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Thiswork presents amethodology that integrates a nonsupervised learning approach (self-organizingmap (SOM)) and a supervised
one (a Bayesian classifier) for segmenting diseased plants that grow in uncontrolled environments such as greenhouses, wherein the
lack of control of illumination and presence of background bring about serious drawbacks. During the training phase two SOMs
are used: one that creates color groups of images, which are classified into two groups using K-means and labeled as vegetation and
nonvegetation by using rules, and a second SOM that corrects classification errors made by the first SOM. Two color histograms are
generated from the two color classes and used to estimate the conditional probabilities of the Bayesian classifier. During the testing
phase an input image is segmented by the Bayesian classifier and then it is converted into a binary image, wherein contours are
extracted and analyzed to recover diseased areas that were incorrectly classified as nonvegetation. The experimental results using
the proposed methodology showed better performance than two of the most used color index methods.

1. Introduction

Modern agriculture is applying new scientific and technolog-
ical processes to automate and provide more accurate and
appropriate solutions to real problems in agricultural systems
[1]. Machine vision represents one of these technological
achievements, which is being integrated into the agricultural
field because it is considered as accurate and nondestructive
and yields consistent results [2]. Machine vision is a feasi-
ble sensing technique for plant specific direct applications
(PSDA) not only due to its superior spatial resolutions [3], but
also for providing numerical attributes of the objects or the
scene being imaged [2]. This technology has been developed
for many agricultural applications, such as detection of
diseases and pests in plants [4–10], weed detection [3, 11–13],
and plant species identification [14–16], among others. In
particular, the development of vegetation segmentation algo-
rithms from images is a fundamental and complex process in
agricultural applications, because it is highly dependent

on environmental conditions, which can be controlled or
uncontrolled.

Previous studies under controlled environments have
proposed a variety of approaches for segmenting diseased
areas of leaves before their recognition. Most of them con-
sider a uniform color background and controlled illumina-
tion, and, in addition, a single leaf of the plant is commonly
analyzed, without considering the overlapping of leaves and
the effects caused by the illumination such as shadows,
brightness, and highlights, among others [14, 17–19].The seg-
mentation process of these captured images under such con-
ditions represents nonrelevant complexity and yields efficient
results.Many algorithmshave been developed for segmenting
vegetation, without considering areas of diseased vegeta-
tion, from images under uncontrolled environments such
as agricultural fields or greenhouses. Such algorithms use
commonly color vegetation indices to segment a plant from
the background of field images [20], such as the color index of
vegetation extraction (CIVE) [21] and the excess greenminus
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excess red (ExG-ExR) [22]; besides color indices, thresholds
techniques have also been employed applying, for example, a
fixed threshold [23] or the Otsu method [24]; in [25] a more
sophisticated algorithm using a mean-shift procedure and a
back-propagation neural network (BPNN)was presented and
yielded better results than the two methods based on color
indices known as CIVE and ExG; Jeon et al. [3] presented
an algorithm for segmenting vegetation from a normalized
excessive-green image using an adaptive threshold which
reported efficient results even under different illuminations.

Owing to the problems mentioned above, not much
research has been done on segmenting diseased vegetation
in uncontrolled environments. In order to cope with the
complexities of the environment and improve vegetation seg-
mentation rates, some methodologies have been proposed.
One of them is a methodology combining an unsupervised
and a supervised learning method that was proposed by
Meunkaewjinda et al. [4] for disease detection in grape leaves,
where the grape leaf color was extracted from the background
by applying a self-organizing feature map (SOFM) and a
back-propagation neural network (BPNN). Even though this
work yielded very promising performance, some ambiguous
color pixels from the background or the vegetation of the
imagewere incorrectly classified.This problemwas due to the
fact that the developed algorithms only used the color as input
feature, thus reducing the effectiveness of the segmentation
algorithms for images captured in natural scenes where
objects and the backgroundoften exhibit common intensities.

Our research has been developed for tomato greenhouse
environments whose illumination and background param-
eters are considered to be under uncontrolled conditions.
Therefore, the task of segmenting vegetation, plants with
diseased leaves in our case, is a serious complex task to be
carried out.

In this work, the images of tomato plants were captured
by a low cost digital camera which produced poor quality
images. In themethodology proposed in this paper (hereafter
called SEVUE, which stands for segmenting vegetation in
uncontrolled environments) the following main processes
were developed: an image enhancement process to improve
both the quality of the images and the highlight features of
interest; a color clustering process using two SOMs, wherein
the second SOM refines the results of the first SOM; a class-
ification process using aBayesian classifier; and the extraction
and analysis of contours from a binary image to recover
areas that were incorrectly classified as nonvegetation and
eliminate noise.

The SEVUE methodology was implemented and com-
pared to the color index methods more commonly used
for segmenting vegetation under uncontrolled environments
(CIVE and ExG-ExR) using the Wilcoxon signed rank sum
test to assess the algorithm performance. The remainder of
this paper is organized as follows. In Section 2 the SEVUE
methodology is described. The procedure used to assess the
algorithm performance is presented in Section 3. A dis-
cussion of the results is made in Section 4, and finally
the extracted conclusions and future works are exposed in
Section 5.

2. SEVUE Methodology

A set of 138 images of tomato plants were captured by a
Kodak EasyShare 𝐶913 camera with features corresponding
to automatic mode. The image resolution of 320 × 240 pixels
was selected to minimize image processing efforts. 30 out of
138 captured images were selected by experts who considered
only those captured images of plants showing leaves with
early visual symptoms of powdery mildew. Some consider-
ations were made during the image capture sessions, such as
the sessions were regularly carried out around midday with-
out considering the climatic conditions (sunny, partly, cloudy,
and overcast); the images were capturedmanually by a person
standing in front of and pointing the camera at the vegetation,
at a height of approximately 110 cm from the ground and
holding the camera at an angle of approximately 45

∘; no
polarizing filter was attached to the camera.

The SEVUE methodology was tested over the set of 30
images. Due to small statistics of individuals, we applied
the 𝑘-fold cross-validation test aiming at gaining a reason-
able estimation of SEVUE methodology accuracy. Figure 1
illustrates a block diagram that shows the main processes of
SEVUEmethodology.Thenext sectionswill describe in detail
the processes of SEVUE by following Figure 1.

2.1. Image Enhancement. As a result of the different illumi-
nation conditions, the characteristics of light reflected by the
objects in the images brought about problems related to
different colors and brightness levels. To copewith such prob-
lems, it was necessary to adjust the levels of these parameters
to homogenize the input images [26], thus achieving a better
segmentation of vegetation. For this purpose, the actions
described below were applied for each input image.

(1) A reference image was chosen showing less visual
effects due to variable illumination, such as color
inconstancy, highlights, shadows, and uneven light-
ing.The reference imagewas selected through a visual
inspection.

(2) The reference image and the input image were con-
verted from RGB to YIQ color model.

(3) The color and brightness of the input image were
adjusted using the equations described as follows:

𝜇im =
1

𝑚 × 𝑛

𝑚×𝑛

∑

𝑛=1

𝐼 (𝑛) ,

𝜇new = 𝜇tar − 𝜇im,

𝐼new = 𝐼 (𝑛) + 𝜇new,

(1)

where 𝐼(𝑛) is the intensity value for each channel
𝑌, 𝐼, 𝑄 from the input image; 𝜇im is the mean value for
each channel from the input image; 𝜇tar is the mean
value for each channel 𝑌, 𝐼, 𝑄 from the reference
image with a matrix of size 𝑚 × 𝑛; 𝐼new is the new
image with an adjustment for both the color and
brightness to each channel 𝑌, 𝐼, 𝑄.
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Figure 1: Blocks diagram of the SEVUEmethodology. Two phases are performed: training and testing phases.Themain processes of SEVUE
are the following: an image enhancement to adjust the color and brightness levels of the input images; a color clustering process using SOM1
and SOM2 (SOM2 refines the results of SOM1); a classification process by a Bayesian classifier which segments vegetation from input images;
and finally a process for recovering areas incorrectly classified as nonvegetation, which at the output will yield the segmented image.

(a) (b)

Figure 2: Image enhancement. (a) Original image and (b) image with color and brightness correction.

(4) The 𝐼new image is reconverted from YIQ to RGB color
model.

The resulting image after the enhancement process is an
RGB image (see Figure 2). RGB color model is not a good
choice for color image processing because it is highly cor-
related [27], for this reason in the training phase, a color
transformation from the RGB color model into HSV and CIE
𝐿
∗

𝑎
∗

𝑏
∗ colormodels are applied to the enhanced image. HSV

andCIE𝐿∗𝑎∗𝑏∗ are nonlinear colormodels and are less sensi-
tive to variations of illumination intensity [4]; consequently a
more detachable feature space is produced.

2.2. SOM Training. A color clustering process is carried out
with the set of training images by applying two SOMs. SOM
is regarded as a specific region-based image segmentation
technique by [28]. SOM combined with 𝐾-means has
achieved better segmentation results in natural color image
segmentation compared to JSEG, which is one of the most

used techniques for segmentation based on regions of images
taken under natural (uncontrolled) conditions [29].The SOM
training generates a map with output neurons, where each
neuron represents a color group.The SOM training algorithm
applied in SEVUE methodology was proposed by Wu et al.
[30], wherein schemes of growing, pruning, and merging
of neurons are implemented to find an appropriate number
of output neurons automatically. Some considerations were
made during the SOM training.

(i) The first SOM considered as input values (features) to
themap the𝐻 and 𝑏∗ components fromHSVandCIE
𝐿
∗

𝑎
∗

𝑏
∗ color model for each pixel of the image. The

components𝐻 and 𝑏∗ were chosen because they can
distinguish between vegetation and background color
as is demonstrated in [26].

(ii) The SOM training algorithm is initialized with a
number of neurons 𝑁 = 2, which is in accordance
with two clusters. The weight vectors for each neuron
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are initializedwith the two first input vectors (𝑤
𝑖
= 𝑥
𝑖
,

𝑖 = {1, 2}).
(iii) The training algorithm considered a maximum num-

ber of neurons to be created, which attempts to
represent the color groups on the image effectively.
A trial-and-error process was made and best results
were observed when the maximum number was
defined with a value of 9.

(iv) The winner competition neuron was found applying
an heuristic, which is described as follows:

𝑐 =

{{

{{

{

NULL if (argmin
𝑖

V
𝑖
> 𝜃)

argmin
𝑖

V
𝑖

otherwise

V
𝑖
= 𝐷 (𝑥 − 𝑤

𝑖
) ∀
𝑖
∈ {1, . . . , 𝑚} ,

(2)

where V
𝑖
is the output value of the 𝑖th neuron with a

weight vector 𝑤
𝑖
; 𝜃 is a threshold with a value of 10

chosen by a trial-and-error process; 𝑥 is an input
vector; 𝐷 is the similarity measure between the
input vector and the weight vector; in this work the
Euclidean distance was considered as measurement.
A new neuron is created when 𝑐 = NULL (growing
scheme). The input vector 𝑥 is assigned as the weight
vector 𝑤 of the new neuron.

(v) The thresholds to decide when to create (growing
scheme), eliminate (pruning scheme), and merge
neurons were determined by a trial-and-error pro-
cess. Best results were obtained with a value of 10 for
growing and 5 for merging. The elimination of neu-
rons, pruning scheme, was done by deleting that neu-
rons rarely winner (low density) with a frequency less
than a predefined percentage, which is decremented
in one for each SOM iteration. The initial percentage
was defined with a value of 15%.

After the training of the SOM, the set of training images were
classified into the 9 color groups (see Figure 3) by assigning
each pixel of the images to the color group that corresponds
with the minimum Euclidean distance. This process is a pre-
segmentation of the training images based on regions because
it consists in grouping pixels of similar intensity levels.
This process creates 9 new images for each training image. As
observed in Figure 3, the images created for the color groups
with a high value in its 𝐻 color component (see Table 1)
grouped the green color (vegetation) and those with low
values grouped the background color (nonvegetation). The
labeling process as vegetation or nonvegetation of the set of
new images generated by each color group was possible by
using𝐾-means.𝐾-means clustered into two clusters the color
groups by applying the Euclidean square distance as mea-
surement. Then, these clusters were labeled as vegetation or
nonvegetation in accordance with their value in the 𝐻 color
component by applying a predefined rule (3) as follows:

Rule 1:{if 𝐻 == max then 𝐶
𝑖
(𝐻, 𝑏
∗

) = vegetation
else 𝐶

𝑖
(𝐻, 𝑏
∗

) = Nonvegetation,
(3)

where 𝐶
𝑖
(𝐻, 𝑏
∗

) is the cluster 𝑖 and 𝑖 = {1, 2} (the two result
clusters by 𝐾-means); Max is the maximum value of the 𝐻
channel for the two clusters. Table 1 shows the results for
the 10 iterations (𝑘) of cross-validation where it is observed
that mean values for the vegetation cluster (𝑉) correspond to
𝑉mean [57, 181] for [𝐻, 𝑏

∗

], respectively.
After classification, it was observed that some color

groups labeled as vegetation incorrectly classified back-
ground colorwithin its group, or conversely, in groups labeled
as nonvegetation some disease or vegetation areas were incor-
rectly classified. Generally, these classifications errors are pre-
sented because of noise information with similar tonalities.
For example, in Figure 3 the image corresponding to the color
group 3 grouped regions of moldy ground due to similarity
with green vegetation. To address these misclassifications,
we train a second SOM with the images generated for that
color group with the objective of separating those areas and
integrating them into their corresponding color group, veg-
etation or nonvegetation. Through visual inspections to the
set of images, it was observed that the color groups with mis-
classifications presented values [𝐻, 𝑏

∗

] lower than the mean
value for vegetation𝑉mean [57, 181]. Considering those obser-
vations, it was possible to implement a procedure to select
automatically the color group of nonvegetation or vegetation
to be trained again.

(1) Search in the vegetation color groups 𝑤
𝑖𝑘
[𝐻, 𝑏
∗

] <

𝑉mean [57, 181], where 𝑖 is the color group, 𝑖 =

{1, . . . , 9}, and 𝑘 is the fold in the cross-validation
𝑘 = 1, . . . , 10.

(2) If some color group is selected, then

(2.1) the color group with the maximum Euclidean
distance to 𝑉mean is chosen to be trained,

(2.2) search in the rest of vegetation color groups
𝑤
𝑖𝑘
[𝐻, 𝑏
∗

] where 𝐻 < 57 and relabel them as
nonvegetation.

(3) else

(3.1) search in the nonvegetation color groups
𝑤
𝑖𝑘
[𝐻, 𝑏
∗

] < 𝑉mean [57, 181]

(3.2) if some color group is selected, then
(3.2.1) the color groups with the minimum Eucli-

dean distance to 𝑉mean is chosen to be
trained.

This procedure is repeated for each one of the 10-fold.
The color groups selected by the procedure are highlighted in
Table 1. For example, for 𝑘 = 2 the color group𝑤

3
was selected

to be trained again and the color group 𝑤
4
was relabeled as

nonvegetation. All images generated for the selected color
group assume the role of input to the second SOM training.
The training considerations for the second map are the same
as presented at the beginning of this section, except that, in
this case, we considered the 𝑉 channel from the HSV color
model and 𝐿 from the CIE 𝐿

∗

𝑎
∗

𝑏
∗ color model as the input

values to the map because they showed better discrimination
between vegetation and background with similar tonalities to
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(a) Input image

(b) Color group 1 (c) Color group 2 (d) Color group 3

(e) Color group 4 (f) Color group 5 (g) Color group 6

(h) Color group 7 (i) Color group 8 (j) Color group 9

Figure 3: Images generated for the different color groups from an input image. The presented color groups correspond to 2nd iteration of
cross-validation.

vegetation (moldy ground). The 𝑉 and 𝐿 color components
were chosen based on the observations of the resulting
images due to the fact that it was not possible to quantify
the segmentation performance between color components
because the manual segmentation of the background was not
considered. As final step of the color clustering process, all the
color groups images labeled as vegetation are got together to
create a new set of images (see Figure 4(a)).The same process
is applied to the color group images labeled as nonvegetation

(see Figure 4(b)). Therefore the new set of images consists of
30 vegetation images and 30 nonvegetation images which will
be used as knowledge by the supervised classifier (Bayesian
classifier) for vegetation segmentation purposes. The next
section describes details about the Bayesian classifier.

2.3. Image Segmentation by the Bayesian Classifier. The veg-
etation segmentation process is carried out by a Bayesian
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(a) (b)

Figure 4: The resultant images by joining the different color groups. (a) The resultant image for the color groups labeled as vegetation and
(b) the resultant image for the color groups labeled as nonvegetation.

classifier, performing a pixel level classification of the input
images for labeling each pixel as vegetation or nonvegetation.
Bayesian reasoning is based on the assumption that optimal
decisions can be made by relating probability distributions
with observed data. When these probabilities are not known
a priori they are often estimated by a training process, where
examples are incorporated into an algorithm and a supervisor
determines the different classes. The set of vegetation and
background images created by the SOM clustering process
are considered as examples for training the classifier; in our
case the classes were determined automatically by the SEVUE
methodology. The conditional probabilities are estimated by
creating two color histogram models (vegetation, nonvege-
tation) from the examples images in the training process.
The histogram represents the relative frequency of each
combination (𝑟𝑔𝑏) in the image. For classification purposes,
the histogram counts are converted into discrete probability
distributions as follows:

𝑃 (𝑟𝑔𝑏) =
𝑐 (𝑟, 𝑔, 𝑏)

𝑇
𝑐

, (4)

where 𝑐(𝑟, 𝑔, 𝑏) represents the count in the histogram bin
associated with the (𝑟, 𝑔, 𝑏) color combination and 𝑇

𝑐
is the

total count obtained by summing the counts in all of the bins.
We formed the histograms with a bins number of 64 × 64 ×

64. Given vegetation and nonvegetation histograms, we can
compute the probability that a given color value (a (𝑟, 𝑔, 𝑏)
combination) belongs to the vegetation (V) andnonvegetation
(∼ V) classes using the Bayes theorem, described as

𝑃 (V | 𝑟𝑔𝑏) =
𝑃 (𝑟𝑔𝑏 | V) 𝑃 (V)

𝑃 (𝑟𝑔𝑏 | V) 𝑃 (V) + 𝑃 (𝑟𝑔𝑏 |∼ V) 𝑃 (∼ V)
,

(5)

where the conditional probabilities 𝑃(𝑟𝑔𝑏 | V) and 𝑃(𝑟𝑔𝑏 |∼

V) and a priori probabilities 𝑃(V) and 𝑃(∼ V) are directly

computed from the vegetation and nonvegetation his-
tograms, respectively,

𝑃 (𝑟𝑔𝑏 | V) =
V (𝑟, 𝑔, 𝑏)

𝑇V
,

𝑃 (𝑟𝑔𝑏 |∼ V) =
𝑛V (𝑟, 𝑔, 𝑏)

𝑇
𝑛V

,

(6)

where V(𝑟, 𝑔, 𝑏) is the pixel count contained in bin (𝑟, 𝑔, 𝑏) of
the vegetation histogram, 𝑛V(𝑟, 𝑔, 𝑏) is the equivalent count
from the nonvegetation histogram, and 𝑇V and 𝑇

𝑛
V are the

total counts contained in the vegetation and nonvegetation
histograms, respectively.

A pixel is classified as vegetation if

𝑃 (V | 𝑟𝑔𝑏) ≥ 𝜃, (7)

where 0 ≤ 𝜃 ≤ 1 is a threshold. Alternatively, a faster way is
to apply the following rule

𝑃 (𝑟𝑔𝑏 | V) ≥ 𝑃 (𝑟𝑔 |∼ V) . (8)

2.4. Recovering Areas Incorrectly Classified as Nonvegetation.
In applications of vegetation segmentation in natural and
complex environments, the color has yielded efficient results
as shown by methods such as CIVE [21] and excess-green
[22], among others. However, some ambiguities related to
color pixels may arise, due to similarities between the disease
color and the background color [4], when the segmentation of
diseased vegetation is being carried out. In this work, a color
ambiguity problem appears in the images because of color
similarities between the background and the visual symptoms
of powdery mildew disease observed in the leaves. After
applying the Bayesian classification, it was observed that
some lesion areas of the images were labeled as nonvegetation
(see Figure 5), which is due to the fact that the similarity of
color tones causes the SOM to integrate both the background
and the disease areas into the same color group.
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(a) (b)

Figure 5: (a) Original image and (b) same image after applying Bayesian classifier.

(a) (b) (c) (d) 

Figure 6: A process that extracts and selects contours which encloses disease areas. (a) Image segmented with the Bayesian classifier, (b)
binary image, (c) contour extraction, and (d) recovering of contours corresponding to vegetation/disease areas and noise elimination.

This work proposes the extraction and analysis of con-
tours from the binary image generated after the Bayesian
classification for recovering areas incorrectly classified as
nonvegetation. The algorithm proposed in [31] was used for
the contour extraction. The basic concept of this algorithm
consists of tracking the edges by considering a topological
analysis. Therefore, the relationship between inner and outer
edges is extracted.

Themost important contours for the purpose of this work
were those that represent the inner edges.Once contourswere
extracted, the next step is to select and analyze the contours
whose measurement in pixels is less than a predefined
threshold. The process is described in Figure 6.

Powdery mildew is manifested in its initial stage with
small whitish spots on leaves. For this reason, it was consid-
ered that small contours that correspond to areas surrounded
by pixels labeled as vegetation probably are contours of
disease areas. After testing multiple values of thresholds, it
was considered that contours with a pixel count less than 300
pixels and larger than 20 pixels represent diseased areas. It
was inferred that contours larger than 300 pixels correspond
to vegetation regions or background; therefore they are not
analyzed.

A contour with a pixel count less than 20 pixels is con-
sidered as noise.The area that these small contours enclose is
labeled as vegetation or nonvegetation by analyzing its neigh-
boring pixels from the binary image, counting those pixels
labeled with 1 (vegetation neighbor pixel) and with 0 (non-
vegetation neighbor pixel). If the count for neighbor pixels

labeled as vegetation is bigger than the count for nonvege-
tation pixels, then the contour area is labeled as vegetation,
otherwise as nonvegetation.

In the case of contours larger than 20 pixels, the analysis
of the area that encloses the contour wasmade by considering
its standard deviation (𝑆) for both𝐻 and 𝑏∗ channels, which
is obtained by

𝑆 = (
1

𝑛 − 1

𝑛

∑

𝑖=1

(𝑔
𝑖
− 𝑔)
2

)

1/2

, (9)

where 𝑛 is the area (number of pixels) that encloses the
contour, 𝑔

𝑖
represents the𝐻 or 𝑏∗ value of the pixel 𝑖, and 𝑔 is

themean value of𝐻 or 𝑏∗ in the area enclosed by the contour.
The rule for labeling the contour area as vegetation or non-
vegetation is described as follows:

Rule 2:{if (𝑆
𝐻
> 𝜃, 𝑆
𝑏
∗ > 𝜃) then 𝐶

𝑧
= vegetation

else 𝐶
𝑧
= Nonvegetation,

(10)

where 𝐶
𝑧
is the analyzed contour and 𝜃 is a threshold with a

value of 2.4. The value was chosen after carrying out experi-
ments withmultiple values and the best results were observed
with this threshold.
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3. Assessing the Performance of
SEVUE Methodology

The performance assessment of the vegetation segmentation
methodology proposed in this work is quite difficult because
the uncontrolled illumination and background conditions
bring about highly complex images to be analyzed. Some
techniques that have been used for this purpose consist of
comparing an image that has been segmented manually with
the same image but segmented using a proposed methodol-
ogy [6, 22, 25]. The procedure used in this work to assess the
methodology performance is based on the approach men-
tioned before which was proposed by Camargo and Smith
[6]. They compared the two images from two perspectives,
the first one by analyzing all the pixels from the image 𝑧 (11)
and the second one by analyzing the pixels that are considered
as disease 𝑑 (12). Consider the following:

𝑧 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐼 (𝑖, 𝑗) , (11)

𝑑 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐼 (𝑖, 𝑗) == 1. (12)

The manual segmentation was done by overlapping a
grid on the image; then each box was evaluated and labeled
according to a color schema; white(1)was used to represent a
disease region and black(0) was used to represent a nondis-
eased region.The same process was done for labeling vegeta-
tion regions.

The images used by Camargo and Smith [6] correspond
to a single leaf. They focused on the disease areas without
considering complex background. In our work we did not
analyze all the pixels of the image, but only those areas of the
image that correspond to leaves with lesion regions which are
localized in the foreground.Therefore, 𝑧 (13) was modified to
analyze only the pixels labeled manually as vegetation:

𝑧 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐼 (𝑖, 𝑗) == 1. (13)

The manual segmentation carried out in this work con-
sisted of marking separate contours on the image in areas
considered either as vegetation or as diseased; the pixels into
the area enclosed by the contour were labeled with the value
of 1. The set of pixels manually labeled either as vegetation or
as disease are represented by (𝑝V) or (𝑝𝑑), respectively, and
those automatically labeled using the SEVUE methodology
are represented by (𝑞V) or (𝑞𝑑). Then the comparison was
made according to the following:

𝑧 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

((𝑝V (𝑖, 𝑗) , 𝑞V (𝑖, 𝑗)) == 1) ,

𝑑 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

((𝑝
𝑑
(𝑖, 𝑗) , 𝑞

𝑑
(𝑖, 𝑗)) == 1) .

(14)

The percentage of missegmentation of disease (𝑑
𝑒
) and

vegetation (𝑧
𝑒
) areas is represented by the following equation:

𝑧
𝑒
=

(∑
𝑚

𝑖=1

∑
𝑛

𝑗=1

((𝑝V (𝑖, 𝑗)! = 𝑞V (𝑖, 𝑗))) × (𝑚 × 𝑛))

100
,

𝑑
𝑒
=

(∑
𝑚

𝑖=1

∑
𝑛

𝑗=1

((𝑝
𝑑
(𝑖, 𝑗)! = 𝑞

𝑑
(𝑖, 𝑗))) × (𝑚 × 𝑛))

100
.

(15)

4. Results and Discussion

The 𝐾-fold cross-validation technique was applied in this
work with the goal of quantitatively assessing the perfor-
mance of the proposedmethodology (SEVUE).The value of 𝑘
was considered in 10-fold that correspond to 10 iterations. A
set of 30 imageswas used.Most of the images presented leaves
with areas that corresponded to a visual symptom of disease.
The images were manually segmented by three users, who
separatelymarked on the images the regions that they consid-
ered as vegetation or as disease. The users segmented only
those regions in foreground due to the fact that these provide
relevant information from a practical point of view, as
opposed to regions at the rear of the scene because these were
blurred.

The most relevant results to be assessed are related to
aspects such as the segmentation rate of diseased and healthy
vegetation in tomato images and the recuperation of these
disease or vegetation areas incorrectly classified as nonveg-
etation after the application of the Bayesian classification.

4.1. Segmentation of Healthy and Diseased Vegetation. An
initial assessment was made to determine the accuracy of the
SEVUE methodology for segmenting greenness from color
images. The methodology results were assessed up to the
Bayesian classification process shown in Figure 1, without
considering the process of extraction and analysis of contours
for the recuperation of incorrectly classified areas.

The vegetation segmentation results obtained by the
SEVUEmethodology were assessed by comparing them with
the manual segmentation (as described in Section 3) done by
each user. Additionally, two methods were implemented and
assessed for vegetation segmentation: the two most used
color index methods, CIVE and ExG-ExR. The results of the
mentionedmethodswere comparedwith those yielded by the
SEVUE methodology.

The ExG-ExR is calculated using (16), from [22], which
are described as

ExG = 2𝑔 − 𝑟 − 𝑏

ExR = 1.4𝑟 − 𝑔,

(16)

where 𝑟,𝑔, and 𝑏 are the normalized components and they are
determined as follows:

𝑟 =
𝑅
∗

𝑅∗ + 𝐺∗ + 𝐵∗
, 𝑔 =

𝐺
∗

𝑅∗ + 𝐺∗ + 𝐵∗
,

𝑏 =
𝑅
∗

𝑅∗ + 𝐺∗ + 𝐵∗
.

(17)
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Figure 7: Example results of segmented images by the three methods being compared.

𝑅
∗,𝐺∗ and 𝐵∗ are the values of the color channels of RGB

image, which have also been previously normalized as a range
from 0 to 1; they are defined as follows:

𝑅
∗

=
𝑅

𝑅max
, 𝐺

∗

=
𝐺

𝐺max
, 𝐵

∗

=
𝐵

𝐵max
, (18)

and 𝑅max, 𝐺max, 𝐵max = 255 are the maximum total value for
each primary color. The color index CIVE is calculated using
the following equation from [21]:

CIVE = 0.441𝑅 − 0.811𝐺 + 0.385𝐵 + 18.787. (19)

After applying the color indices, the output images are
gray level images. An Otsu threshold method was adopted

to convert each CIVE image to a binary image and a zero
threshold in the case of result image from ExG-ExR.

Images segmented by the three methods are shown in
Figure 7. Compared with CIVE and ExG-ExR, the SEVUE
methodology results showed that segmentation rate is supe-
rior by incorporating some disease areas that are not seg-
mented by these methods. Also ripe fruits are removed and
less background information is included.

Table 2 shows the average for matching and misseg-
mentation between the manual segmentation performed by
each one of the three users and the automatic segmentation
performed by the three methods.The columnMatch (match-
ing) of Table 2 shows the averages of the matching results
between the vegetation areas (including disease areas) manu-
ally segmented by each user (𝑆1, 𝑆2, 𝑆3) with the vegetation
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Image 1 Image 2 Image 3

Figure 8: Example of resulting images after applying the process for recovering vegetation and disease areas incorrectly classified as
nonvegetation.

Table 2: Matching and missegmentation results.

User SEVUE CIVE ExG-ExR
Match. Miss. Match. Miss. Match. Miss.

S1 95.181 27.003 75.906 58.391 88.796 50.284
S2 94.821 30.920 76.267 66.213 88.539 54.895
S3 94.287 28.155 75.149 61.282 87.726 53.171
Avg. 94.76 28.69 75.77 61.96 88.35 52.78

areas automatically segmented by SEVUE (the proposed
methodology), CIVE, and ExG-ExR; meanwhile, the column
Miss. (missegmentation) shows the missegmentation results
between the disease areas manually segmented and those
automatically segmented for each method (only areas of
disease). The percentages shown in the table are the average
results of the cross-validation after 10 iterations for each user
and for each method.

It is observed from Table 2 that the average difference for
matching between the manual and automatic segmentation
was 5.2% for SEVUE, 24.2% for CIVE, and 11.6% for ExG-
ExR. The smallest average difference for matching was
obtained by SEVUE and also the smallest average misseg-
mentation with 28.69%, considerably better than the other
methods.

4.2. Recovery of Areas Incorrectly Classified as Nonvegetation.
The second aspect to be assessed is related to the obtained
results after executing the process aimed at recovering vegeta-
tion and disease areas that were not properly segmented.This
process consists in the extraction and analysis of contours,
as described in Section 2.4. Figure 8 shows some examples
of resulting images after applying the process for recovering
disease and vegetation areas incorrectly classified as nonveg-
etation to the same images presented in the previous section
(Figure 7). Derived from a visual inspection of the image
results some conclusions were extracted, which are described
below.

(i) The SEVUE methodology recovers a larger area of
diseased regions.

(ii) Small isolated areas classified as vegetation, and con-
sidered as noise, were accurately removed by SEVUE.

(iii) We have to highlight that in spite of the fact that
the changing illumination conditions and the back-
ground areas with similar color as vegetation could
have affected the vegetation segmentation results in
the image, these results were considerably robust as
shown before.

(iv) A limitation of the methodology is related to the
nonelimination of green fruits from the images and
also to small areas belonging to background labeled
by the algorithm as vegetation.

The results presented in Table 3, which have been
obtained after the execution of all of the process of the SEVUE
methodology, show the matching and missegmentation per-
centage between the manual and automatic segmentation.
These results correspond to each set of images that were
segmented by the three users (𝑆1, 𝑆2, 𝑆3).

The percentages are represented by the average results of
each set of images belonging to the iterations of the cross-
validation. It was observed that the SEVUE methodology
obtained better results, with a missegmentation average of
8.62% (from Table 3), compared to CIVE with an average
of 61.9% (from Table 2) and ExG-ExR with 52.7% (from
Table 2). It is observed, from Table 3, that the average dif-
ference for missegmentation, between the manual and auto-
matic segmentation, was improved by SEVUE with an aver-
age of 20% after applying the process for recovering areas
incorrectly classified as nonvegetation.

The Wilcoxon signed rank test assessed the reliability of
the SEVUE results taking into consideration the percentages
of matching and missegmentation for the whole set of train-
ing images (30 images). A statistical significance level of 5%
was considered. The analysis shows that the 𝑃 values for the
missegmentation of disease areas are less than 0.05 and hence,
for all cases, null hypothesis is rejected and alternative hypo-
thesis is accepted to confirm that there is a significant
difference between the proposed methodology SEVUE and
the methods proposed by CIVE and ExG-ExR.

5. Conclusions

This work dealt with a methodology for segmenting healthy
and diseased vegetation from images of tomato plants under
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Table 3: Matching and missegmentation results.

Iter. S1 S2 S3 Avg.
Match. Miss. Match. Miss. Match. Miss. Match. Miss.

1 90 52.5 90.22 37.54 90.82 36.42 90.35 42.15
2 98.33 8.43 98.02 6.38 97.46 5.6 97.93 6.8
3 99.84 0.15 99.38 0 98.61 0.15 99.28 0.1
4 99.07 0.21 98.85 0.03 98.78 1.09 98.9 0.44
5 98.74 6.5 98.22 15.26 97.64 7.41 98.2 9.72
6 94.77 10.44 95.4 11.11 93.42 10.38 94.53 10.64
7 97.69 9.96 97.6 15.96 96.68 17.45 97.33 14.46
8 99.66 0.03 99.27 0.06 99.42 0.07 99.45 0.05
9 98.67 0 98.78 0 98.41 3.24 98.62 1.08
10 99.44 0.04 97.97 0 98.75 2.3 98.72 0.78
Total 97.62 8.83 97.37 8.63 97 8.41 97.33 8.62

uncontrolled outdoor illumination conditions. These condi-
tions make the problem a complex task to be confronted.
However, in spite of using vision equipment with technical
limitations, we proposed in this work a methodology that
copes with this problem yielding better results compared
with other previously reported methods. The methodology
includes an enhancement process of the captured image qual-
ity, coping in this way with the unpredictable effects of illumi-
nation. In addition, an unsupervised learningmethod (SOM)
whose function consisted in separating the color images
previously enhanced in vegetation and nonvegetation color
groups. The methodology also includes a supervised method
(Bayesian classifier) whose a priori knowledge was the veg-
etation and nonvegetation colors extracted from images by
the SOM, and its function consisted in the vegetation seg-
mentation from images. The proposed procedure for recov-
ering areas incorrectly classified as nonvegetation, after the
application of the Bayesian classification and the inclusion of
a second SOM training into the methodology, demonstrated
its capacity to achieve a better segmentation rate than the
performance yielded by the color index methods CIVE
and ExG-ExR. A comparison process that confronted the
performance of the proposedmethodologywith imagesman-
ually segmented by users yielded good results. The average
difference of thematching between themanual and automatic
vegetation segmentation (including disease areas) was 2.2%
for SEVUE, 11.6% for ExG-ExR, and 24.2% for CIVE. The
average of missegmentation of disease areas was 8.62% for
SEVUE, 52.7% for ExG-ExR, and 61.9% for CIVE.Anonpara-
metric statistical hypothesis test using the Wilcoxon signed
rank sum test demonstrated that missegmentation results of
the proposed methodology SEVUE were significantly better
compared with CIVE and ExG-ExR. Summarizing, it is con-
cluded that the developed methodology is relatively robust
vis-à-vis the outdoor illuminations and stable for applications
under uncontrolled environments. We aimed at presenting
the methodology SEVUE in practical terms. Therefore, we
consider that thismethodology can be replicated by the inter-
ested users. Some important future works to be performed
are (1) to use the segmented images in applications of disease
recognition; (2) to assess the performance of the proposed

methodology in the segmentation of diseases areas associated
with other vegetables.
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