[32] 3.099 — —
[27] 3.14 6.27 9.35
[28] 3.141 6.265 9.276
C.D.M. 3.141 6.265 8.275
R-R 3.141 — —

𝜂0 = 0.1

[32] 3.026 — —
[27] 3.07 5.78 8.01
[28] 3.068 5.770 7.976
C.D.M. 3.068 5.780 8.036
R-R 3.068 — —

Clamped
𝜂0 = 0

[32] 4.482 — —
[27] 4.73 7.82 10.82
[28] 4.726 7.796 10.654
C.D.M. 4.726 7.796 10.653
R-S 4.732 — —

𝜂0 = 0.1

[32] 4.359 — —
[27] 4.59 7.12 9.19
[28] 4.590 7.105 9.123
C.D.M. 4.593 7.137 9.251
R-S 4.596 — —

Propped
𝜂0 = 0

[32] 3.802 — —
[27] 3.93 7.05 10.09
[28] 3.925 7.035 9.981
C.D.M. 3.925 7.035 9.981
R-S 3.965 — —

𝜂0 = 0.1

[32] 3.701 — —
[27] 3.82 6.45 8.60
[28] 3.819 6.444 8.557
C.D.M. 3.820 6.463 8.643
R-S 3.853 — —

Cantilever
𝜂0 = 0

[32] 1.88 4.69 7.82
[27] 1.875 4.690 7.797
C.D.M. 1.875 4.690 7.797

𝜂0 = 0.1

[27] 1.88 4.55 7.13
[28] 1.879 4.544 7.111
C.D.M. 1.879 4.547 7.143

applying the Rayleigh-Ritz and Rayleigh-Schmidt methods
and assuming the following approximation functions:

𝜙1 (𝑧) = 1 − cos(2𝜋𝑧
𝐿

) ,

𝜙2 (𝑧) = 1 − cos(4𝜋𝑧
𝐿

) ,

𝜙3 (𝑧) = 1 − cos(6𝜋𝑧
𝐿

) .

(37)

In Table 3, a numerical comparison with the results given
by CDM and those obtained by R-R and R-S methods is
considered. As shown, the CDM results are nearer to the
Rayleigh-Schmidt values than to the Rayleigh-Ritz results.

In Table 4, the fundamental frequencies of a clamped-
supported double-walled nanotube are considered, for the
cases 𝑐12 = 0 and 𝑐12 = 0.0694TPa. In the first case the
nondimensional frequencies 𝜆1 and 𝜆2 have been calculated
and in the second one the value of the first frequency 𝜆 has
been determined.

Applying Rayleigh-Ritz and Rayleigh-Schmidt methods,
the approximation functions assume the following form:

𝜙1 (𝑧) = sin(𝜋𝑧
𝐿
) sin(𝜋𝑧

2𝐿
) ,

𝜙2 (𝑧) = sin(2𝜋𝑧
𝐿

) sin(3𝜋𝑧
2𝐿

) ,

𝜙3 (𝑧) = sin(3𝜋𝑧
𝐿

) sin(5𝜋𝑧
2𝐿

) .

(38)

As one can see, also this numerical example confirms that
the CDM results are nearer to the Rayleigh-Schmidt values
than to the Rayleigh-Ritz results.

A further numerical example, of the first free frequency
of vibration and for various scaling effect parameter (𝜂0 =

0, 0.5, 0.7), is illustrated in Table 5. The different values of 𝜂0
have been chosen so that possible comparisonswith other ref-
erences can be deduced.The results are presented for a single-
walled nanotube with various boundary conditions at two
ends which are of a variety of combinations, namely, simply
supported-simply supported (SS-SS), clamped-simply sup-
ported (CL-SS), clamped-clamped (CL-CL), and clamped-
free (CL-FR). The results given by CDM have been obtained
neglecting the vdW forces. The numerical comparison has
been done between the values of Tables 1–4, of the papers
[24, 30] and the results given by [23]. As one can note, there
is an excellent agreement between the obtained results for
SS-SS, CL-SS, and CL-CL cases. In the CL-Fr single-walled
nanotube case and for scaling effect parameter 𝜂0 = 0.5, the
calculations provide values higher than those obtained for
𝜂0 = 0 and this is impossible. The exact values are given by
the proposed method (CDM), for scaling effect parameter
𝜂0 = 0.5–0.7, and reported in the last column of Table 5.

In Tables 6 and 7, the free frequencies values for clamped-
sliding end (CL-SL) and sliding end-simply supported (SL-
SS) double-walled nanotubes, having the same mechanical
and geometric properties of the previous examples, are
reported and obtained by the CDM.
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Table 9: First free frequencies of vibrations of DWCNTs with different boundary conditions between inner and outer tubes, (for 𝜂 = 0).

Boundary condition Method 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7

Fr-Fr inner [15] 1.040 2.84 5.140 7.890 8.130 8.380 9.350
Cl-Cl outer CDM 1.021 2.786 5.760 6.270 6.669 7.915 8.083
Fr-Fr inner [15] 0.170 1.040 2.890 5.290 6.550 7.890 8.170
Cl-Fr outer CDM 0.163 1.024 2.833 5.210 6.491 7.860 8.041
SS-SS inner [15] 1.050 2.840 5.180 7.290 7.890 8.240 9.080
Cl-Cl outer CDM 1.0219 2.789 5.104 7.212 7.914 8.243 9.010
Cl-Cl inner [15] 1.080 2.940 5.490 7.900 8.130 8.240 —
Cl-Cl outer CDM 1.058 2.881 5.394 7.925 8.00 8.255 9.400

R-S 1.061 — — — — — —

Table 10: Numerical comparison among [15, 31] CDM and DQM
and the first three free frequencies of vibrations of DWCNTs are
reported (for 𝜂 = 0).

𝐿 Mode [31] [15] CDM DQM

14
𝜔1 0.9097 1.05 1.0298 1.0299
𝜔2 2.3601 2.84 2.7895 2.7896
𝜔3 4.1481 5.18 5.1043 5.1045

18
𝜔1 0.5751 0.64 0.6276 0.6276
𝜔2 1.4648 1.75 1.7202 1.7203
𝜔3 2.6153 3.36 3.3036 3.3039

24
𝜔1 0.3340 0.36 0.3550 0.3549
𝜔2 0.8390 1.00 0.9770 0.9767
𝜔3 1.5162 1.94 1.9046 1.9046

28
𝜔1 0.2482 0.27 0.2614 0.2612
𝜔2 0.6203 0.73 0.7200 7.1905
𝜔3 1.1261 1.43 1.4074 1.4066

Table 11: Numerical comparison among [31] and CDM and the first
three frequencies of vibrations of DWCNTs are reported (for 𝜂0 =
0.1 and 𝜂0 = 0.2).

𝐿 Mode 𝜂0 = 0.1 𝜂0 = 0.2

[31] CDM [31] CDM

14
𝜔1 0.8678 0.997 0.7103 0.866
𝜔2 1.7807 2.381 1.1764 1.726
𝜔3 2.7046 4.046 1.7232 2.583

18
𝜔1 0.5471 0.604 0.4328 0.524
𝜔2 1.0966 1.459 0.7206 1.045
𝜔3 1.6772 2.453 1.0936 1.563

24
𝜔1 0.3171 0.340 0.2446 0.295
𝜔2 0.6247 0.822 0.4089 0.588
𝜔3 0.9606 1.382 0.6379 0.879

28
𝜔1 0.2355 0.250 0.1800 0.2168
𝜔2 0.4610 0.604 0.3013 0.432
𝜔3 0.7103 1.016 0.4749 0.647

In the Table 6, the clamped-sliding end (CL-SL) double-
walled nanotube case is treated.The two first nondimensional

frequencies 𝜆𝑖 have been obtained for 𝑘𝑗𝑇𝐿 = 𝑘𝑗𝑅𝐿 = 𝑘𝑗𝑅𝑅 =

∞ and 𝑘𝑗𝑇𝑅 = 0 with 𝑗 = 1, 2. The case of sliding end-simply
supported (SL-SS) for 𝑘𝑗𝑅𝐿 = 𝑘𝑗𝑇𝑅 = ∞ and 𝑘𝑗𝑇𝐿 = 𝑘𝑗𝑅𝑅 = 0

is reported in Table 7.
All previous numerical examples show that the nondi-

mensional frequencies decrease as the small-scale parameter
𝜂0 increases as observed in similar studies on the free
vibrations of SWCNTs [23] and DWCNTs (Tables 1, 2, 3, and
4) using the nonlocal theory.

In Table 8, a numerical comparison is illustrated between
the results given by CDM and Rayleigh-Ritz methods and
the results given by [27, 28, 32]. The structural system
under consideration is a double-walled nanotube having the
following mechanical and geometric properties: 𝐸 = 1TPa,
𝜌 = 2.3 g/cm3, 𝐿 = 14 nm, 𝑅1 = 0.35 nm, 𝑅2 = 0.7 nm,
𝑡 = 0.35 nm, and the vdW interaction coefficient is equal to
𝑐12 = 0.0694 × 10

12 TPa.
The numerical calculations have been performed for

simply supported-simply supported, clamped-clamped,
clamped-simply supported, and clamped-free double-walled
nanotubes and setting the small-scale parameter equal to
𝜂0 = 0, 0.1.

With reference to the paper [27], the free frequencies
of double-walled carbon nanotubes (DWCNTs),
Ω𝑖
4
√𝜔
2
𝑖 (𝜌𝐴𝑇𝐿

4/𝐸𝐼𝑇), with 𝐼𝑇 = 𝐼1 +𝐼2 and𝐴𝑇 = 𝐴1 +𝐴2, are
calculated. The structural system is modeled following
the nonlocal Euler beams theory and using the Galerkin
approach. In [32], the effects of small-scale parameters on
the vibrations of DWCNTs, embedded in elastic medium
and based on nonlocal Timoshenko theory, are examined
in detail. Finally, in [28] the fundamental free frequencies
of DWCNTs have been found by means of two analytical
approaches inwhich solving the coupled governing equations
of the motion are solved.

The numerical comparisons listed in Table 8 show that
there is an excellent agreement between the CDM values and
those obtained in [28].

In the following numerical examples the cases of double-
walled carbon nanotubes with different boundary conditions
between the inner and outer tubes is considered and the
obtained results are compared with the values reported
in [15]. Moreover, a numerical comparison is given for
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Table 12: Fundamental frequency of vibration 𝜆1 of DWCNTs with different boundary conditions between inner and outer tubes and for
𝜂0[0.1–0.5].

𝜂0
SS-SS inner
Cl-SS outer

SS-SS inner
Cl-Cl outer

SS-SS inner
Cl-Fr outer

SS-SS inner
Cl-Sl outer

0 24.567 35.558 24.564 35.408
0.1 23.304 33.683 23.303 33.684
0.2 20.346 29.187 20.346 29.188
0.3 17.204 24.504 17.204 24.504
0.4 14.537 20.597 14.537 20.597
0.5 12.426 17.543 12.426 17.543

Table 13: Fundamental frequency of vibration 𝜆1 of DWCNTs with different boundary conditions between inner and outer tubes and for
𝜂0[0.1–0.5].

𝜂0
Cl-Fr inner
Cl-SS outer

Cl-Fr inner
Cl-Cl outer

Cl-Fr inner
SS-Sl outer

Cl-Fr inner
Cl-Sl outer

0 24.618 35.577 8.231 8.916
0.1 23.311 33.694 8.676 8.796
0.2 20.351 29.195 8.322 8.427
0.3 17.208 24.510 7.809 7.901
0.4 14.540 20.601 7.225 7.304
0.5 12.428 17.547 6.634 6.702

the case of clamped-clamped nanotubes between the CDM
and the Rayleigh-Schmidt values. The nanotubes under
consideration have the following mechanical and geometric
properties: 𝐸 = 1TPa, 𝜌 = 2.3 g/cm3, 𝐿 = 14 nm, 𝑅1 =

0.35 nm, 𝑅2 = 0.7 nm, and 𝑡 = 0.34 nm, where 𝑅1 and 𝑅2

are the average radii of the inner and outer nanotubes and
𝑡 is the thickness of the two nanotubes. The vdW interaction
coefficient is equal to 𝑐12 = 71.11GPa and the nonlocal effects
are neglected. In Table 9, the first six free frequencies 𝜔𝑖 for
different boundary conditions are reported. As one can see,
the obtained results with CDMmethod are lower than those
by [15].

Recently, Hemmatnezhad and Ansari [31] have furnished
a finite element formulation for the free vibration analysis of
embedded double-walled carbon nanotubes based on nonlo-
cal Timoshenko beam theory. In their analysis a numerical
comparison is offered with the results given by [15] and
reported in Table 4 in [31] for the case of DWCNTs so con-
strained: the simply supported-simply supported inner tube
and clamped-clamped outer tube. In Table 10 the previous
numerical comparison is proposed introducing the results
given by CDM and differential quadrature method (DQM),
developed in [36, 41].

As can be observed the first three free frequencies 𝜔𝑖

values given by [15] overestimate the frequencies and the
obtained results employing the CDM and DQMmethods are
lower than those by [15] while they greater than those by [31].

In Table 11, the nonlocal effects influence on the first
three free frequencies of vibration are investigated, putting
the small-scale parameter equal to 𝜂0 = 0.1, 0.2.

The numerical calculations relative to a DWCNTs, having
various lengths (14 nm, 18 nm, 24 nm, and 28 nm), are per-
formed and the results compared with the CDMmethod and
FEM approach given by [31]. As shown, the results given by
CDMmethod are greater than those by [31].

In the last Tables 12 and 13 the nondimensional free
frequencies values are reported for different boundary con-
ditions among inner and outer nanotubes, respectively, and
for different values of the small-scale parameter 𝜂0. The
numerical calculations have been performed using the geo-
metrical and physical data given by [34]. In particular the first
nondimensional frequency value, 𝜆1 = √𝜔

2
1(𝜌𝐴1𝐿

4/𝐸𝐼1), is
reported. As shown, the fundamental frequencies decrease
with increasing values of the small-scale parameter 𝜂0.

5. Conclusions

Coaxial DWCNTs are modeled as two beams interacting
between then through van der Waals forces, and nonlocal
Euler-Bernoulli beam theory is employed in order to calculate
the free vibration frequencies of the system. Two different
numerical approaches are used in order to performnumerical
comparisons. In the firstmethod, the system, under consider-
ation, has been modeled as a set of rigid bars linked together
by elastic cells, where masses and stiffnesses are supposed
to be concentrated. The resulting finite degree of freedom
has allowed taking into account nonlocal effects, constraint
elasticities, and van der Walls forces. The second proposed
approach belongs to the semianalytical methods, and more
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precisely it can be considered an optimized version of the
classical Rayleigh quotient, as proposed originally by Schmidt
and then employed for various eigenvalue problems.

Several numerical examples have been treated in detail,
comparing numerical and approximate results from the liter-
ature, and the proposed approaches have furnished excellent
results.

More particularly, emphasis has been given to the influ-
ence of the small-scale parameter, of the length of the
nanotubes and of the various boundary conditions on the free
vibration frequency behaviour.

In the author’s opinion, the first method will be particu-
larly useful—because of its intrinsic simplicity—in the future
analysis of mass nanosensor and of nanotube in the presence
of soil and follower forces.
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