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Particle swarm optimization (PSO) has attracted many researchers interested in dealing with various optimization problems, owing
to its easy implementation, few tuned parameters, and acceptable performance. However, the algorithm is easy to trap in the
local optima because of rapid losing of the population diversity. Therefore, improving the performance of PSO and decreasing the
dependence on parameters are two important research hot points. In this paper, we present a human behavior-based PSO, which
is called HPSO. There are two remarkable differences between PSO and HPSO. First, the global worst particle was introduced into
the velocity equation of PSO, which is endowed with random weight which obeys the standard normal distribution; this strategy is
conducive to trade off exploration and exploitation ability of PSO. Second, we eliminate the two acceleration coeflicients ¢; and ¢, in
the standard PSO (SPSO) to reduce the parameters sensitivity of solved problems. Experimental results on 28 benchmark functions,
which consist of unimodal, multimodal, rotated, and shifted high-dimensional functions, demonstrate the high performance of the

proposed algorithm in terms of convergence accuracy and speed with lower computation cost.

1. Introduction

Particle swarm optimization (PSO) [1] is a population-based
intelligent algorithm, and it has been widely employed to
solve various kinds of numerical and combinational opti-
mization problems because of its simplicity, fast convergence,
and high performance.

Researchers have proposed various modified versions of
PSO to improve its performance; however, there still are
premature or lower convergence rate problems. In the PSO
research, how to increase population diversity to enhance the
precision of solutions and how to speed up convergence rate
with least computation cost are two vital issues. Generally
speaking, there are four strategies to fulfill these targets as
follows.

(1) Tuning control parameters. As for inertial weight,
linearly decreasing inertial weight [2], fuzzy adaptive inertial
weight [3], rand inertial weight [4], and adaptive inertial
weight based on velocity information [5], they can enhance
the performance of PSO. Concerning acceleration coef-
ficients, the time-varying acceleration coefficients [6] are
widely used. Clerc and Kennedy analyzed the convergence

behavior by introducing constriction factor [7], which is
proved to be equivalent to the inertial weight [8].

(2) Hybrid PSO, which hybridizes other heuristic oper-
ators to increase population diversity. The genetic operators
have been hybridized with PSO, such as selection operator
[9], crossover operator [10], and mutation operator [11].
Similarly, differential evolution algorithm [12], ant colony
optimization [13], and local search strategy [14] have been
introduced into PSO.

(3) Changing the topological structure. The global and
local versions of PSO are the main type of swarm topologies.
The global version converges fast with the disadvantage
of trapping in local optima, while the local version can
obtain a better solution with slower convergence [15]. The
Von Neumann topology is helpful for solving multimodal
problems and may perform better than other topologies
including the global version [16].

(4) Eliminating the velocity formula. Kennedy proposed
the bare-bones PSO (BPSO) [17] and variants of BPSO [18,
19]. Sun et al. proposed quantum-behaved PSO (QPSO) and
relative convergence analysis [20, 21].
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Initialize Parameters:
N & population size;
D & the dimensionality of search space;
T & the number of maximum iteration;
w & the inertial weight;
[xd d ] & the allowable position boundaries, d = 1,2,..., D;

min’ xmax

[vfnm, vfmx] < the allowable velocity boundaries, d = 1,2,..., D;

Initialize Population: V; = (vil,viz,...,vlp), X; = (xil,xiz,...,x.D), i=1,2,...

1

d d d (.d .
Vid = v‘ﬁi“ + randid- (vn;lax — Vi)
x{ & x,, +rand; - (k) - x0);

Initialize Pbest, Gbest and Gworst:
Evaluate fitness of all particles in X = {X|, X,,..., Xy}
Pbest & X;
Gbest < argmin { f(Pbest,), f(Pbest,), ..., f(Pbesty)};
Gworst < argmax { f(Pbest,), f(Pbest,),..., f(Pbesty)};
Fort=1,2,...,T
For each particlei = 1,2,...,N
Update velocity according to (5) and check the boundaries;
Update position according to (3) and check the boundaries;
Endfor
Evaluate fitness of all particles in {X};
Update Pbest, Gbest and Gworst;
Endfor.
Return the best solution.

r, %X (Pbest; . X;)

ALGoRrITHM 1: HPSO.

. Pbest;

\ ‘Gbest
9 X ) x (Gbest _

X;)

¢ x 1y x (Pbest; — X;)

FI1GURE 1: Cognition and social terms in PSO.

Pbest;

r; X (Pbest; — X;)

Gworst Gworst

(a) Impelled learning (b) Penalized learning

FIGURE 2: Impelled/penalized term in HPSO.
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TaBLE 1: Functions’ names, dimensions, ranges, and global optimum values of benchmark functions used in the experiments.
Number Function name Dimension (D) [Range]D Fopt
F, Sphere model 30/50/100 [-100, 100]° 0
F, Schwefel’s problem 2.22 30/50/100 [-10, 10]° 0
F, Schwefel’s problem 1.2 30/50/100 [-100,100]" 0
E, Schwefel’s problem 2.21 30/50/100 [-100,100]" 0
F; Step function 30/50/100 [~100, 100]7 0
F, Quartic function, that is, noise 30/50/100 [-1.28,1.28]" 0
F, Rosenbrock’s function 30/50/100 [-10, 10]" 0
Fy Schwefel’s function 30/50/100 [-500, 500]" 0
F, Generalized Rastrigins function 30/50/100 [-5.12,5.12]° 0
Fl, Noncontinuous Rastrigin’s function 30/50/100 [-5.12,5.12]° 0
F, Ackley’s function 30/50/100 [-32, 32]P 0
F, Generalized GriewanKk’s function 30/50/100 [-600, 600]° 0
F, Weierstrass’s function 30/50/100 [-0.5,0.5]° 0
F, Generalized penalized function 30/50/100 [-50, 50]° 0
Fs Cosine mixture problem 30/50/100 -1, 1" -0.1xD
Fis Rotated elliptic function 30/50/100 [-1.28,1.28]" 0
F,, Rotated Schwefel’s function 30/50/100 [-500, 500]" 0
Fis Rotated Ackley’s function 30/50/100 [-32,32]° 0
Flo Rotated Griewank’s function 30/50/100 [-600, 600]° 0
Fy Rotated Weierstrass's function 30/50/100 [-0.5,0.5]" 0
F, Rotated Rastrigin’s function 30/50/100 [-5.12,5.12]° 0
E,, Rotated Salomon’s function 30/50/100 [~100, 100]° 0
E, Rotated Rosenbrock’s function 30/50/100 [~100, 100]7 0
E, Shifted Rosenbrock’s function 30/50/100 [-100, 100]7 390
) Shifted Rastrigin’s function 30/50/100 [-5,5]" -330
Fy Shifted Schwefel’s problem 2.21 30/50/100 [-100, 100]° —450
E,, Shifted rotated Ackley’s function 30/50/100 [-32,32]° -140
Fq Shifted rotated Weierstrass’s function 30/50/100 [-0.5,0.5]° 90

In recent years, some modified PSO have extremely
enhanced the performance of PSO. For example, Zhan et al.
proposed adaptive PSO (APSO) [22] and Wang et al. pro-
posed so-called diversity enhanced particle swarm optimiza-
tion with neighborhood search (DNSPSO) [23]. The former
introduces an evolutionary state estimation (ESE) technique
to adaptively adjust the inertia weight and acceleration
coeflicients. The later ones, a diversity enhancing mechanism
and neighborhood-based search strategies, were employed to
carry out a tradeoff between exploration and exploitation.

Though all kinds of variants of PSO have enhanced per-
formance of PSO, there are still some problems such as hardly
implement, new parameters to just, or high computation
cost. So it is necessary to investigate how to trade off the
exploration and exploitation ability of PSO and reduce the
parameters sensitivity of the solved problems and improve the
convergence accuracy and speed with the least computation
cost and easy implementation. In order to carry out the
targets, in this paper, the global worst position (solution) was
introduced into the velocity equation of the standard PSO
(SPSO), which is called impelled/penalized learning accord-
ing to the corresponding weight coeflicient. Meanwhile, we
eliminate the two acceleration coefficients ¢; and ¢, from

the SPSO to reduce the parameters sensitivity of the solved
problems. The so-called HPSO has been employed to some
nonlinear benchmark functions, which compose unimodal,
multimodal, rotated, and shifted high-dimensional functions,
to confirm its high performance by comparing with other
well-known modified PSO.

The remainder of the paper is structured as follows. In
Section 2, the standard particle swarm optimization (SPSO) is
introduced. The proposed HPSO is given in Section 3. Exper-
imental studies and discussion are provided in Section 4.
Some conclusions are given in Section 5.

2. Standard PSO (SPSO)

The PSO is inspired by the behavior of bird flying or fish
schooling; it is firstly introduced by Kennedy and Eberhart
in 1995 [1] as a new heuristic algorithm. In the standard PSO
(SPSO) [2], a swarm consists of a set of particles, and each
particle represents a potential solution of an optimization
problem. Considering the ith particle of the swarm with N
particles in a D-dimensional space, its position and velocity
at iteration t are denoted by X;(¢) = (xil(t), xiz(t), ... ,x?(t))
and Vj(t) = (vi1 (1), vf(t), s viD(t)). Then, the new velocity
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TABLE 2: Experimental results obtained by SPSO and HPSO on function from F, to F,.

Fun  Dim Best Worst Meadian Mean SD Significant
30 SPSO 1.1992¢ - 04 1.0000e + 04 9.9690¢e — 04 666.6686 2.5371e + 03
HPSO 0 0 0 0 0 +
F, 50 SPSO 9.4288e — 04 1.0000e + 04 0.0078 3.6667¢ + 03 3.6667e + 03
HPSO 0 0 0 0 0 +
100 SPSO 1.0013e + 04 7.0017e + 04 4.0087e + 04 4.0698e¢ + 04 2.0974e + 04
HPSO 0 10000 0 333.3333 1.8257e + 03 +
30 SPSO 6.8555e — 04 30.0018 10.0017 11.3364 10.0777
HPSO 0 0 0 0 0 +
F, 50 SPSO 0.0329 70.0010 40.0006 37.3438 15.2918
HPSO 0 0 0 0 0 +
100 SPSO 51.0214 181.4054 110.5934 114.3039 29.0723
HPSO 0 0 0 0 0 +
30 SPSO 6.4613e + 03 3.7311e + 04 2.2333e + 04 2.1337e + 04 6.7035e + 03
HPSO 0 5.1779e + 03 0 172.5975 945.3557 +
F, 50 SPSO 4.0023e + 04 1.0191e + 05 6.5660e + 04 7.0328e + 04 1.7603e + 04
HPSO 0 6.9787e + 03 0 232.6222 1.2741e + 03 +
100 SPSO 1.7694e + 05 3.0086e + 05 2.4789% + 05 2.4752e + 05 3.6623¢ + 04
HPSO 0 2.6987e + 04 0 3.8008e + 03 6.9150e + 03 +
30 SPSO 8.6091 21.2711 12.9945 13.3502 3.5341
HPSO 0 0 0 0 0 +
F, 50 SPSO 24.2031 39.5127 31.0562 311715 4.2886
HPSO 0 0 0 0 0 +
100 SPSO 54.1172 75.3686 64.7834 64.2358 4.2202
HPSO 0 0 0 0 0 +
30 SPSO 0 10001 0 1.0005e + 03 3.0512e¢ + 03
HPSO 0 0 0 0 0 +
F, 50 SPSO 0 20004 4.5000 5.0028e + 03 6.8230e + 03
HPSO 0 0 0 0 0 +
100 SPSO 127 90040 40068 4.3086e + 04 2.2747e + 04
HPSO 0 0 0 0 0 +
30 SPSO 0.0344 18.8556 0.0959 3.5587 5.1400
HPSO 1.4522¢ — 04 0.0030 0.0012 0.0012 8.5738e — 04 +
F, 50 SPSO 0.0780 72.6594 13.6489 19.6604 19.3860
HPSO 7.4623e — 05 0.0017 5.3645e — 04 6.3534¢ — 04 4.7283e - 04 +
100 SPSO 86.7855 381.9209 200.8146 211.9720 88.3159
HPSO 3.5210e - 05 0.0019 2.9387e — 04 4.0826¢ — 04 3.5395e - 04 +
30 SPSO 14.3237 1.0083e + 04 140.5176 2.4686¢e + 03 4.2581e + 03
HPSO 28.6353 28.9456 28.8793 28.8461 0.0932 +
F, 50 SPSO 97.0317 9.4285¢e + 05 376.2306 3.4093e + 04 1.7169e + 05
HPSO 48.4886 48.8766 48.7600 48.7513 0.0875 +
100 SPSO 706.1328 2.8333¢ + 06 9.4375e + 05 8.8851e + 05 8.9157e + 05
HPSO 98.4280 98.8373 98.7133 98.7129 0.0818 +
30 SPSO 2.0226e + 03 4.8935e + 03 3.5787¢ + 03 3.6128e + 03 733.1063
HPSO 3.5886e + 03 8.0516e + 03 6.6047¢ + 03 6.3505¢ + 03 1.0893¢ + 03 -
F, 50 SPSO 5.8499¢ + 03 9.7913e + 03 7.8862¢ + 03 7.7139¢ + 03 1.0101e + 03
HPSO 6.5496e + 03 1.4460e + 04 1.1191e + 04 1.0866e + 04 2.1757e + 03 -
100 SPSO 1.8110e + 04 2.4259¢ + 04 2.0949¢ + 04 2.1084e + 04 1.7384e + 03

HPSO 1.2615e + 04 3.1402e + 04 2.4302e + 04 2.4077e + 04 4.9510e + 03 -
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TaBLE 2: Continued.
Fun Dim Best Worst Meadian Mean SD Significant
30 SPSO 28.7299 160.3815 87.6754 92.5142 32.6994
HPSO 0 0 0 0 0 +
F, 50 SPSO 175.2643 351.6480 260.4359 258.0518 48.4078
HPSO 0 0 0 0 0 +
100 SPSO 555.8950 993.3887 750.1694 749.1658 749.1658
HPSO 0 0 0 0 0 +
30 SPSO 61.4129 221.0445 132.7694 134.5414 33.8073
HPSO 0 0 0 0 0 +
Fy, 50 SPSO 157.1020 440.0897 324.2632 310.3595 64.3675
HPSO 0 0 0 0 0 +
100 SPSO 623.5658 1.0433e + 03 804.6981 813.3435 88.5932
HPSO 0 25 0 0.8333 4.5644 +

C

Start

D

L

Initialize parameters

J

Randomly initialize velocities and positions of population

J

Initialize Pbest, Gbest, and Gworst

Meet end of criterion?

Update the next particles velocities as (5)

1

Update the next particles positions as (3)

L

Evaluate fitness of particles

)

Update Pbest, Gbest, and Gworst

)

< Output the best solution >

F1Gure 3: HPSO flowchart.

and position on the d-dimension of this particle at iteration
t + 1 will be calculated by using the following:

v+ 1) = w v (1) +c v (1) - (Pbest! (1) - x{ (1))
@)
o2 (1) - (Gbest” (1) - x (1),

where i = 1,2,...,N, and N is the population size; d =
1,2,...,D,and D is the dimension of search space; r‘f and r‘;

are two uniformly distributed random numbers in the inter-
val [0, 1]; acceleration coeflicients ¢; and ¢, are nonnegative
constants which control the influence of the cognitive and
social components during the search process. Pbest;(t) =
(Pbestil(t), R Pbestf-) (t)), called the personal best solution,
represents the best solution found by the ith particle itself
until iteration £; Gbest(t) = (Gbest!(t), ..., GbestP(t)), called
the global best solution, represents the global best solution
found by all particles until iteration ¢. w is the inertial weight
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TaBLE 3: Experimental results obtained by SPSO and HPSO on functions from F,; to F,,.
Fun Dim Best Worst Median Mean SD Significant
30 SPSO 0.0043 19.9630 0.0595 2.3935 5.4041
HPSO 8.8818e - 16 8.8818e - 16 8.8818e - 16 8.8818e - 16 0 +
F, 50 SPSO 0.0598 19.9646 12.6912 10.5673 6.3042
HPSO 8.8818e - 16 8.8818e - 16 8.8818e - 16 8.8818e - 16 0 +
100 SPSO 15.4237 20.2143 19.5200 19.4135 0.8672
HPSO 8.8818e - 16 8.8818e - 16 8.8818e - 16 8.8818e - 16 0 +
30 SPSO 7.0274e — 04 90.8935 0.0178 12.0794 31.2763
HPSO 0 0 0 0 0 +
F, 50 SPSO 0.0014 270.8170 0.0415 45.1971 70.1274
HPSO 0 0 0 0 0 +
100 SPSO 1.1140 721.0594 361.0858 376.1758 158.6584
HPSO 0 0 0 0 0 +
30 SPSO 0.1403 4.3952 0.3210 1.0567 1.4863
HPSO 0 0 0 0 0 +
F., 50 SPSO 0.8657 15.2389 7.5828 8.2388 3.6607
HPSO 0 0 0 0 0 +
100 SPSO 27.6235 64.4826 49.3984 477138 10.0126
HPSO 0 0 0 0 0 +
30 SPSO 6.4114e - 05 2.2031 0.4202 0.5373 0.5730
HPSO 0.0710 0.2803 0.1301 0.1444 0.0513 +
F, 50 SPSO 0.1882 6.9784 2.2774 2.3889 1.5688
HPSO 0.1016 0.3137 0.1652 0.1702 0.0438 +
100 SPSO 32.5063 5.1200e + 08 4579143 7.6801e + 07 1.5257e + 08
HPSO 0.1866 0.5097 0.2703 0.2736 0.0653 +
30 SPSO -3.0000 —2.8522 -3.0000 —-2.9507 0.0709
HPSO -3 -3 -3 -3 0 +
F., 50 SPSO -5.0000 -2.3044 —4.4827 —4.2127 0.6865
HPSO -5 -5 -5 -5 0 +
100 SPSO —7.9165 4.7637 —-5.2127 -4.6977 2.8465
HPSO -10 -10 -10 -10 0 +
30 SPSO 2.3604¢ + 03 3.8233e + 04 3.8233e + 04 1.2375e + 04 9.2463¢ + 03
HPSO 0 5.8369¢ + 03 0 390.6710 1.2756e + 03 +
F,q 50 SPSO 7.1213e + 03 1.0427e + 05 3.3195e + 04 3.4891e + 04 2.2914e + 04
HPSO 0 4.052%¢ + 03 0 224.6749 873.6249 +
100 SPSO 6.2317e + 04 2.7386e + 05 1.4222e + 05 1.4697e + 05 5.7699%¢ + 04
HPSO 0 1.9403¢e + 04 0 1.0583¢e + 03 3.8088e + 03 +
30 SPSO 6.7986¢ + 03 9.7587e + 03 8.3387e + 03 8.2508¢e + 03 739.7223
HPSO 8.3590¢e + 03 9.8803¢ + 03 9.0866e + 03 9.0790e + 03 442.4330 -
F, 50 SPSO 1.3020e + 04 1.7080e + 04 1.4999¢ + 04 1.5149¢ + 04 1.0581e + 03
HPSO 1.5003e + 04 1.7349e + 04 1.6514e + 04 1.6310e + 04 669.3538 -
100 SPSO 2.7400e + 04 2.7400e + 04 3.1087e + 04 3.1149¢ + 04 2.1654e + 03
HPSO 3.0329¢ + 04 3.5493e + 04 3.4226e + 04 3.3586¢ + 04 1.5320e + 03 -
30 SPSO 20.7888 21.0951 21.0053 20.9848 0.0712
HPSO 8.8818e — 16 21.1210 20.9931 11.2354 10.6894 +
Fi 50 SPSO 21.0515 21.2478 21.1455 21.1436 0.0536
HPSO 8.8818e — 16 21.2404 21.1366 12.0016 10.6745 +
100 SPSO 21.2367 21.3931 21.3368 21.3358 0.0364
HPSO 8.8818e - 16 21.3949 21.3545 15.6658 9.6084 +
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TaBLE 3: Continued.
Fun Dim Best Worst Median Mean SD Significant
30 SPSO 1.0517 495.3131 273.6408 243.6176 154.3551
HPSO 0 0 0 0 0 +
F, 50 SPSO 265.0558 1.4393e + 03 798.8065 786.0782 289.8401
HPSO 0 0 0 0 0 +
100 SPSO 1.9937e + 03 4.0158e + 03 2.9388e + 03 2.9263e + 03 543.9053
HPSO 0 0 0 0 0 +
30 SPSO 22.5705 34.8494 28.6842 28.8734 3.5028
HPSO 0 39.9834 0 3.1393 9.7817 +
Fy 50 SPSO 45.9462 70.7399 55.5532 55.6014 5.7839
HPSO 0 66.4051 0 2.2135 12.1239 +
100 SPSO 106.4483 139.8394 120.6118 121.4481 7.8030
HPSO 0 129.4941 0 8.3487 31.7918 +

to balance the global and local search abilities of particles in
the search space, which is given by

x t, (2)

where w,,,, is the initial weight, w,,;, is the final weight, ¢ is
the current iteration number, and T is the maximum iteration
number. Then, update particle’s position using the following:

K+ =xT @)+ @+ 1) (3)

Xt +1) <
xilax represent lower and upper bounds of the dth variable,
respectively.

d d d
and check x < X Where x7 . and

min

3. Human Behavior-Based PSO (HPSO)

In this section, a modified version of SPSO based on human
behavior, which is called HPSO, is proposed to improve the
performance of SPSO. In SPSO, all particles only learn from
the best particles Pbest and Gbest. Obviously, it is an ideal
social condition. However, considering the human behavior,
there exist some people who have bad habits or behaviors
around us, at the same time, as we all known that these bad
habits or behaviors will bring some effects on people around
them. If we take warning from these bad habits or behaviors,
it is beneficial to us. Conversely, if we learn from these bad
habits or behaviors, it is harmful to us. Therefore, we must
give an objective and rational view on these bad habits or
behavior.

In HPSO, we introduce the global worst particle, who is
of the worst fitness in the entire population at each iteration.
It is denoted as Gworst and defined as follows:

Gworst (t)

= argmax { f (Pbest, ), f (Pbest,),..., f (Pbesty)} ,( |
4

where f(-) represents the fitness value of the corresponding
particle.

To simulate human behavior and make full use of the
Gworst, we introduce a learning coeflicient r;, which is a
random number obeying the standard normal distribution;
that is, r; € N(0,1). If r; > 0, we consider it as an
impelled learning coefficient, which is helpful to enhance
the “flying” velocity of the particle; therefore, it can enhance
the exploration ability of particle. Conversely, if r; < 0,
we consider it as a penalized learning coefficient, which
can decrease the “flying” velocity of the particle; therefore,
it is beneficial to enhance the exploitation. If r; = 0, it
represents that these bad habits or behaviors have not effect
on the particle. Meanwhile, in order to reduce the parameters
sensitivity of the solved problems, we take place of the two
acceleration coefficients ¢; and ¢, with two random learning
coefficients r; and r,, respectively. Therefore, the velocity
equation has been changed as follows:

vl (t+1) = we v (8) + 7, () - (Pbest! (1) - x7 (1))
+1,(t) - (Gbest? (t) - x{ (1)) (5)
+ 15 (1) - (Gworstd (t) - xf (t)) ,

where r; and r, are two random numbers in range of [0, 1]
and r; + r, = 1. The random numbers r,, r,, and r; are the
same foralld = 1,2,..., D but different for each particle, and
they are generated anew in each iteration. If v:.i(t+1) overflows
the boundary, we set boundary value to it. Consider

Vx('jnin’ if vf t+1)< vim,
vfl (t+1)= vfnax’ if v? t+1)> vfnax, (6)

vf (t+1), otherwise,
where vfnin and v‘jnax are the minimum and maximum velocity
of the d-dimensional search space, respectively. Similarly, if
xf(t + 1) flies out of the search space, we limit it to the
corresponding bound value.

In SPSO, the cognition and social learning terms move
particle i towards good solutions based on Pbest; and Gbest
in the search space as shown in Figure 1. This strategy makes
a particle fly fast to good solutions, so it is easy to trap in
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TABLE 4: Experimental results obtained by SPSO and HPSO on functions from F,; to F,g.

Fun Dim Best Worst Median Mean SD Significant
30 SPSO 671541 307.3070 213.8939 203.8842 61.8125
HPSO 0 0 0 0 0 +
F, 50 SPSO 158.2955 715.0245 518.1705 500.5593 135.5998
HPSO 0 269.3463 0 8.9782 49.1757 +
100 SPSO 1.0850e + 03 1.9021e + 03 1.5793¢ + 03 1.5669¢ + 03 190.5584
HPSO 0 582.0882 0 35.5882 136.0270 +
30 SPSO 0.7999 14.9999 1.2522 2.9025 4.3553
HPSO 0 0 0 0 0 +
F, 50 SPSO 2.0999 26.0999 13.9628 12.8291 6.9033
HPSO 0 0 0 0 0 +
100 SPSO 16.5013 41.9999 35.4551 33.9791 6.3075
HPSO 0 0 0 0 0 +
30 SPSO 81.0577 4.0119e + 09 2.0685¢ + 08 6.8745e + 08 1.0469¢ + 09
HPSO 28.8214 28.9856 28.9323 28.9252 0.0421 +
F, 50 SPSO 3.7253e + 03 2.1495e + 10 3.6515e + 09 3.6515e + 09 5.3957e + 09
HPSO 48.7069 48.8900 48.8205 48.8139 0.0479 +
100 SPSO 6.7997¢ + 09 9.2655¢e + 10 3.3160e + 10 3.8223¢ + 10 2.0050e + 10
HPSO 98.6590 98.8846 98.8109 98.7983 0.0545 +
30 SPSO 6.2312¢ + 08 2.3418e + 10 4.9110e + 09 5.8767e + 09 5.609% + 09
HPSO 5.9432e + 05 6.285%¢ + 09 7.6373e + 06 3.7982¢ + 08 1.2316e + 09 +
F, 50 SPSO 4.3540e + 09 3.3195e + 10 1.3961e + 10 1.6077e + 10 8.3270e + 09
HPSO 3.9454¢ + 06 8.9387e + 09 3.1766e + 07 7.0962e + 08 1.9565e + 09 +
100 SPSO 4.9031e + 10 1.5465e + 11 9.1986e + 10 9.7151e + 10 2.8460e + 10
HPSO 2.0551e + 08 5.4553e + 09 6.7593e + 08 1.1373e + 09 1.2367e + 09 +
30 SPSO —229.5551 —78.6646 -176.9746 —174.7148 35.8633
HPSO -204.3636 -100.1465 —148.1389 —149.7299 271636 -
F,s 50 SPSO 774305 156.8323 22.8512 24.6168 62.2086
HPSO -102.9219 132.8077 -16.6107 —4.1921 58.2317 +
100 SPSO 475.3838 860.0386 612.6947 632.8693 100.6069
HPSO 394.3532 805.2473 581.1779 590.3932 80.6175 +
30 SPSO —425.5452 —331.1195 —385.1191 —387.6682 22.2647
HPSO —439.6877 —399.0205 —423.4928 —422.5533 11.3496 +
Fy 50 SPSO -399.6029 —326.6739 —379.4869 —-370.8387 18.7600
HPSO —415.6822 -391.7124 —401.4635 —400.8395 6.5162 +
100 SPSO —358.3688 -300.6930 —322.8060 —324.4641 15.5861
HPSO —380.3478 —-360.8031 -369.0319 —370.4683 5.1369 +
30 SPSO —-119.2212 -118.8710 -119.0179 —-119.0258 0.0866
HPSO -119.1100 -118.8700 -118.9469 -118.9589 0.0545 -
F, 50 SPSO -119.0222 -118.7656 -118.8316 -118.8535 0.0603
HPSO -118.9117 —-118.7327 -118.7780 -118.7911 0.0421 -
100 SPSO -118.7259 -118.6013 -118.6485 -118.6537 0.0310
HPSO -118.6872 -118.5986 -118.6231 -118.6289 0.0204 -
30 SPSO 113.2663 126.0977 118.5782 119.4693 3.6330
HPSO 114.4722 132.2305 124.3094 124.5205 4.3399 -
Fy 50 SPSO 137.8303 153.5400 145.1433 145.1503 4.2018
HPSO 141.9493 162.4008 153.9547 153.1087 5.4273 -
100 SPSO 194.1222 232.4306 215.9257 215.9174 8.6772

HPSO 212.5258 245.0126 229.4886 230.4426 7.4650 -
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TABLE 5: Some well-known PSOs algorithms in the literature.

Algorithm Year Topology Parameter settings

GPSO 1998 Global star w:09-04,¢, =¢,=2.0

LPSO 2002 Local ring w:09-04,¢, =¢, =2.0

FIPS 2004 Local Uring x=0729,Y¢ =41
HPSO-TVAC 2004 Global star w:09-04,¢ :25-05,and¢,: 0.5-2.5
UPSO 2004 Global star w:09-04,¢, =¢,=2.0,andU = 0.5
DMS-PSO 2005 Dynamic multiswarm w:09-02,¢=¢c=20,m=3,andR=5
VPSO 2006 Local Von Neumann w:09-04,¢, =¢,=2.0

CLPSO 2006 Comprehensive learning w: 09 —0.4,c=1.49445,andm =7
QIPSO 2007 Global star w:0.9-04,¢, =¢, =2.0

APSO 2009 Global star w:0.9,¢ =¢, =2.0;0: random in [0.05,0.1],0: 1 - 0.1
AFPSO 2011 Global star w: 0.9 — 0.4, ¢, and ¢, are based on fuzzy rule
AFPSO-QI 2011 Global star w: 0.9 — 0.4, ¢, and ¢, are based on fuzzy rule

local optima. From Figure 2, we can clearly observe that both
impelled learning term and penalized term provide a particle
with the chance to change flying direction. Therefore, the
impelled/penalized term plays a key role in increasing the
population diversity, which is beneficial in helping particles
to escape from the local optima and enhance the conver-
gence speed. In HPSO, the impelled/penalized learning term
performs a proper tradeoff between the exploration and
exploitation.

To sum up, Figure 3 illustrates the flowchart of HPSO.
Meanwhile, the pseudocodes of implementing the HPSO are
listed as shown in Algorithm 1.

4. Experimental Studies and Discussion

To evaluate the performance of HPSO, 28 minimization
benchmark functions are selected [22, 24, 25] as detailed in
Section 4.1. HPSO is compared with SPSO in different search
spaces and the results are given in Section 4.2. In addition,
HPSO is compared with some well-known variants of PSO in
Section 4.3.

4.1. Benchmark Functions. In the experimental study, we
choose 28 minimization benchmark functions, which consist
of unimodal, multimodal, rotated, shifted, and shifted rotated
functions. Table 1 lists the main information; please refer to
papers [22, 24, 25] to obtain further detailed information
about these functions. Among these functions, F,-F, are
unimodal functions. F, is the Rosenbrock function, which
is unimodal for D = 2 and D = 3 but may have multiple
minima in high dimension cases. Fg—F,; are unrotated
multimodal functions and the number of their local minima
increases exponentially with the problem dimension. F,¢-F,;
are rotated functions. F,,—F, are shifted functions and F,,
and F,q are shifted rotated multimodal functions and O =
(0',0%...,0") is a randomly generated shift vector located in
the search space. To obtain a rotated function, an orthogonal
matrix M [26] is considered and the rotated variable y =
M x x is computed. Then, the vector y is used to evaluate
the objective function value.

4.2. Comparison of HPSO with SPSO. The performance on
the convergence accuracy of HPSO is compared with that
of SPSO. The test functions listed in Table 1 are evaluated.
For a fair comparison, we set the same parameters value.
Population size is set to 30 (N = 30), upper bounds of
velocity V, .. = 0.5 X (X ax = Xmin)»> and the corresponding
lower bounds V;;, = —V,,.x» where X, and X are the
lower and upper bounds of variables, respectively. Inertia
weight w is linearly decreased from 0.9 to 0.4 in SPSO and
HPSO. Acceleration coefficients ¢; and ¢, in SPSO are set to
2. The two algorithms are independently run 30 times on the
benchmark functions. The results in terms of the best, worst,
median, mean, and standard deviation (SD) of the solutions
obtained in the 30 independent runs by each algorithm in
different search spaces are as shown in Tables 2, 3, and 4. At
the same time, the maximum iteration T is 1000 for D = 30,
2000 for D = 50, and 3000 for D = 100, respectively.

From Tables 2-4, we can clearly observe that the conver-
gence accuracy of HPSO is better than SPSO on the most
benchmark functions. An interesting result is that HPSO can
find the global optimal solutions on functions F,, F,, F,
Fy, Fy,, Fi3, Fi5, Fig, and f,, in all search spaces; that is to
say, HPSO can obtain the 100% success rate on the listed
functions. Considering F, and F,,;, though HPSO can find the
global optimal solutions in all different search ranges, it only
obtained the mean values 333.3333 and 0.8333, respectively,
in 100-dimensional space. At the same time, HPSO offers
the higher convergence accuracy on functions F;, Fy, F;, F,;,
F.4, Fi> Fy» Fy15 Fy3, and F,c. However, we must observe
that SPSO has higher performance on function Fy. As for
FE,5, SPSO has better performance in 30-dimensional search
space, but HPSO has better performance in 50- and 100-
dimensional search spaces. As for shifted rotated functions
E,; and F,g, both SPSO and HPSO have worst convergence
accuracy. As seen, the dimension of the selected functions has
great effect on SPSO. For example, considering function F,,
SPSO has mean value 666.6686, 3.6667¢ + 03, and 4.0698e +
04 in 30-dimensional, 50-dimensional, and 100-dimensional
search spaces, respectively, while HPSO has mean values 0, 0,
and 333.333 in the corresponding search space. Therefore, we
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FIGURE 4: Convergence comparison of HPSO and SPSO on the selected test functions with D = 30, N = 30, and T' = 1000.
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TaBLE 6: Comparison results of eight PSO algorithms [22] with HPSO on 10 functions (N = 20, D = 30, and FEs = 2 x 10°).
Function GPSO LPSO VPSO FIPS HPSO-TVAC DMS-PSO  CLPSO APSO HPSO
Fl
Mean 1.98¢-53 4.77e—-29 5.11e-38 3.21e-30 3.38¢e — 41 3.85e—-54 1.89¢-19 1.45e—150 0
SD 7.08¢-53 1.13e-28 191e-37 3.60e-30 8.50e — 41 1.75¢ =53  1.49¢-19 5.73e - 150 0
Rank 4 8 6 7 5 3 9 2 1
FZ
Mean 2.5le—-34 2.03e-20 6.29e-27 132e-17 6.9e — 23 2.6le-29 1.0le-13 5.15e-84 0
SD 584e—-34 2.89e-20 8.68¢—27 7.86e-18 6.89%¢ — 23 6.6e—-29 65le—14 1.44e-83 0
Rank 3 7 5 8 6 4 9 2 1
F3
Mean 6.45¢ — 2 18.60 1.44 0.77 2.89% -7 475 395 1.0e - 10 167
SD 9.45¢ — 2 30.71 1.55 0.86 297e -7 56.4 142 2.13e-10 913
Rank 3 6 5 4 2 7 9 1 8
FS
Mean 0 0 0 0 0 0 0 0 0
SD 0 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1 1
F6
Mean 7.77e -3 1.49¢ -2 1.08e — 2 2.55¢ -3 5.54e -2 l.le-2 3.92e-3 4.66e — 3 1.03e - 04
SD 2.42e -3 5.66e -3 324e-3 6.25¢ — 4 2.08e -2 3.94e -3 1.14e -3 1.7¢ -3 8.99¢ - 05
Rank 5 8 6 2 9 7 3 4 1
F9
Mean 30.7 34.90 34.09 29.98 2.39 28.1 2.57e - 11 58e-15 0
SD 8.68 7.25 8.07 10.92 3.71 6.42 6.64e—11 1.0le—14 0
Rank 7 9 8 6 4 5 3 2 1
Fy
Mean 155 30.40 21.33 35.91 1.83 32.8 0.167 4.14e - 16 0
SD 7.4 9.23 9.46 9.49 2.65 6.49 0.379 1.45e - 15 0
Rank 5 7 6 9 4 8 3 2 1
Fll
Mean 1.15e—14 1.85e-14 1l4e-14 7.69¢-15 2.06e — 10 852¢e—-15 20le-12 1.1le—14 8.88¢e-16
SD 227e—-15 4.80e—-15 3.48e—-15 9.33e-16 9.45e - 10 1.79¢e - 15 9.22e-13  3.55e-15 0
Rank 5 7 6 2 9 3 8 4 1
F12
Mean 2.37e -2 1.10e - 2 1.3le -2 9.04e - 4 1.07e - 2 13le-2  6.45e¢ - 13 1.67e -2 0
SD 2.57e -2 1.60e — 2 1.35¢ -2 2.78¢ -3 1.14e -2 1.73e -2 2.07e-12 24le-2 0
Rank 9 5 6 3 4 7 2 8 1
F14
Mean 1.04e -2  2.18¢-30 3.46e-3 1.22e-31 7.07e — 30 2.05e—-32 1.59e-21 3.76e - 31 1.70e - 2
SD 3.16e—-2 514e—-30 1.89¢—-2  4.85¢-32 4.05e - 30 8.12e-33 1.93e-21 1.2e - 30 1.42¢ -2
Rank 8 4 7 2 5 1 6 3 9
Average rank 5 6.2 5.6 44 4.9 4.6 5.3 2.9 2.5
Final rank 6 9 8 3 5 4 7 2 1

also conclude that HPSO has better stability than SPSO from
the data in different search spaces.

In the 9th columns of Tables 2-4, we report the statistical
significance level of the difference of the means of the two
algorithms. Note that here “+” indicates that the ¢ value is
significant ata 0.05 level of significance by two-tailed test, and
“~” stands for the difference of means that is not statistically
significant.

Figure 4 graphically presents the comparison in terms of
convergence characteristics of the evolutionary processes in

solving the selected benchmark functions in 30-dimensional
search space with N = 30 and T = 1000.

4.3. Comparison of HPSO with Other PSO Algorithms. In this
section, a comparison of HPSO with some well-known PSO
algorithms which are listed in Table 5 is performed to evaluate
the efficiency of the proposed algorithm.

At first, we choose 10 unimodal and multimodal test func-
tions for this evaluation. According to [22], the algorithms
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TaBLE 7: Comparison results of seven PSO algorithms [25] with HPSO on six functions (N = 30, D = 30, and T' =10,000).

Function SPSO QIPSO UPSO FIPS CLPSO AFSO AFSO-Q1 HPSO
F,

Mean 52.30 25.61 59.40 106.1 74.39 17.93 15.69 0

SD 27.35 15.98 58.05 30.54 9.77 5.63 4.47 0

Rank 5 4 6 8 7 3 2 1
Fy;

Mean 0.534 36.38 8.70 6.40 1.39¢ - 03 4.52¢ - 03 1.50e — 03 0

SD 1.74 4.66 3.08 3.04 3.28¢ — 04 9.20e — 03 3.48¢ — 03 0

Rank 5 8 7 6 2 4 3 1
By

Mean 320.2 3175 309.5 434.1 263.3 266.3 253.3 0

SD 14.70 23.24 25.88 34.99 11.96 12.00 12.63 0

Rank 7 6 5 8 3 4 2 1
Fy,

Mean 17.03 15.20 14.29 26.60 11.94 10.38 8.46 0

SD 2.55 1.32 2.15 1.42 1.37 1.38 0.948 0

Rank 7 6 5 8 4 3 2 1
Fy;

Mean —-119.10 —-119.10 —-119.10 —-119.90 —-119.00 —119.70 —-119.80 —-119.05

SD 7.09e — 02 5.68e — 02 3.24e - 02 3.78e — 02 4.28e — 02 3.85e — 02 5.45e — 02 5.50e — 02

Rank 4 4 4 1 6 3 2 5
Fq

Mean 115.90 121.90 113.20 113.60 118.30 123.20 123.10 117.32

SD 2.90 4.90 6.14 3.63 2.40 2.25 3.01 3.65

Rank 3 6 1 2 5 8 7 4
Average rank 5.17 5.67 4.67 5.50 4.50 4.17 3.00 217
Final rank 6 8 5 7 4 3 2 1

GPSO [2], LPSO [16], VPSO [27], FIPS [28], HPSO-TVAC
[6], DMS-PSO [29], CLPSO [24], and APSO [22] are consid-
ered as detailed in Table 5. The experimental results of the
algorithms are directly from [22] as shown in Table 6. In this
trial, the population size N = 20, the dimension D = 30, and
the maximum fitness evaluations (FEs) were set to 2 x 10°
also. The parameter configurations of the selected algorithms
have been set according to their corresponding references.
The inertia weight w is linearly decreased from 0.9 to 0.4 in
HPSO. HPSO is independently run 30 times and the mean
and SD are shown in Table 6. As seen, HPSO has the first rank
among the algorithms and obtains the global minimum on
tunctions F,, F,, F;, Fy, F,y, and F,, and gives the good near-
global optima on functions Fy and F,;. Meanwhile, HPSO
has the worst performance on functions F; and F,,. As for
F;, APSO has the best convergence accuracy, and HPSO
only wins CLPSO. Considering F,,, DMS-PSO has the best
performance.

Then, in the next step, we choose six functions from [25]
and seven algorithms of GPSO, QIPSO [30], UPSO [31], FIPS,
AFSO [25], and AFSO-QI1 [25] as detailed in Table 5. For a
fair comparison, the population size N = 30, the dimension
D = 30, and the maximum iteration T = 10,000 also in
HPSO, and the inertia weight w is linearly decreased from
0.9 to 0.4. HPSO is independently run 30 times and the mean

and SD are shown in Table 7. As seen, HPSO shows better
performance and has the first rank. HPSO finds the global
optimal solution on functions F, F,5, F,,, and F,,. FIPS and
UPSO have better convergence accuracy on functions F,; and
E,g, respectively.

Therefore, it is worth saying that the proposed algorithm
has considerably better performance than the other well-
known PSO algorithms in unimodal and multimodal high-
dimensional functions.

5. Conclusion

In this paper, a modified version of PSO called HPSO
has been introduced to enhance the performance of SPSO.
To simulate the human behavior, the global worst particle
was introduced into the velocity equation of SPSO, and
the learning coefficient which obeys the standard normal
distribution can balance the exploration and exploitation
abilities by changing the flying direction of particles. When
the coefficient is positive, it is called impelled leaning coef-
ficient, which is helpful to enhance the exploration ability.
When the coefficient is negative, it is called penalized learning
coefficient, which is beneficial for improving the exploitation
ability. At the same time, the acceleration coefficients ¢, and ¢,
have been replaced with two random numbers, whose sum is
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equal to 1in [0, 1]; this strategy decreases the dependence on
parameters of the solved problems. The proposed algorithm
has been evaluated on 28 benchmark functions including
unimodal, unrotated multimodal, rotated, shifted, and shifted
rotated functions, and the experimental results confirm the
high performance of HPSO on the main functions. However,
as seen, HPSO has the worst performance on shifted rotated
functions, so it is worth researching how to enhance the per-
formance of HPSO on shifted rotated functions in the future.
Meanwhile, applying HPSO to solve real-world problems is
also a research field.
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