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Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this
study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography
optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to
generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby
feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of
CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and
experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA.

1. Introduction

In the domain of science and engineering, most of the
problems are attributed to constrained multiobjective opti-
mization problems (CMOPs), which need to optimize mul-
tiple conflicting objectives subject to various inequality and
equality constraints. So the algorithms of solving CMOPs
have to search the set of nondominated feasible solutions
tulfilling all constraints. It is desirable that those gained
solutions can approximate the true Pareto front with better
diversity and even distribution. Evolutionary algorithms
(EAs) are population-based search algorithms and can find
multiple optimal solutions in one single run, and they are
suitable to solve multiobjective problems (MOPs). But for the
specific application of solving CMOPs, we find that most of
the existing constrained multiobjective EAs (MOEAs) cannot
effectively exploit the population because their obtained con-
vergence and diversity are not acceptable.
Biogeography-based optimization (BBO) algorithm is a
population-based search algorithm [1, 2], which had been

applied to solve single objective optimization problems
(SOPs) and some engineering problems [3-5]. In the aspect
of MOPs, Ma et al. decomposed multiobjective optimization
problems into several related subproblems and used parallel
BBO to optimize each subproblem [6]. We successfully
improved BBO for MOPs, which had proved that the migra-
tion strategy of BBO is effective for solving MOPs [7, 8].
In view of good population exploiting ability of BBO, in
this study, we propose a novel constrained multiobjective
biogeography optimization algorithm (CMBOA) for the first
time and analyze its convergence by the probability theory.
The proposed CMBOA includes the following features.
First, the individuals are classified into the feasible and
infeasible ones based on their constraint violation. Sec-
ond, feasible individuals are evaluated by combining their
objective functions value and crowded distance. Infeasible
individuals are evaluated by combining their constraint viola-
tion and Euclidean distance from the nearest nondominated
feasible individual. Third, a new migration operator with
additional disturbance is designed to generate diverse feasible



solutions. And infeasible solutions nearby feasible regions
are recombined with their nearest nondominated feasible
solutions to evolve towards feasibility.

In rest of the paper, reviews of multiobjective evolution-
ary algorithms (MOEAs) for CMOPs are given in Section 2,
and basic conception of CMOPs, the review of CMOPs,
and the BBO are briefly introduced. The CMBOA is pro-
posed in Section 3. In Section 4, compared with the classical
algorithms on benchmark CMOPs, simulation results on
CMBOA are analyzed and discussed. At last, conclusions are
drawn in Section 5.

2. Related Background

2.1. Problem Statement. The aim of the constrained multi-
objective optimization problems (constrained MOPs) is to
find multiple nondominated solutions under constraints. If
these nondominated solutions are uniformly distributed and
widely spread along the Pareto front, their quality is better.
Without the loss of generality, we consider the minimization
of CMOPs, which can be defined as follows:

min y=F®) =[fi(®),f,®),..., f,, ®)]

st g;,(x)<0, i=12,...,g
hi(x)=0, j=q+1,g+2...1 )
x = (x,%,...,%,)
AT < < XM = 1,2,..,m,

where X = (x1,%,,...,%,) € R" is a decision vector with n
decision variables. y = (f, f5--+» f,n) € R™ is an objec-
tive vector with m objects. Each dimension variable of the
decision space is bounded by its upper bound x;"* and
lower bound x"™". g;(x) and h(x) are inequality constraints
and equality constraint, respectively. The equality constraints
generally should be transformed into inequality form and

combined with other inequality constraints as follows:

6,0 - { max {g; (x),0), @

max{l hj (x) - 6, 0),

wherei = 1,2,...,4,j = q+1,q+2,....,I,and d is a
tolerance parameter for the equality constraint. In this paper,
only CMOPs with inequality constraints are considered.
Constraint violation function of a solution x is defined as
follows:

v(x) = Y (G (%)), (3)
i=1

where v(x) > 0. If v(x) > 0, then x is an infeasible solution;
otherwise, it is a feasible solution. By the degree of constraint
violation, infeasible solutions can be compared with another
one. For feasible solutions, Pareto domination is defined as
follows, which is applied to evaluate their fitness.
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Definition 1 (Pareto domination solution). Let x, y € R”, and
a solution vector x is said to dominate a solution y and is
denoted by x < y if

Vie{1,2,...,m}: fi(x) < £ (y),

(4)
Jje{l,2,....m}: f;(x) < f;(y).

2.2. Reviews of CMOEA. Most of MOEAs are proposed
for solving unconstrained multiobjective optimization [9].
According to different constraint handling methods adopted
in MOEAs, the existing constrained multiobjective evolu-
tionary algorithms (CMOEAs) can be categorized into five
main groups.

The first group adopts the constraint handling techniques
applied for single objective constraint optimization [10-12].
Geng et al. proposed a constrained evolutionary multiob-
jective optimization with infeasible elitists and stochastic
ranking selection (IS-MOEA) [10]. The algorithm conserves
infeasible elitists that acts as bridges connecting discon-
nected feasible regions, and stochastic ranking is adopted
to balance objectives and constraints. IS-MOEA especially
obtains improvement on the problems with two or more
disconnected feasible regions.

The second group uses the basic mechanism of MOEAs
and handles constraints by optimizing them as additional
objectives. Mezura-Montes and Coello put forward a naive
method to solve CMOPs by ignoring infeasible solutions [13].
The algorithm is easy to implement, but when feasible regions
are small and surrounded by infeasible solutions, it is difficult
to find feasible solutions.

The third group is based on ranking of priority of the fea-
sible and infeasible solutions [14-16]. Fonseca and Fleming
proposed a unified approach for multiobjective optimization
and multiple constraint handling [14]. Their algorithm han-
dled constraints by assigning high priority to constraints and
low priority to objective functions, when focusing on search
of feasible solutions. Srinivas and Deb proposed a constrained
multiobjective algorithm, in which constrained dominating
relation of individuals is defined [16]. In this algorithm,
all feasible solutions dominate all infeasible ones. Feasible
solutions are sorted by their Pareto dominating relations
and infeasible solutions are sorted based on their constraint
violation. The algorithm can gain better performance but
unfortunately it ignored the contribution of infeasible solu-
tions to the Pareto front.

The forth group uses repair scheme to reproduce feasible
solutions or less violated solutions from the original infeasible
solutions [17-19]. Jimenez et al. proposed the evolution-
ary algorithm of nondominated sorting with radial slots
(ENORA) [17], which employs the min.-max. formulation for
constraint handling. Feasible individuals evolve toward opti-
mality, while infeasible individuals evolve toward feasibility.
Harada et al. proposed Pareto descent repair (PDR) operator
that searches feasible solutions out of infeasible individuals in
the constraint function space [19].

The fifth group designs new mechanisms to evolve fea-
sible solutions towards Pareto front and evolve the infea-
sible solutions towards feasible regions [20-23]. Ray et al.
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suggested using three different nondominated rankings of
the population [20]. The first ranking is performed by using
the objective function values; the second is performed by
using different constraints; and the last ranking is based
on the combination of all objective functions and con-
straints. Depending on these rankings, the algorithm per-
forms according to the predefined rules. Chafekar et al.
proposed two novel approaches for solving constrained mul-
tiobjective optimization problems [21]. One method called
objective exchange genetic algorithm of design optimization
(OEGADO) runs several GAs concurrently with each GA
optimizing one objective and exchanging information about
its objective with others. Another called objective switching
genetic algorithm for design optimization (OSGADO) runs
each objective sequentially with a common population for
all objectives. Deb proposed GA’s population-based approach
that does not require any penalty parameter. Once sufficient
feasible solutions are found, a niching method (along with a
controlled mutation operator) is used to maintain diversity
among feasible solutions [23].

2.3. Biogeography-Based Optimization (BBO). Biogeography
is the science of the geographical distribution of biological
organisms. In BBO, each problem solution is considered
as a “habitat” with habitat survival index (HSI), which is
similar to the fitness of EAs to evaluate an individual. High
HSI habitats share their features with low HSI habitats. The
process of sharing good features among solutions is denoted
as migration. BBO adopts the migration strategy to share
information among solutions. Good individuals’ information
can be conserved during the evolutionary process to ensure
the population convergence. A mutation operator is used to
generate diverse solutions to promote the diversity of the
population. The detailed operations are described as follows.

Suppose that the species number of each individual i is §;,
and then its immigration rate A; and emigration rate y; can
be calculated as follows [1]:

©)

W

max

where S, is the most species number of all habitats.
I and E represent the maximization of immigration rate
and emigration rate, respectively. In migration operator,
the individuals’ immigration rate and emigration rate are
used to decide whether a solution should share its feature
value with the other solutions. A better solution has a
higher immigration rate and a lower emigration rate. By the
migration, the solutions with high emigration rate tend to
share their information with those with high immigration
rate. Solutions with high immigration rate accept a lot of
features from solutions with high emigration rate. With the
aid of migration, BBO shows good exploitation ability in the
search space.

Consider that species number change with species
migrating; the probability P, that the habitat contains exactly

S species can be calculated using the following differential
equation:

[ - (/\s + "ls) Ps + Ms+1Ps+1’
S$=0,
J - (/\s + /’ls) Ps + /\s—lps—l + M5+1Ps+1’
§ 1<S<S—1
- (/‘s + [’ls) Ps + AS—IPS—P
S =8 ax

(6)

Then the mutation rate m; is defined as [1]

P
mizpmute<1_ : )) (7)
P

max

where P, . is a predefined parameter, P, is calculated accord-
ingto (6), and P_,, = max,_;.n{P;}. The mutation operator is
implemented based on m;. A solution with low probability P,
is likely to mutate other solutions. Conversely, some solutions
with high P, have very little chance to mutate. By the mutation
operator, the diverse solutions are produced. The detailed

operator on migration and mutation can refer to [1].

3. The Proposed Constrained
Multiobjective Biogeography-Based
Optimization Algorithm

3.1. CMBOA Description. In CMBOA, infeasible solutions
recombine with nondominated feasible individuals and
evolve towards feasibility. Firstly, the initial population is
produced stochastically, and then the population is classified
into the feasible and infeasible ones based on each individual’s
constraint violation. Secondly, depending on whether the
feasible population is empty or not, infeasible population will
adopt two types of operators. If feasible population is empty,
infeasible population will implement differential evolution
operator until feasible individuals present; otherwise, infea-
sible solutions nearby feasible regions recombine with their
nearest nondominated feasible solutions to obtain feasibility.
Diverse nondominated feasible solutions are generated from
feasible individuals by applying the novel migration operator.
With the increasing of nondominated feasible solutions,
update operator is used to limit their number and ensure their
even distribution. Both the feasible and infeasible solutions
are combined in an external archive. The proposed CMBOA
is described as Algorithm 1.
The procedure of CMBOA is described as follows.

Step 1 (initialization). Initialize the iterative number ¢t =
1; the size of feasible elitist and infeasible elitist archive
are N, and N,, respectively. Generate randomly the initial
population A(t) with N(¢) individuals; that is A(t) = {a,(¢),
a(t), ..., anq) (1)}, the external archive M(t) = ©.

Step 2. Update the external archive.

Step 2.1. Divide the combination populations A(t) UM(t) into
the feasible and infeasible ones.
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Step 2: Update of the archive M(t)

Step 3: Generate the offspring population

At+1)=Pt+1)uQ(t+1)
Step 4:lett =t + 1 and return Step 2.

Step I: Parameter setting: population size N, the size of feasible elitist archive N, the size of
infeasible elitist archive N,, maximum generation g,,,.. Generate an initial population A(t),
set the iterative generation t = 1, and archive M(t) = @,

Step 2.I: Divide the population A(t) U M(¢) into the feasible set P(t) and the infeasible set
Q(t) based on their constraint violation.

Step 2.2: Select N, individuals with small fitness from P(¢) by individuals’ fitness sorting to
update feasible archive P(t), and select N, individuals with small constraint violation
from Q(t) to update infeasible archive Q(t).

Step 2.3: Combine P(t) and Q(t) to gain archive set M(t + 1), M(t + 1) = P(t) U Q(t);
Ift > g,... is satisfied, output P(¢) and the algorithm stops; otherwise go the next step.

Step 3.1: If P(t) = @, then P(t + 1) = @, and perform the differential evolution operator on
infeasible population Q(t) to obtain Q(t + 1). Otherwise, go to Step 3.2
Step 3.2: Implement selection operation on P(t) to gain the breeding pool D(t), and then
execute migration operation on D(t) to generate P(f + 1);
Step 3.3: Implement the crossover and mutation on infeasible population Q(t) to generate Q(t + 1).
Step 3.4: Combine P(t + 1) and Q(f + 1) to obtain the offspring population A(t + 1),

ALGgoriTHM 1: CMBOA.

Computing the constraint violation of the individuals in
A(t) U M(t) according to (3), we have

VA UM (@) = {v(a, (1),v(a,(1),....v(ang @)}
(8)

Depending on whether the value of v(g;(t)) is zero or

not, the population A(t) U M(t) is divided into the feasible
subpopulation P(t):

P@) ={p (0 iy O] ©)
and the infeasible subpopulation Q(¢):

QW) =1{a,(®) .9, () ..., an,0) DO} (10)
Note that Nf(t) + Ni(t) = N(2).
Step 2.2 (elitist feasible and infeasible archive). According to

Definition 1, identify nondominated individuals of P(t) to
form the temporary set P'(t):

P @) ={p1 (1), 0 () Pronipy D)} - (1)
If the size of P'(t) is smaller than the predefined size N,

let P(t) = P'(t). Otherwise, the crowding distance I, 4(p; (t))
of individual pi' (), 1 <i < non is computed as follows [24]:

Lo (ol ) = (£ (. ®) - £ (p1, ®))
+(£(pi®) - £ (P, ®)),

where f,(p;(t)) denotes the kth objective function value of
individual p](t), 1 < i < non. According to the sequencing

of crowding distance, select N, largest crowding distance
individuals from P’ (¢) to form the elitist feasible archive P(¢):

Pt)=T,(P' ()
=T {PL O, 03 (O Phony O} (13)

={P . P (). oy, O]

For the infeasible population Q(¢), if its size is smaller
than the predefined size N,, then Q(t) keeps invariable.
Otherwise, the fitness of its individual g;(¢) is calculated as
follows:

_Ja=y)vi(g®)+yd(q®), y>o0,
fit (qi (t)) = {V(qi (t)), y=0,

where y is the proportion of nondominated feasible individu-
als in current population, v(g;(¢)) is constraint violation of the
individual g;(t), and d(g;(t)) denotes its Euclidean distance
away from the nearest nondominated feasible solution. And
then the proceeding N, individuals with small fitness from
Q(t) are conserved in elitist infeasible archive Q(t).

(14)

Step 2.3 (formation of the archive). Combine elitist feasible
archive P(t) and elitist infeasible archive Q(f) to gain the
archive M(t):

M@)=Pt)uQ(®)
= {Pl ), (®)s-. 5N, (1)1 ()59, (8) 5.5 9y, (t)}
={m, (©),my (1),....my (£),....my N, ()}
(15)

Ift > g,.x is satisfied, export P(t) as the output of the
algorithm and the algorithm stops; otherwise, ¢ = t + 1 and
go to Step 3.
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Fori=1to N,

Forj=1ton
If rand < A, then

Else
pit+1) = di,j(t)
End if
End for
End for

Randomly select two individuals d;, d, from the population D(t)
Select individual d; based on its immigration rate Ag

Po(t+1) = d, (1) + 0(B)(dy () — diy (1))

ALGoriTHM 2: Disturbance migration operator T;.

Step 3. Generate the offspring population.

Step 3.1 (operation on feasible solutions). In CMBOA, when
there are no feasible solutions in the current population, that
is, p(t) = @, we use the mutation operator of differential
evolution to produce feasible individuals [25]. That is, three
individuals g,,(f), q,,(t), and g,;(t) are selected randomly
from Q(t) and the mutation operator is performed as (16)
until feasible solutions set p(t) is not empty:

P () =) +7(q0; () = a5 ;®),  (16)

where # is a mutation constant and is a random number in
the region (0, 1). Otherwise, go to the next step.

Step 3.2 (selection operation). For feasible population P(t),
in order to ensure its convergence and even distribution, we
define the fitness value of each individual by combining the
nondominated rank and crowed distance of each individual
pi(t),1<i<Njas

(1-y)
cr (pi (1))

where I 4(p;(t)) and ¢;(p;(t)) denote the individual p;(¢)’s
crowed distance and nondominated rank, respectively, and
y is defined in (14). By this fitness, when the number of
nondominated feasible solutions is small, individuals with
lower ranks have high fitness so that they have more chance
to be selected. With the number of nondominated feasible
solutions increasing, more individuals with large crowded
distance are selected with high probability.

Perform tournament selection operator Tg on P(f) to
form the breeding pool D(t):

fit (p; (t)) = +yLq (p; (1)) 17)

D(t) =Ts (P (1))
=Ts{p, (0, (®),..., pn, (1)} (18)

={d, (1), d, (1),....dy, (1)}

Step 3.3 (migration operation). The original migration opera-
tor of BBO has good exploitation ability of the population, but
it is designed for the integer encoded individuals and single
optimization problem. For continuous MOPs, the migration

operator cannot ensure to produce the diverse solutions. So
we propose a new migration operator. During the process
of species migration, an individual is often affected by the
other individuals. So we introduce a disturbance term in
the migration operation to promote the diversity of the
population. The detail process is shown in Algorithm 2.

In Algorithm 2, the disturbance factor w(t) is defined as

! ). (19)

4

O e e e
where d; j(t) is the jth variable of the individual d,(t),
Imax denotes the maximum iteration number, and ¢ is the
number of iteration at current generation. The amplitude
of disturbance factor w(t) decreases constantly with the
increasing of generation t. At the beginning, large disturbance
makes the population explore a wide region in decision space.
Diverse solutions will be generated to promote the diversity
of population because of difference of w(t). At the end, a small
disturbance is used to exploit effectively the local regions to
guarantee its convergence.

The migration operator T; on the population D(¢) is
defined as

P(t+1)=T;(D(®)
= {T,(d (), T (d, () ... T (dy, ©)} (20)
)., p, B}

Step 3.4 (crossover and mutation operation on the infeasible
population). It had been noticed that infeasible solutions
can contribute to the diversity of solutions on the Pareto
front. When feasible solutions exist in the current population,
an individual g,,(¢) is selected randomly from Q(¢) and
recombined with the nearest individual d,,(t) of D(t). The
crossover operator is described as

qi,j (t + 1) = Aqu,j (t) + (1 - A) er,j (t) > (21)

where A is a recombination parameter in the region (0, 1). By
the operator, infeasible individuals nearby the feasible region
will approximate the feasibility.



The above crossover operation T, on Q(t) is

Q(t+1) =T, (Q(1)
= {Tc (ql (t)) > Tc (QZ (t)) de0 0 Tc (qN2 (t))} (22)

={q (t+1),q,(t+1),...,qy (t+ D}

Step 3.5. Combine P(t+1) and Q(t + 1) to obtain the offspring
population A(f + 1); namely, A(t + 1) = P(t + 1) UQ(t + 1).

Step 4. If the stopping criteria is not satisfied, t = ¢ + 1 and
return to Step 2.

3.2. Time Complexity Analysis of CMBOA. The objectives of
optimization problem are m, the size of population is N, the
size of feasible archive is N, the size of infeasible archive
is N,, and the maximum of iterative times is g,,,. Time
complexity for computation of constraint violation is O(N).
For migration and mutation operators on feasible individuals,
its time complexity is O(N,), while time complexity for
crossover operator on infeasible individuals is O(N,); time
complexity for updating of feasible archive is O(m(2N, +
NZ)Z), updating of infeasible archive is O(m(N, + 2N2)2), and
then the worst time complexity of CMBOA is

O(N)+O(N,) + O(N,) + O (m(2N, + N,)*)
(23)
+0 (m(N; +2N,)*) = 0 (m(2N, + N,)*).

3.3. Convergence Analysis of CMBOA. According to the
description of CMBOA, it can be considered as an evolution
Markov chain:

A(t)iP(t) iD(t) ip(t+1)—>A(t+1). (24)

Let S be feasible solution space, S < N represents a state
space composed of populations whose size is not more than
N, and s; denotes the ith state in state space. A’, denotes that
the population A(t) is in the state s;, and p(P,/ | A’) means
the transformation probability from A’ to P,/. According to
the description of CMBOA, we know that the series {A,},, is
an inhomogeneous Markov chain [26]. By using probability
theory, the convergence of CMBOA is analyzed as follows.

Lemma 2. There exists 0 < 8, < 1, s.t. p(Py,; | Df) >4,

Proof.
d
p(Ba1Df)= T[] plxy)
x€D.,y€Py,
_ H 2 k(x,y)(l Y )nfk(x,y)
X X
x€Dy;,y€P, (25)

>min (A1 = A )

=4,

max

where & = min,p {A,}, f = max,p {A,}, and k(x, y) =
in # y;,1<i<n S8 x; = yil. O
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Lemma 3. There exists 0 < §, < 1, s.t. p(A{ Pi)) =6,

+1|

Proof.

P(Aj | P¢ ) = |Mf (Pt+1UQt+1 UMt+1’<)an (S’<)|
t+1 t+1 |Pt+1 U Qt+1 U Mt+1|

< M* >2N1
2(N; + N,)
é

2>

\%

(26)

where M* = |[M(P,; U Quy U My, <) N M4(S,<)| and
M (P, UQ,,; UM, ,, <) denotes the nondominated feasible
solutions of the population P,,; UQ,,; U M,,,. O

Lemma 4. Let Mf(s, <) be the nondominated feasible solu-
tions set; if s; N M(s,<) = @ and s; N M(s,<)# D, then

there exists 0 < 0 < 1, s.L. p(Aj | Ait) > 0.

t+1

Proof. Using K-C equation, we can obtain

P(Df | Ait)p(PteH | Df)

plAla14)=% X

Sd 5, €S2ANI+N)

x p(A]t'+1 | Pf+1) :
(27)

Note that p(Df | Ait) = 1; based on Lemmas 2 and 3, we
derive

p(AL, 1A})>8,8,=6. (28)
O

Theorem 5. CMBOA is weakly convergent for any initial
population distribution; that is,

lim p (A N My (s,<) = ®) = 0. (29)
Proof. If s; N Mf(s, <) = @, then
P(A N M (5,<) =D [ A})<1-86. (30)

Ifs,n M f(s, <) # @, the archive M(t) is applied to conserve
the elitist individuals; then

p(Ap N M (5,<) =D | A}) =0. ©)
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By (27) and (28), we can obtain

p(Ay N M, (s,<) = D)

=

s,-ﬂMf(s,<):d)

(A N My (5,<) = @ | 4}) p(A))

+ Y p(Apm My (s,<) =0 | AY) p(4)
s,-an(s,<)¢<D

< (1 - 6)t3

Jim p (A, N M (s5,<) = @) =0.
(32)

Hence, CMBOA is weakly convergent for any initial popula-
tion distribution. O

4. Simulation Results

4.1. Experimental Setup. In order to test the validity of
the proposed CMBOA, several benchmark functions with
multiple features are selected including OSY [27], TNK [26],
CONSTR [27], CTP1-CTP5 [28], CF1, CF2, CF4, and CF6
[29]. For OSY, its Pareto front is a concatenation of five
regions and every region lies on the intersection of certain
constraints; for TNK, its Pareto optimal solutions lie on
a non-linear constraint surface; for CONSTR, its Pareto
optimal set is concatenation of the constraint boundary and
some parts of unconstrained Pareto optimal; for CTP serious
functions, their Pareto optimal set is a collection of a number
of discrete regions and most of solutions lie on non-linear
constraint boundary. OSY, CONSTR, CTP1, CF4 and CF6
have continuous Pareto fronts, while the remaining ones have
disjoint Pareto fronts (TNK, CTP2-CTP5, CFl, and CF2).

4.2. Performance Metrics. In this experiment, two perfor-
mance metrics are selected to do quantitatively comparison.

Cover Metric C [30]. Suppose that U and V are two approxi-
mate Pareto optimal sets obtained by Algorithms 1 and 2:

HueU;IveV:u<v}

c,Vv) = V]

(33)

where < denotes the dominated or equal relation. The value
C(U,V) = 1 represents that all individuals in V' are weakly
dominated by individuals in U. C(U,V) = 0 denotes no
individuals in V' which is weakly dominated by U. Note
that C(U,V)+#1 — C(V,U); hence two directions must be
considered simultaneously.

Hyper Volume HV [30]. The indicator calculates the volume
covered by all nondominated solutions in the objective space.
For each solution X;, a hypercube hv;, is constructed with a
predefined reference point and the solution X as the diagonal

corners of the hypercube hv;. All hypercubes are found and
HYV is calculated as follows:

[x]
HV = Jhv,. (34)

i=1

The indicator is related to the approximation and diversity
of the nondominated solution set. The higher the value of HV
is, the better the diversity and approximation of solution set
obtained is.

4.3. Performance of CMBOA on Benchmark Functions

4.3.1. Test on Benchmark Functions. To demonstrate the effec-
tiveness of the proposed CMBOA for CMOPs, 12 benchmark
functions are chosen to show its validity. In the experiment,
each individual is described as a real vector. The parameters
of CMBOA are set as follows: population size = 100, feasible
elitist maximum size N; = 100, infeasible elitist maximum
size N, = 20, the maximum immigration rate and migration
rate E = I = 1, the termination generation = 100, F is a
random in the interval (0.2,0.8), and CR = 0.5.

For all benchmark function, the Pareto fronts obtained
by CMBOA are shown in Figure 1. From this figure, it can be
seen that the Pareto optimal solutions obtained by CMBOA
are very close to the true Pareto front for all benchmark
functions. For most of benchmark functions, the solutions
generated by the proposed algorithm can be distributed
evenly on the true Pareto front except CF2, CF4, and CF6
because they have variable linkages.

4.3.2. Comparison with Original Migration Operator. In order
to demonstrate the effectiveness of the novel migration
operation, OSY and CTP4 are selected. The Pareto fronts
gained by the algorithms with original and novel migration
operator are shown in Figure 2, where “*” denotes the Pareto
front gained by CMBOA with the novel migration and “0”
is the ones gained by the algorithm with original migration
operator. From Figure 2, it can be seen that the algorithm with
original migration cannot converge to the true Pareto front
for OSY and CTP4, and only few solutions are produced for
OSY. However, CMBOA with the novel migration operator
obtains good convergence and diversity for OSY and CTP4,
which demonstrates that the novel migration operator is
superior to the original migration operator for OSY and
CTP4.

4.3.3. Parameter Sensitivity Analysis. The disturbance param-
eter F(¢) is not tuned elaborately but is set as (20). In
this section, to investigate the robustness of the disturbance
parameter F(t), simulations with different settings F(t) =
0.2,0.4,0.6,0.8 are performed. Benchmark functions OSY
and CTP4 are selected to test the sensitivity of F(¢). The
Pareto fronts gained under different F(t) settings are shown in
Figure 3. From the results, it is observed that the algorithms
with different F(t) settings can all converge to the true Pareto
front for OSY and CTP4, which illustrates that the distur-
bance parameter F(t) is capable to perform consistently and
effectively for OSY and CTP4. So the disturbance parameter
F(t) is reliable and robust to produce better solutions.



The Scientific World Journal

0OSY TNK CONSTR
80 " 14 10
b 12 y
4 . 8
o0 1‘ 1., “1
3 6 Y
< 40 ‘ ~ 038 \m,.‘g o 5
L 0.6 &M 4 \
e 0.4 " ™,
20 3 02 2 S
0 N 0 N 0
-300 —250 -200 —150 —-100 -50 O 0 0.5 1 1.5 0.2 0.4 0.6 0.8 1
h h f
(a) (b) (0)
CTP1 CTP2 CTP3
0.9 12 1.2
*\i p
08| ", . 1t
“’\ - » to.
e 08 -~ 08 .
0.7 Hoay AN . < T,
o, 0.6 - 0.6 .
\‘a - - ’ v
0.6 S 0.4 ~ o 04 .
* e ) *
0.5 0.2 0.2
0 02 04 06 08 0 02 04 06 08 1 0 02 04 06 08 1
h h h
(d) (e) (f)
CTP4 CTP5 CF1
12 1.6
1 1.4 1t, .
: 12 08t .
0.8 . 1 e
« « .. 0.6 c.
0.6 : 0.8 ‘.
' 0.6 o 04 "
0.4 ] 04 ‘. 0.2 ..
0.2 0.2 0
0 02 04 06 08 0 02 04 06 08 1 0 02 04 06 08 1 12
fl fl fl
(g) (h) (i)
CF2 CF4 CF6
1 1p- 1
081, . 0.8 . 0.8
0.6 s 0.6 N ) 0.6 \
0.4 0.4 ~ 0.4 A
0.2 ., . 0.2 . 0.2 i -
*
0 i 0 0 :
0 02 04 06 08 1 12 0 02 04 06 08 1 12 0 02 04 06 08 1 12
h h h
() (k) o

FIGURE : Final Pareto front for all test functions by the proposed algorithm CMBOA.

4.4. Comparison with Other Algorithms. To show the supe-
rior performance of the proposed algorithm, it is compared
with the most popular multiobjective algorithms including
NSGA-II [24] and IS-MOEA [1]. For NSGAII, the parameters
are set as population size = 100, crossover probability = 0.9,
mutation probability = 1/n, SBX crossover parameter = 20,

polynomial mutation parameter = 20, and the termination
generation = 100. For IS-MOEA, the parameters are set as
population size = 100, crossover probability = 0.9, mutation
probability = 1/n, SBX crossover parameter = 20, polynomial
mutation parameter = 20 comparison probability = 0.45,

penalty parameters w; = 1, f = 1, and the termination
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generation = 100. For the proposed CMBOA, the parameters
are set the same as the previous section. For all algorithms, 30
independent runs are conducted on each of the benchmark
functions to get the statistical results in cover metric C and
hypervolume HV. Their distribution of simulation results is
shown in Tables 1-6.

In Table 1, if the value of C (CMBOA, NSGA-II) is larger
than that of C (NSGA-ILCMBOA), it indicates that the
proposed CMBOA has better convergence than NSGA-II;
otherwise, it indicates that the proposed CMBOA is inferior
to NSGA-II in term of convergence. From Table 1, it can be
seen that for CONSTR, CF2, CF4, and CF6, and NSGA-II is
better than CMBOA in term of convergence. However, for the
other eight test functions, CMBOA has better convergence
than NSGA-II. Wilcoxon rank-sum test is used to examine
their difference [31] and the results are shown in Table 2. The
alternative hypothesis is p < « and = 0.05. If p < « is met,

the algorithms have significant difference; otherwise, they
have no difference. From Table 2, we can see that, compared
with NSGA-II, CMBOA is significantly superior on OSY,
CTP1, CTP3, CTP4, CTP5, CFl, and CF6 in converging
close to Pareto front. In order to analyze their difference in
convergence, the distribution of their cover metric values is
studied by Wilcoxon rank-sum test which is summarized in
Table 3. In Table 3, the CMBOA is significantly superior to
IS-MOEA in most benchmark functions except TNK, CTP]1,
and CTP2 on convergence. In Table 4, we can see that, except
TNK, CMBOA is superior to IS-MOEA in convergence, while
IS-MOEA is better than CMBOA in TNK.

In order to evaluate the convergence and the diversity
of solutions obtained by the proposed CMBOA, statistical
results of hypervolume metric are summarized in Table 5.
In this table, higher hypervolume value indicates that the
algorithm has better diversity. From Table 5, it can be seen
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TABLE 1: Mean and variance (Var.) of the cover metric on CMBOA and NSGA-II.
. Benchmark functions
Algorithm
OSY TNK CONSTR CTP1 CTP2 CTP3
C(CMBOA, NSGA-II)
Mean 0.3003 0.2007 0.1320 0.2643 0.2690 0.7543
Var. 0.0324 0.0019 0.0012 0.0023 0.0039 0.0319
C(NSGA-II, CMBOA)
Mean 0.1683 0.1940 0.1517 0.1270 0.2397 0.2567
Var. 0.0160 0.0011 0.0016 0.0026 0.0043 0.0262
Algorithm Benchmark functions
CTP4 CTP5 CF1 CF2 CF4 CF6
C(CMBOA, NSGA-II)
Mean 0.7507 0.6863 0.8403 0.1433 0.0860 0.2250
Var. 0.0540 0.0675 0.0138 0.0152 0.0209 0.0100
C(NSGA-II, CMBOA)
Mean 0.1793 0.3150 0.1550 0.1683 0.2500 0.4093
Var. 0.0274 0.0296 0.0120 0.0080 0.0961 0.0135
TABLE 2: Wilcoxon rank-sum test on C value of CMBOA and NSGA-IL
OSY TNK CONSTR CTP1 CTP2 CTP3
(C(CMBOA, NSGA-II), B }
C(NSGA-II, CMBOA)) 0.0020 0.3937 0.0738 5.6395e¢ — 010 0.1096 4.3641e — 010
CTP4 CTP5 CF1 CF2 CF4 CF6
(C(CMBOA, NSGA-II), - - ~ ~
C(NSGA-II, CMBOA)) 6.3039¢ — 010 1.7176e — 006 3.1436e — 011 0.1408 0.7492 4.9194e — 007
TaBLE 3: Wilcoxon rank-sum test on C value of CMBOA and IS-MOEA.
OSYy TNK CONSTR CTP1 CTP2 CTP3
(C(CMBOA, IS-MOEA), _ _ B
C(CMBOA, IS-MOEA)) 4.4824e — 012 2.8394e - 011 0.0010 0.0685 5.7712e — 009 0.0058
CTP4 CTP5 CF1 CF2 CF4 CF6
(C(CMBOA, IS-MOEA), ~ } ~ - ~ }
C(CMBOA, IS-MOEA)) 3.2785e — 011 9.1907e — 009 1.8685e — 011 2.3115e - 010 1.1817e — 008 9.7713e — 012
TABLE 4: Mean and variance (Var.) of the cover metric on CMBOA and IS-MOEA.
. Benchmark functions
Algorithm
OSYy TNK CONSTR CTP1 CTP2 CTP3
C(CMBOA, IS-MOEA)
Mean 0.9044 0.0997 0.1670 0.1823 0.1773 0.5976
Var. 0.0456 0.0010 0.0010 0.0048 0.0037 0.0318
C(IS-MOEA, CMBOA)
Mean 0.0517 0.3093 0.1367 0.1523 0.3167 0.4710
Var. 0.0140 0.0029 0.0012 0.0017 0.0045 0.0249
Algorithm Benchmark functions
CTP4 CTP5 CF1 CF2 CF4 CF6
C(CMBOA, IS-MOEA)
Mean 0.7990 0.6701 0.9667 0.6591 0.6190 0.8472
Var. 0.0241 0.0334 0.0020 0.0680 0.0957 0.0305
C(IS-MOEA, CMBOA)
Mean 0.1767 0.3223 0.0520 0.0787 0.0713 0.0143
Var. 0.0173 0.0133 0.0045 0.0109 0.0210 0.0011
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TABLE 5: Mean and variance (Var.) of the hypervolume (HV) metric.
Algorithm HY Benchmark functions
OSY TNK CONST CTP1 CTP2 CTP3
CMBOA Mean 0.9835 0.998 0.9992 0.9995 0.9992 0.9949
Var. 0.0032 3.0145e — 007 2.2481e — 007 9.3282¢ — 008 1.5011e — 007 1.3630e — 005
NSGA-II Mean 0.9107 0.9965 0.9993 0.9944 0.9983 0.9763
Var. 0.0162 5.7807e — 006 3.1099e — 007 4.1408e — 005 2.8101e — 006 0.0029
IS-MOEA Mean 0.7576 0.9965 0.9992 0.9757 0.9579 0.9609
Var. 0.0257 1.5731e — 004 2.8652e — 007 0.0021 0.0069 0.0011
Algorithm HY Benchmark Functions
CTP4 CTP5 CF1 CF2 CF4 CF6
CMBOA Mean 0.9289 0.9190 0.9956 0.9549 0.8820 0.9535
Var. 0.0015 0.0014 1.4497e — 005 0.0016 0.0077 8.3474e — 004
NSGA-II Mean 0.8581 0.8180 0.9901 0.8971 0.9319 0.9445
Var. 0.0185 0.0181 4.6140e — 005 0.0037 0.0026 0.0017
IS-MOEA Mean 0.8716 0.8518 0.9670 0.7838 0.7444 0.8472
Var. 0.0115 0.0088 3.899¢ — 004 0.0208 0.0496 0.0127
TABLE 6: Distribution of HV value using Wilcoxon rank-sum test.
OSY TNK CONSTR CTP1 CTP2 CTP3
HV(CMBOA, NSGA-II)  25721e — 007  3.0199 — 011 0.0555 4.615% — 010 0.0824 8.9934¢ — 011
>0.05 >0.05
HV(CMBOA, IS-MOEA) 1.4110e — 009 3.0199e - 011 2.8314e — 008 3.3242e - 006 0;:’33: 9.8329¢ — 008
CTP4 CTP5 CF1 CF2 CF4 CF6
HV(CMBOA, NSGA-II)  4.0772¢ — 011 1.0937e — 010 2.6099¢ — 010 0.0044 0;?)53;1 5.9706e — 005
HV(CMBOA, IS-MOEA)  3.3384¢ — 011 4.5726e — 009 3.0199e - 011 1.0937e — 010 4.1825e — 009 3.0199e - 011

that CMBOA has better diversity than the other two algo-
rithms for almost all test functions except CONSTR and CF4.
From the variance of metric HV, we can see that CMBOA has
the smallest variance which indicates that it is more reliable
and robust than NSGA-II and IS-MOEA in producing better
solutions. In order to analyze the distribution of HV value
in further, its Wilcoxon rank-sum test value is summarized
in Table 6. From Table 6, we can conclude that CMBOA is
superior to NSGA-II and IS-MOEA in terms of the distribu-
tion and diversity of solutions except CONSTR, CTP2, and
CF4. Experiment results above show that the CMBOA has
competitive performance with NSGA-II and IS-MOEA in the
terms of convergence and diversity.

5. Conclusions

In this paper, we propose a new constrained multiobjective
biogeography-based optimization algorithm. A new distur-
bance migration operator is designed to generate diverse
feasible solutions. Infeasible solutions nearby the feasible
region are recombined with their nearest feasible ones to
change the feasibility. Theoretically, the weak convergence

of CMBOA is proved by the probability theory and its time
complexity is analyzed. Experimentally, CMBOA is tested
on several typical benchmark functions and compared with
classical NSGA-II and IS-MOEA. The statistical results show
that the proposed CMBOA is highly competitive in terms of
convergence and diversity. In future work, we may improve
CMBOA to obtain better performance on variable linkage
problems.
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