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The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for
autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by
the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop
an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear
functions, the convergence of the estimation error is proven. Simulation results with Ford FiestaMK2 demonstrate the effectiveness
of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

1. Introduction

The automotive vehicle suspension dynamics contribute sig-
nificantly in evaluating the effective performance with regard
to passenger comfort, road handling, and stability of the vehi-
cle [1].The design of suspension systems evolved frompassive
suspensions to the active suspension system [2] adding more
control capabilities. Suspension dynamics predominantly
provide information regarding vertical stability [2, 3] of the
vehicle. Effective analysis of the suspension performance
provides information regarding the vertical load acting on
the vehicle, a critical component in determining the effective
tractive force [3]. In such scenarios, the suspension system
dynamics that replicate the behavior of mass spring damper
system [3] are complex to analyzewhen nonlinear behavior of
the spring and the damper systems are considered. Road pro-
file that replicates the randomness of road surface in form of
cleats or troughs affects the suspension system performance
[4].The different levels of road excitation necessitate the con-
tinuous regulation of damping force generated by the suspe-
nsion for maintaining the stability of the vehicle. As the
vehicle operating range varies, analysis of the nonlinear dyna-
mics of the suspension system excited by the road profile is
one of the major domains of research for suspension systems.

Road profile is a critical parameter that results in undesir-
able vertical vibrations for the vehicle if it is not compensated
by an adequate control effort in the suspension. These unfa-
vorable vibrations result in dynamic variations in the vertical
load of the vehicle affecting its stability. The design of
suitable controllers to compensate for these variations is
dependent on the effective measurement of the road profile.
For experimental purposes, expensive instruments called
profilographs are used for measuring the road profile [4,
5]. In [6], a real time conditioning algorithm was designed
to measure the road profile based on measurement of the
vertical acceleration. As an alternative to these expensive
instrumentation and sensor technology that are affected by
noise, estimation of the road profile by use of observers has
been an important issue.

In [7], a Kalman filter-based estimation of the road profile
measured using a road profilometer was performed. The
designed estimation worked on the vertical dynamics of an
active suspension system and was experimentally validated.
In [8], a neural network-based approach was adopted to
estimate the random road profile. This work employed
accelerometers to estimate the road profile modeled as a
function of road roughness coefficient. In [9], a minimum
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order observer was designed for a linearizedmodel of passive
suspension dynamics to estimate the road profile.

Sliding mode theory [10, 11] has evolved over time as an
effective tool for estimation of unknown inputs in control
domain. In [12], a first order sliding mode observer was
designed to estimate the states of the suspension system
under the influence of different road profiles. To remove the
chattering effect that is inherent in first order sliding mode
[13–17], higher order sliding mode theory was developed.
Recently, HOSM observers have been popular for state and
unknown input estimation in uncertain nonlinear systems
[18–20]. For systems with relative degree one, the super-
twisting algorithm (STA) served as an ideal tool for the
estimation of unknown inputs [21]. In [22–24], the STA based
observer was used to estimate the road profile acting as
unknown input to the system. Bymeasurement of the vertical
velocities, the road profile and the tire forces were estimated.
All these works [7–9] did not consider the nonlinear dynam-
ics of the suspension system. Other works [22–24] did not
consider the randomness of the road profile.

To address these issues, we consider the nonlinear
dynamics of the active suspension system for a quarter vehicle
excited by a random road profile. The suspension dynamics
considered in this paper effectively replicate the nonlinear
behavior of the spring and damper of the suspension. The
road excitation profile is considered as an unknown input in
this work and is estimated with an adaptive STA observer
[25]. For analysis, the road roughness values are based
on power spectral density (PSD) values as proposed by
International Organization for Standardization (ISO) [4, 5].
For the design of the observer, under the rank conditions
for the output matrix, the system is then partitioned into
two subsystems where the unknown input appears in one
subsystem. For the subsystem affected by the unknown input,
an adaptive STA based observer is then designed to ensure
the stability of the error dynamics of the subsystem in finite
time. For the subsystemwithout unknown inputs, a nonlinear
observer is designed under Lipschitz conditions to ensure
the stability of the system in sliding mode. The application
of the proposed method to the modelled vehicle dynamics is
validated through simulations.

Throughout this paper, 𝜆max(A) denotes the maximum
eigenvalue ofmatrixA, ‖A‖ denotes the 2-norm√𝜆max(A𝑇A)
of a matrix A, and 𝜎min(A) represents the minimum singular
value of matrix A. For any vector 𝑧 = [𝑧

1
, . . . , 𝑧

𝑞
]
𝑇
∈ 𝑅
𝑞 and

any scalar 𝛼 ∈ 𝑅, we denote

sign (𝑧) = [sign (𝑧1) , . . . , sign (𝑧𝑞)]
𝑇

,

|𝑧|
𝛼
= diag (𝑧1


𝛼
, . . . ,


𝑧
𝑞



𝛼

) ,

⌈𝑧⌋
𝛼
= |𝑧|
𝛼 sign (𝑧) .

(1)

2. Modeling Active Suspension Dynamics

The active suspension system in vehicles incorporates an
active controlled force actuator instead of the shock absorber
generally found in a passive suspension system.Thenonlinear
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Figure 1: Active suspension system for a quarter wheel.

dynamics that govern the active suspension system are given
as [26]

𝑚
𝑠
�̈�
𝑠
+ 𝑓
𝑘
+ 𝑓
𝑏
= 𝑢, (2)

𝑚
𝑢
�̈�
𝑢
− 𝑓
𝑘
− 𝑓
𝑏
+ 𝑘
𝑟
(𝑧
𝑢
− 𝜁 (𝑡)) = −𝑢, (3)

where 𝑚
𝑠
is the sprung mass or the vehicle mass, 𝑚

𝑢
is the

unsprung mass or the wheel mass, 𝑧
𝑠
is the sprung mass

displacement, 𝑧
𝑢
is the unsprung mass displacement, 𝑢 is

the controlled actuator force, 𝑘
𝑟
is the tire stiffness, and 𝜁(𝑡)

is the road excitation profile. The nonlinear damping force,
𝑓
𝑏
, and spring force, 𝑓

𝑘
, for the suspension dynamics can be

described as [26]

𝑓
𝑘
= 𝑘
𝑠
(𝑧
𝑠
− 𝑧
𝑢
) + 𝑘
𝑠nl(𝑧𝑠 − 𝑧𝑢)

3
, (4)

𝑓
𝑏
= 𝑏
𝑠
(�̇�
𝑠
− �̇�
𝑢
) + 𝑏
𝑠nl√

�̇�𝑠 − �̇�𝑢
 sign (�̇�𝑠 − �̇�𝑢) , (5)

where 𝑘
𝑠
is the linear spring stiffness constant, 𝑏

𝑠
is the linear

damper constant, 𝑘
𝑠nl is the nonlinear spring stiffness, and

𝑏
𝑠nl is the nonlinear damping constant. The motion of the
vehicle over a bump that restricts the wheel travel within
a given range and prevents contact between the tyre and
the vehicle body is effectively modeled by the nonlinear
spring force, 𝑓

𝑘
. Similarly for the damper, the damping force

generated while the wheel traverses in vertical direction
owing to road profile is a nonlinear effect. This nonlinear
effect is well approximated by the nonlinear dynamics as
depicted in (5). In this work, the damping force provided by
the tyre which is very complex to model has been neglected.
The active suspension dynamics for a quarter wheel vehicle
model together with the modeling parameters are shown in
Figure 1. The active suspension dynamics are affected by the
road profile requiring control of the effective damping force
needed to be provided by the actuator for good handling of
the vehicle [1], ride performance, and road stability. Road
profile is often modeled as a sinusoidal disturbance or a
trapezoidal disturbance to identify with crests/trough or
cleats that appear on practical roads. This type of modeling
however does not represent the typical roughness profile of
roads and the resulting effects it has on the suspension. The
standards of road roughness according to ISO [4, 5] can be
classified into different road classes as shown in Table 1.
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Table 1: Road roughness values classified by ISO [4, 5].

Degree of roughness 𝜎
0
× 10
−6

Road class Range Geometric mean
A (very good) <8 4
B (good) 8–32 16
C (average) 32–128 64
D (poor) 128–512 256
E (very poor) 512–2048 1024
F 2048–8192 4096

The integrated dynamics (2)–(5) for the active suspension
system can be represented in state space as

�̇� = 𝐴𝑥 + 𝐵Ψ (𝑥, 𝑢, 𝑡) + 𝐸𝜁 (𝑡) ,

𝑦 = 𝐶𝑥.

(6)

With

𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4]
𝑇
= [�̇�𝑢 �̇�𝑠 𝑧𝑠 𝑧𝑢]

𝑇
,

𝐴 =

[
[
[
[
[
[
[
[

[

−
𝑏
𝑠

𝑚
𝑢

𝑏
𝑠

𝑚
𝑢

𝑘
𝑠

𝑚
𝑢

−
𝑘
𝑠
+ 𝑘
𝑟

𝑚
𝑢

𝑏
𝑠

𝑚
𝑠

−
𝑏
𝑠

𝑚
𝑠

−
𝑘
𝑠

𝑚
𝑠

𝑘
𝑠

𝑚
𝑠

0 1 0 0

1 0 0 0

]
]
]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[
[
[

[

1

𝑚
𝑢

−
1

𝑚
𝑠

0

0

]
]
]
]
]
]
]

]

,

𝐸 =

[
[
[
[
[

[

𝑘
𝑟

𝑚
𝑢

0

0

0

]
]
]
]
]

]

,

(7)

where

Ψ (𝑥, 𝑢, 𝑡) = −𝑢 + 𝑘𝑠nl(𝑥3 − 𝑥4)
3

+ 𝑏
𝑠nl√

𝑥2 − 𝑥1
 sign (𝑥2 − 𝑥1) .

(8)

In the modeled system dynamics, the active actuator control
force 𝑢 is the control input for the system. In the system
dynamics (6), the displacement of the sprung mass, 𝑥

3
, and

velocity of the unsprung mass, 𝑥
1
, are considered as outputs,

and the output matrix can be defined by

𝐶 = [
1 0 0 0

0 0 1 0
] . (9)

The unknown input for the system is the road profile denoted
as 𝜁(𝑡). The measurement of road profile is an extremely
complex task that requires the use of complex measuring
instruments such as profilographs [4, 5] that are expensive
and impractical. Hence our focus is on the development of
an approach to estimate the random road profile, 𝜁(𝑡), for the
active suspension systems.

3. Observer Design

In this section, we discuss the design of the observer for
the active suspension system. A combination of nonlinear
Lipschitz observer and adaptive super-twisting observer is
employed. To facilitate the design of the observer, the follow-
ing assumptions are required.

Assumption 1. All invariant zeros of the triple (𝐴, 𝐸, 𝐶)must
lie in the left half plane and rank (𝐶𝐸) = rank (𝐸).

Assumption 2. The nonlinear functions in Ψ(𝑥, 𝑢, 𝑡) satisfiy
the Lipschitz conditions.

Assumption 3. The function 𝜁(𝑡) and its first derivative are
bounded.

Assumption 4. The control input is bounded and the system
is assumed to be bounded input bounded state stable (BIBS).

For the dynamics defined in (6), it can be easily verified
that the rank(𝐶𝐸) = rank(𝐸) = 1. Further, the triple (𝐴, 𝐸, 𝐶)
does not contain any invariant zeros that lie on the right
hand plane. The nonlinear function Ψ(𝑥, 𝑢, 𝑡) in the system
dynamics (6) can be divided intoΨ

1
(𝑥, 𝑢, 𝑡) andΨ

2
(𝑥, 𝑢, 𝑡) to

analyze the Lipschitz continuity as follows:

Ψ (𝑥, 𝑢, 𝑡) = Ψ1 (𝑥, 𝑢, 𝑡) + Ψ2 (𝑥, 𝑢, 𝑡) ,

Ψ
1 (𝑥, 𝑢, 𝑡) = 𝑘𝑠nl(𝑥3 − 𝑥4)

3
,

Ψ
2 (𝑥, 𝑢, 𝑡) = 𝑏𝑠nl√

𝑥2 − 𝑥1
 sign (𝑥2 − 𝑥1) .

(10)

With 𝑥
3
, that is, 𝑧

𝑠
and 𝑥

4
, that is, 𝑧

𝑢
representing the

physical states of practically realizable automotive suspension
system, the function Ψ

1
(𝑥, 𝑢, 𝑡) can be determined to be

locally Lipschitz with a Lipschitz constant obtained as 𝑙
Ψ
1

=

𝑘
𝑠nl|𝑧𝑠 − 𝑧𝑢|

2. Similarly for the nonlinear function Ψ
2
(𝑥, 𝑢, 𝑡),

with 𝑥
2
, that is, �̇�

𝑠
and 𝑥

1
, that is, �̇�

𝑢
bounded, local Lipschitz

continuity can be established. The Lipschitz constant for
Ψ
2
(𝑥, 𝑢, 𝑡) is obtained as 𝑙

Ψ
2

= (𝑏
𝑠nl/2)(1/|�̇�𝑠 − �̇�𝑢|

1/2
). For

the active automotive suspension system modeled in (6), by
use of the actuator control force, 𝑢

𝑎
, it can be asserted that

(�̇�
𝑠
− �̇�
𝑢
) ̸= 0 such that the function Ψ(𝑥, 𝑢, 𝑡) maintains its

Lipschitz continuity with a Lipschitz constant, 𝑙
𝛽
= 𝑙
Ψ
1

+ 𝑙
Ψ
2

.
In the modeled system dynamics (6), the unknown input

𝜁(𝑡) is the road profile that is considered as function of road
roughness coefficient and other physical parameters relating
to the road conditions which are bounded. It can be thus
deduced from the dynamics of the road profilemodel that the
road excitation profile and its derivative are both bounded.
For the modeled active suspension dynamics (6), the control
input to the system is the actuator force, 𝑢, that is bounded.

In order to design the combined observer, the original
system dynamics will be divided into two subsystems, such
that one of the subsystems will be free from unknown inputs.
With the Assumptions 1–4 for the active suspension system,
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Figure 2: Overview of proposed observer.

(6) being satisfied, we can directly partition system (6) into
two subsystems 𝑆1 and 𝑆2 as follows:

𝑆1 : {
�̇�
1
= 𝐴
11
𝑥
1
+ 𝐴
12
𝑧 + 𝐵
1
Ψ (𝑥, 𝑢, 𝑡) + 𝐸1𝜁 (𝑡) ,

𝑦
1
= 𝐶
1
𝑥
1
,

(11)

𝑆2 : {
�̇�
2
= 𝐴
21
𝑥
1
+ 𝐴
22
𝑧 + 𝐵
2
Ψ (𝑥, 𝑢, 𝑡) ,

𝑦
2
= 𝐶
2
𝑧,

(12)

where

𝑥
1
= 𝑥
1
, 𝑧 = [𝑥1 𝑥2 𝑥3]

𝑇
,

𝐶
1
= [1] , 𝐶

2
= [0 1 0] ,

𝐴
11
= [−

𝑏
𝑠

𝑚
𝑢

] , 𝐴
12
=

[
[
[
[
[
[
[
[

[

𝑏
𝑠

𝑚
𝑢

𝑘
𝑠

𝑚
𝑢

−
𝑘
𝑠
+ 𝑘
𝑟

𝑚
𝑢

]
]
]
]
]
]
]
]

]

𝑇

,

𝐴
21
=
[
[
[

[

𝑏
𝑠

𝑚
𝑠

0

1

]
]
]

]

, 𝐴
22
=
[
[
[

[

−
𝑏
𝑠

𝑚
𝑠

−
𝑘
𝑠

𝑚
𝑠

𝑘
𝑠

𝑚
𝑠

1 0 0

0 0 0

]
]
]

]

,

𝐵
1
= [

1

𝑚
𝑢

] , 𝐵
2
=
[
[
[

[

−1

𝑚
𝑠

0

0

]
]
]

]

, 𝐸
1
= [

𝑘
𝑟

𝑚
𝑢

] .

(13)

With the system (6) partitioned as above, the objective
is to design an adaptive STA based observer to estimate the
states and unknown input for the 𝑆1-subsystem (11) and a
nonlinear Lipschitz observer (NLO) to estimate the states for
the 𝑆2-subsystem (12). The overview of the design is shown
in Figure 2.

The estimation error can be defined as

𝑒 = 𝑥 − 𝑥 = [𝑒1 𝑒𝑧]
𝑇
= [𝑒
1
[𝑒2 𝑒3 𝑒4]

𝑇
]
𝑇

, (14)

where 𝑥 is the observed state and 𝑒
1
and 𝑒
𝑧
are the errors for

the subsystems 𝑆1 and 𝑆2.

3.1. Adaptive Super-Twisting Observer Design for S1-Subs-
ystem. For 𝑆1-subsystem (11) satisfying the above assump-
tions, the following observer based on the adaptive STA can
be designed to estimate the states and the unknown input:

̇̂𝑥
1
= 𝐴
11
𝑥
1
+ 𝐴
12
�̂� + 𝐵
1
Ψ (𝑥, 𝑢, 𝑡) + 𝐸1] (𝑡) , (15)

where ](𝑡) is the robust sliding term based on the adaptive
STA [25] and defined as

] (𝑡) = −𝐾1⌈𝑥1 − 𝑥1⌋
1/2

− 𝐾
2
∫

𝑡

0

sign (𝑥
1
− 𝑥
1
) . (16)

The adaptive gains 𝐾
1
,𝐾
2
in (16) are designed as

�̇�
1
= {

𝜅
1
sign (𝑥1 − 𝑥1

 − 𝜖) , if 𝐾
1
> 𝛼
𝑚
,

𝜅
2
, if 𝐾

1
≤ 𝛼
𝑚
,

𝐾
2
= 𝜅
3
𝐾
1
,

(17)

where 𝜅
1
, 𝜅
2
, 𝜅
3
, and 𝜖 are positive constants. The parameter

𝛼
𝑚
is an arbitrary small positive constant.
To establish the convergence of the observer dynamics,

the error dynamics (14) can be obtained as 𝑒
1
= 𝑥
1
−𝑥
1
, which

serves as the sliding surface for the designed adaptive STA
based observer. The objective of the designed observer is to
ensure that the error converges to zero and to reconstruct the
unknown road excitation profile, 𝜁(𝑡), from the robust term
(16).

Theorem5. For system (11) satisfying the Assumptions 1–4, the
observer system (15) with the robust term (16) will ensure that
the error dynamics (𝑒

1
) will converge to zero in finite time.

Proof. The error dynamics of the system (11) can be obtained
from (11) and (15) as

̇𝑒
1
= 𝐴
11
𝑒
1
+ 𝐴
12
𝑒
𝑧
+ 𝐵
1
Ψ (𝑥, 𝑢, 𝑡) − 𝐵1Ψ (𝑥, 𝑢, 𝑡)

+ ] (𝑡) − 𝐸1𝜁 (𝑡)

= Λ (𝑒
1
, 𝑒
𝑧
, 𝑡) + ] (𝑡) ,

(18)

whereΛ(𝑒
1
, 𝑒
𝑧
, 𝑡) includes the perturbation terms.Thematri-

ces 𝐴
11

and 𝐴
12

are known, and hence they are bounded.
As system satisfies Assumptions 2–4, the boundedness of the
nonlinear function Ψ(𝑥, 𝑢, 𝑡) and the unknown input, 𝜁(𝑡),
can be easily established. For the obtained error dynamics
(18), it can be proved that ̇𝑒

1
is locally bounded by a constant,

as 𝑒
1
is twice differentiable on a compact set. This is not

restrictive as the active suspension system dynamics are
bounded at least locally. It will be shown later that the
subsystem 𝑆2 is asymptotically stable. Further, as the system
is free from unknown inputs, under the Assumptions 2–4,
the subsystem 𝑆2 boundedness can be established. Based on
the above arguments, the boundedness of the perturbation
Λ(𝑒
1
, 𝑒
𝑧
, 𝑡) is obtained as

Λ̇ (𝑒
1
, 𝑒
𝑧
, 𝑡) ≤ 𝜌, (19)
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where 𝜌 is a constant (not necessarily known). With the
perturbation terms Λ(𝑒

1
, 𝑒
𝑧
, 𝑡), satisfying the condition (19)

required for the adaptive STA (15), the convergence of the
error dynamics (18) can now be proved with the following
Lyapunov function:

𝑉 (𝑒
1
) = Ω

𝑇
𝑃Ω +

1

2𝜏
1

(𝐾
1
− 𝐾
∗

1
)
2
+

1

2𝜏
2

(𝐾
2
− 𝐾
∗

2
)
2
, (20)

where Ω = [|𝑒
1
|
1/2 sign(𝑒

1
) 𝑒
1
]
𝑇

and 𝜏
1
, 𝜏
2
, 𝐾∗
1
, and 𝐾∗

2
are

positive constants and 𝑃 is a positive definite matrix. Similar
to the results in [25] with𝐾

1
and𝐾

2
satisfying (17), �̇�(𝑒

1
) can

be shown to be a negative definite and the error converges to
zero in finite time.The sliding surface is thus reached in finite
time and maintained thereafter.

3.2. Nonlinear Lipschitz Observer for S2-Subsystem. For sub-
system (12), aNLO is designed as follows to estimate the states
of the system:

̇̂𝑧 = 𝐴
21
𝑥
1
+ 𝐴
22
�̂� + 𝐵
2
Ψ (𝑥, 𝑢, 𝑡) + 𝐿 (𝑦2 − 𝐶2𝑧) , (21)

where the feedback 𝐿 = [𝑙11 𝑙21 𝑙31]
𝑇 is to be discussed in

Theorem 6 later.The error dynamics (14) of the subsystem 𝑆2

can be obtained as

[

[

̇𝑒
2

̇𝑒
3

̇𝑒
4

]

]

=
[
[
[

[

−
𝑏
𝑠

𝑚
𝑠

−
𝑘
𝑠

𝑚
𝑠

− 𝑙
11

𝑘
𝑠

𝑚
𝑠

1 −𝑙
21

0

0 −𝑙
31

0

]
]
]

]

+ [

[

−1

0

0

]

]

(Ψ (𝑥, 𝑢, 𝑡) − Ψ (𝑥, 𝑢, 𝑡)) .

(22)

The following theorem establishes the stability of the 𝑆2-
subsystem.

Theorem 6. For system (12) satisfying the Assumptions 1–4,
the observer (21) ensures that the state estimation error (𝑒

𝑧
) is

asymptotically stable provided that the gain L satisfies

𝑄 (𝐴
22
− 𝐿𝐶
2
) + (𝐴

22
− 𝐿𝐶
2
)
𝑇
𝑄 + 𝑙
2

𝛽
𝑄𝑄 + 𝐼 < 0, (23)

where 𝑙
𝛽
is the Lipschitz constant for Ψ(𝑥, 𝑢, 𝑡) (Assumption 2)

and Q is a positive definite matrix.

Proof. With the convergence of the subsystem 𝑆1 error (𝑒
1
)

to zero in the sliding mode, the error dynamics (14) can be
written as

̇𝑒
𝑧
= (𝐴
22
− 𝐿𝐶
2
) + (Ψ (𝑥, 𝑢, 𝑡) − Ψ (𝑥, 𝑢, 𝑡)) . (24)

With the system satisfying Assumption 2, the Lipschitz con-
stant for Ψ(𝑥, 𝑢, 𝑡) is evaluated as 𝑙

𝛽
. With the choice of the

Lyapunov function as𝑉(𝑒
𝑧
) = 𝑒
𝑇

𝑧
𝑄𝑒
𝑧
and differentiating with

respect to time, one has

�̇� (𝑒
𝑧
) = 𝑒
𝑇

𝑧
[(𝐴
22
− 𝐿𝐶
2
)
𝑇
𝑄 + 𝑄 (𝐴

22
− 𝐿𝐶
2
)] 𝑒
𝑧

+ 2𝑒
𝑇

𝑧
𝑄 (Ψ (𝑥, 𝑡) − Ψ (𝑥, 𝑡)) .

(25)
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Figure 3: Average Class C road profile.

From the above results, its can be deduced that

�̇� (𝑒
𝑧
) ≤ 𝑒
𝑇

𝑧
[(𝐴
22
− 𝐿𝐶
2
)
𝑇
𝑄 + 𝑄 (𝐴

22
− 𝐿𝐶
2
)] 𝑒
𝑧

+ 2𝑙
𝛽 ‖𝑄𝑒‖

𝑒𝑧
 .

(26)

In the sliding mode as 𝑒
1
= 0, we have

𝑒 = [0 𝑒
𝑧]
𝑇
= [0 [𝑒2 𝑒3 𝑒4]

𝑇
]
𝑇

. (27)

It can thus be written as follows:

�̇� (𝑒
𝑧
) ≤ 𝑒
𝑇

𝑧
[(𝐴
22
− 𝐿𝐶
2
)
𝑇
𝑄 + 𝑄 (𝐴

22
− 𝐿𝐶
2
)] 𝑒
𝑧

+ 2𝑙
𝛽

𝑄𝑒𝑧

𝑒𝑧
 .

(28)

Further, one can obtain

�̇� (𝑒
𝑧
) ≤ 𝑒
𝑧
((𝐴
22
− 𝐿𝐶
2
)
𝑇
𝑄 + 𝑄 (𝐴

22
− 𝐿𝐶
2
) + 𝑙
2

𝛽
𝑄𝑄 + 𝐼)

× 𝑒
𝑧
,

(29)

where 2𝑙
𝛽
‖𝑄𝑒
𝑧
‖‖𝑒
𝑧
‖ ≤ (𝑙

𝛽
)
2
𝑒
𝑧
𝑄𝑄𝑒
𝑧
+ 𝑒
𝑇

𝑧
𝑒
𝑧
is satisfied. If

the design of the feedback gain, 𝐿, is such that (23) is
satisfied, then �̇�(𝑒

2
) < 0. The error dynamics will thus be

asymptotically stable.

Remark 7. Equation (23) can bewritten as an algebraic Riccati
equation in the following form:

𝑄 (𝐴
22
− 𝐿𝐶
2
) + (𝐴

22
− 𝐿𝐶
2
)
𝑇
𝑄 + 𝑙
2

𝛽
𝑄𝑄 + 𝐼 + 𝛾𝐼 = 0 (30)

for some 𝛾 > 0. The following condition [27, 28] ensures the
asymptotic stability of the system (24):

min
𝑤∈R+

𝜎min (𝐴22 − 𝐿𝐶2 − 𝑗𝑤𝐼) > 𝑙𝛽, (31)

where 𝜎min(⋅) represents the minimum singular value of
a matrix. If the above condition (23) is satisfied and if
there exists a stable (𝐴

22
− 𝐿𝐶
2
) matrix, then there exists a

symmetric positive definite (SPD) solution 𝑄 = 𝑄
𝑇 for the

Riccati equation (30).
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Figure 4: (a) Estimated unsprung mass velocity, (b) estimated sprung mass velocity, (c) estimated sprung mass displacement, (d) estimated
unsprung mass displacement.

3.3. Estimation of Unknown Input: Road Excitation Profile. In
the slidingmode, with the error 𝑒

1
converging to zero in finite

time (𝑒
1
= ̇𝑒
1
= 0), the equivalent control [29] can be obtained

from (18) as follows:
Veq = −Λ (𝑒1, 𝑒𝑧, 𝑡) + 𝐸1𝜁 (𝑡) . (32)

As 𝑒
1
→ 0 in finite time, and the nonlinearities satisfy Lip-

schitz assumptions, we have from (18) the following:
Λ (𝑒1, 𝑒𝑧, 𝑡)

 ≤ (
𝐴12 − 𝐿𝐶2

 + 𝑙𝛽) ‖𝑒 (𝑡)‖ → 0

(𝑡 → ∞) .

(33)

The unknown road excitation profile when 𝑡 → ∞ can be
thus obtained as

𝜁 (𝑡) = 𝐸
−1

1
𝐾
2
∫

𝑡

0

sign (𝑒
1
) 𝑑𝑡. (34)

Remark 8. The design of the adaptive STA observer and the
NLO considered in this work can be easily extended for
estimation of multiple unknown inputs. The general class of
nonlinear systems that is similar to (6) is represented by

�̇� = 𝐴𝑥 + 𝐵Ψ (𝑥, 𝑢, 𝑡) + 𝐸𝑓 (𝑡) ,

𝑦 = 𝐶𝑥,

(35)

where 𝑥 ∈ 𝑀 ⊂ R𝑛, 𝐴 ∈ R𝑛×𝑛, 𝐶 ∈ R𝑝×𝑛, 𝑓(𝑡) =

[𝑓
1
(𝑡) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑡)] ∈ R𝑚, with 𝑚 < 𝑝 ≤ 𝑛 are the

unknown inputs/uncertainties under similar assumptions,
general class of nonlinear systems is defined in (35); a linear
transformation [10] can always be employed to obtain the
required structure for the design of the observers.

4. Results

For the performance evaluation of the proposed observer, we
select the following active suspension system parameters of a
Ford FiestaMK2 [30] vehicle:𝑚

𝑠
= 216.75 kg, 𝑚

𝑢
= 28.85 kg,

𝑘
𝑠
= 21700N/m, 𝑏

𝑠
= 1200Ns/m, and 𝑘

𝑟
= 184000N/m.The

nonlinear spring stiffness, 𝑘
𝑠nl, and damping constant, 𝑏

𝑠nl,
values are taken as 10% of the original linear values 𝑘

𝑠
and 𝑏
𝑠
,

respectively. To design the adaptive STA, we choose the gains
as 𝜅
1
= 500, 𝜅

2
= 4, 𝜅

3
= 30, 𝜖 = 0.3, and 𝛼

𝑚
= 4. The initial

conditions for the plant and the observer were chosen as 𝑥(0)
= [0.1 0 0 0.01] and 𝑥(0) = [0 0 0 0]. The feedback gain
for the subsystem (12) and the positive definite matrix, 𝑄,
satisfying (23) were computed as

𝐿 = [

[

6.0259

7.2397

3.3748

]

]

, 𝑄 = [

[

0.0079 −0.0031 0.0029

−0.0031 0.0108 −0.0020

0.0029 −0.0020 0.0111

]

]

.

(36)

The Lipschitz constant for subsystem (12) was evaluated as
𝑙
𝛽
= 10.5651. The road profile model [31] can be obtained as

̇𝜁 (𝑡) = −2𝜋𝑛0V𝜁 (𝑡) + 2𝜋√𝜎0V𝑤0, (37)

where V is the vehicle longitudinal velocity, 𝜎
0
is the road

roughness coefficient, 𝑛
0
is the reference space frequency,

and 𝑤
0
is the Gaussian white noise. With changes in road

roughness coefficient keeping the longitudinal velocity of
motion fixed, different excitation profiles can be obtained.
The increase in roughness coefficient leads to poorer road
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conditions. For simulation purposes, the class C road profile
was considered as an unknown input. The vehicle was
considered to be travelling at a speed of 30Km/hr with
road roughness coefficient being considered as shown in
Table 1. The generated road profile is shown in Figure 3. The
simulation results obtained for state estimation are shown in
Figure 4. The system dynamics are nonlinear and affected by
the road profile, 𝜁(𝑡), which is a function of white Gaussian
noise. It can be deduced that the estimation of the states
even under the effect of 𝜁(𝑡) is good. The norm of the
estimation error of the states is shown in Figure 5. In Figure 6,
the unknown road excitation profile estimated with (34) is
shown. A smooth estimation of the unknown road profile is
obtained without any low-pass filtering.

5. Conclusions

In this work, an adaptive super-twisting observer was pro-
posed for state and unknown input estimation for the active
suspension system. The paper considered the nonlinear
model of the active suspension system excited by the random
road profile as an unknown input. Under the Lipschitz

condition for the nonlinear functions, the convergence of
the system errors is proven. The proposed adaptive super-
twisting observer accurately estimates the road excitation
profile for an average road without the use of low-pass filter.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by the Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (Grant no. 2011-0023999).

References

[1] D. Alexander, High-Performance Handling for Street or Track,
Motor Books International, 1st edition, 2013.

[2] D. Knowles and J. Erjavec, Automotive Suspension and Steering
Systems, Cengage Learning, 5th edition, 2002.

[3] R. Rajamani,VehicleDynamics andControl, Springer,NewYork,
NY, USA, 2012.

[4] American Society of Testing and Materials, “Standard test
method for measuring the longitudinal profile of traveled
surfaces with an accelerometer established inertial profiling
reference, ASTM E950,” in Annual Book of ASTM Standards,
vol. 4.03, 2004.

[5] American Society of Testing and Materials, “Standard test
method for measuring pavement roughness using a profilo-
graph,” in Annual Book of ASTM Standards, vol. 4.03, 2008.

[6] D. Hugo, S. P. Heyns, R. J. Thompson, and A. T. Visser, “Con-
dition-triggered maintenance for mine haul roads with reco-
nstructed-vehicle-response to haul road defects,” Journal of the
Transportation Research Record, vol. 2, no. 1989, pp. 254–260,
2007.



8 The Scientific World Journal

[7] M. Doumiati, A. Victorino, A. Charara, and D. Lechner, “Esti-
mation of road profile for vehicle dynamics motion: experi-
mental validation,” in Proceedings of the American Control Con-
ference (ACC ’11), pp. 5237–5242, San Francisco, Calif, USA, July
2011.

[8] M. Yousefzadeh, S. Azadi, and A. Soltani, “Road profile esti-
mation using neural network algorithm,” Journal of Mechanical
Science and Technology, vol. 24, no. 3, pp. 743–754, 2010.

[9] T. Yoshimura, A. Kume, M. Kurimoto, and J. Hino, “Construc-
tion of an active suspension system of a quarter car model
using the concept of slidingmode control,” Journal of Sound and
Vibration, vol. 239, no. 2, pp. 187–199, 2001.

[10] C. Edwards, S. K. Spurgeon, and R. J. Patton, “Sliding mode
observers for fault detection and isolation,” Automatica, vol. 36,
no. 4, pp. 541–553, 2000.

[11] X.-G. Yan and C. Edwards, “Nonlinear robust fault reconstruc-
tion and estimation using a slidingmode observer,”Automatica,
vol. 43, no. 9, pp. 1605–1614, 2007.

[12] R. K. Dixit and G. D. Buckner, “Sliding mode observation
and control for semiactive vehicle suspensions,” Vehicle System
Dynamics, vol. 43, no. 2, pp. 83–105, 2005.

[13] K. C. Veluvolu, M. Defoort, and Y. C. Soh, “High-gain observer
with sliding mode for nonlinear state estimation and fault reco-
nstruction,” Journal of Franklin Institute, 2013.

[14] K. C. Veluvolu, M. Y. Kim, and D. Lee, “Nonlinear sliding mode
high-gain observers for fault estimation,” International Journal
of Systems Science, vol. 42, no. 7, pp. 1065–1074, 2011.

[15] K. C. Veluvolu and D. Lee, “Sliding mode high-gain observers
for a class of uncertain nonlinear systems,”AppliedMathematics
Letters, vol. 24, no. 3, pp. 329–334, 2011.

[16] K. C. Veluvolu and Y. C. Soh, “Fault reconstruction and state
estimationwith slidingmode observers for Lipschitz non-linear
systems,” IET Control Theory and Applications, vol. 5, no. 11, pp.
1255–1263, 2011.

[17] K. C. Veluvolu and Y. C. Soh, “Multiple sliding mode observers
and unknown input estimations for Lipschitz nonlinear sys-
tems,” International Journal of Robust and Nonlinear Control,
vol. 21, no. 11, pp. 1322–1340, 2011.

[18] L. Fridman, Y. Shtessel, C. Edwards, and X.-G. Yan, “Higher-
order sliding-mode observer for state estimation and input
reconstruction in nonlinear systems,” International Journal of
Robust andNonlinearControl, vol. 18, no. 4-5, pp. 399–412, 2008.

[19] Y. Zhou, Y. C. Soh, and J. X. Shen, “High-gain observer with
higher order sliding mode for state and unknown disturbance
estimations,” International Journal of Robust and Nonlinear
Control, 2013.

[20] H. Rios, J. Davila, and L. Fridman, “High-order sliding mode
observers for nonlinear autonomous switched systems with
unknown inputs,” Journal of the Franklin Institute, vol. 349, no.
10, pp. 2975–3002, 2012.

[21] A. Levant, “Sliding order and sliding accuracy in sliding mode
control,” International Journal of Control, vol. 58, no. 6, pp. 1247–
1263, 1993.

[22] N. K. M’Sirdi, A. Rabhi, L. Fridman, J. Davila, and Y. Dela-
nne, “Second order sliding mode observer for estimation of
velocities, wheel sleep, radius and stiffness,” in Proceedings of
the American Control Conference, pp. 3316–3321, Minneapolis,
Minn, USA, June 2006.

[23] H. Imine, Y. Delanne, and N. K. M’Sirdi, “Road profile input
estimation in vehicle dynamics simulation,” Vehicle System
Dynamics, vol. 44, no. 4, pp. 285–303, 2006.

[24] H. Imine and V. Dolcemascolo, “Sliding mode observers to
heavy vehicle vertical forces estimation,” International Journal
of Heavy Vehicle Systems, vol. 15, no. 1, pp. 53–64, 2008.

[25] Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-gain
supertwisting sliding mode controller: methodology and appli-
cation,” Automatica, vol. 48, no. 5, pp. 759–769, 2012.

[26] U. Kiencke and L. Nielsen, Automotive Control Systems: For
Engine, Driveline, and Vehicle, Springer, New York, NY, USA,
2005.

[27] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 3, pp. 397–401,
1998.

[28] R. Rajamani and Y. M. Cho, “Existence and design of observers
for nonlinear systems: relation to distance to unobservability,”
International Journal of Control, vol. 69, no. 5, pp. 717–731, 1998.

[29] V. I. Utkin, Sliding Mode in Control and Optimization, Springer,
New York, NY, USA, 1992.

[30] M. Jamei, M.Mahfouf, and D. Linkens, “A GA tuned fuzzy con-
troller for a non-linear active suspension system,” inProceedings
of the 7th UK Workshop on Fuzzy Systems, vol. 2, pp. 143–146,
2000.

[31] J. Cao, H. Liu, P. Li, and D. J. Brown, “State of the art in vehicle
active suspension adaptive control systems based on intelligent
methodologies,” IEEE Transactions on Intelligent Transportation
Systems, vol. 9, no. 3, pp. 392–405, 2008.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


