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This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by
a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows
making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction
as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to
complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of
the phenomenon evolve with time via understandable notes.

1. Introduction

It is well known that a majority of the real physical systems
can be modeled by the system of the first-order differential
equations with some sort of nonlinearity. In the case of the
systems with at least three degrees of freedom the solution is
not restricted to stable equilibrium or limit cycles but there is
a certain chance to observe amuchmore complicatedmotion
like chaos or hyperchaos [1].This is a long-termunpredictable
behavior caused by the so-called folding and stretchingmech-
anism; first is responsible for solution bounded in finite state
space volume and second for extreme sensitivity to the tiny
changes of the initial conditions. Looking at this signal in time
and frequency domain it resembles noise in many aspects.
In reality, the individual waveforms combined together give
rise to the strange attractors with fractal dimension [2]
characterized by density, ergodicity, andmixing property. For
chaotic attractor produced by third-order dynamical system
value of geometrical dimension belongs to the range between
two and three.

Since chaos is a robust steady state dynamical motion,
it should be somehow distinguished from chaotic transients
[3]. The rigorous mathematical tool proving its existence

can be picked as one of the famous Shilnikov theorems
(ST) [4]. Roughly speaking, if there hold certain conditions
for the eigenvalues and the strategic orbits associated with
the same equilibrium is discovered, the so-called Shilnikov’s
chaos can be observed. As will be clarified later, additional
informationmust be obtained before the start of the searching
procedure, such as location of the fixed points, eigenspaces,
boundary planes, attraction sets, and corresponding basins.
The description of procedure solving this problem for the
famous Chuas equations [5] can be found in publication [6].
Many associated problems like vector field geometry of the
so-called double-hook or dual double-scroll attractors [7]
are solved in the interesting book [8]. Also chaos evolution
principles for simple driven systems can be found here.

This paper is organized as follows. The second section
introduces the mathematical model of the nonlinear oscil-
lator and brings its brief linear analysis. The third section
focuses on linear topological conjugacy LTC [9] and presents
equivalent dynamical systems. In other words the question
if the mathematical model under inspection forms an entire
class of the dynamical systems will be answered using similar
approach as demonstrated in [10].The fourth section exhibits
one possible approach to find two mirrored homoclinic
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orbits or heteroclinic connection between two fixed points.
These trajectories are confirmed numerically together with
associated chaotic behavior. The visualization of the basins
of attraction and different manifolds is the core of the
next section. Illustration of the structural stability of the
chaotic attractors [11] by calculation of the largest Lyapunov
exponents (LE) in the neighborhood of the nominal system
parameters is a content of a next section. Such form of sta-
bility is essential from the viewpoint of physical construction
of chaotic oscillator, for example, as electronic circuit. Since
values of the circuit elements are functions of mathematical
model parameters the sensitivity with respect to chaos defor-
mation or destruction will be calculated. Finally concluding
remarks, further research suggestions, and future topics are
provided.

2. Mathematical Model

Assume the following dynamical system [12, 13] described
by a single third-order differential equation, where the indi-
vidual state variables can be interpreted as position, velocity,
and acceleration, which belongs to the task from classical
Newtonian dynamics:

...
𝑥 + 𝜑
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�̈� + 𝜑
2
�̇� = 𝜉
1
𝑥 + 𝜉
2
sign (𝑥) ,

𝜑
𝐴

1
= 0.6, 𝜑

𝐴

2
= 1, 𝜑

𝐵

1
= 0.7, 𝜑

𝐵

2
= 0.8,

(1)

where dots represent derivatives with respect to the indepen-
dent variable, time.There are, in fact, two different dynamical
systems, one for each sign combination inside right-hand side
function. Let these variants denote by symbols𝐴,𝐵 and let the
nominal set of the parameters lead to the strange attractors:
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Note that there is a significant degree of vector field
symmetry. Both systems have simply defined boundary plane
BP : {𝑥 = 0, 𝑦 ∈ R1, 𝑧 ∈ R1} separating the vector field into
two outer affine segments and single virtual inner region. In
further text, these segments will be denoted as 𝐷
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It is evident that the characteristic polynomial and set of
the eigenvalues is the same for both fixed points. To be more
specific it is cubic polynomial:
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For the system case A, after substituting (2) in (1) we get
a pair of the complex conjugated and a single real eigenvalue,
namely, configurationR3 ∈ 𝐸

𝑠
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⊕ 𝐸
𝑢

2
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Thus fixed point is saddle-focus with stability index one.
The vector field geometry resembles double scroll attractor
generated by well-known Chua’s equation with suppressed
inner segment [5].

The system case 𝐵 for the substitution (3) in (1) has the
reverse stability index two, in detailR3 ∈ 𝐸

𝑢

1
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2
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The fixed point located at the origin cannot be treated
as a regular one; it acts more likely as a virtual equilibrium.
The inner segment 𝐷

0
is very narrow and cannot be easily

observed even in the case of conventional numerical analysis.
Following the rules of linear algebra we cannot derive
additional useful information about dynamical system global
motion. That is why further analysis is restricted to the
existing numerical methods, that is, approaches which utilize
the numerical integration process.

3. Linear Transform of Coordinates

Suppose original dynamical system (1) ẋ and associated sys-
tem after linear transformation of the coordinates ̇x̃ written
in the compact matrix form [14]

ẋ = Ax + b sign (w𝑇x) ,

̇x̃ = T−1ATx̃ + T−1b sign (w𝑇Tx̃) ,

(7)

where T is regular square matrix (3 × 3) of the real numbers.
Note that such transforms can shift, rotate, or linearly stretch
and compress the state space volume in some direction
while leaving eigenvalues unchanged. New system can be
advantageous from the viewpoint of circuitry implementa-
tion, symbolic analysis, understanding underlying dynamics,
attractor visualization, and so forth. Since (1) expressed in
terms of (7) is already in normal form
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first example of LTC is the generation of state matrix A
𝐽

in Jordan form [15]. This is fundamental conversion with
transformationmatrixT

𝐽
with columns composed of the real
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Figure 1: System configuration 𝐴 in normal form (a), Jordan form (b), and first and second equivalent.
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where state matrix A
𝑅
directly represents system (1) and

upper index of 𝜆
𝑐
and 𝜆

𝑟
denotes the corresponding element

of the eigenvector. The knowledge of such system can be
useful for motion analysis and return map diagnosis since
eigenspaces in each region of the state space are orthogonal.
Using the concept of LTC the concrete form of the state
matrix A and vector w can be prescribed and transformation
between desired system and equivalent system in the normal

form can be established accordingly to [16]. The only restric-
tion is that the resulting transformation must be regular
squarematrix. For the first equivalent system in the sense [17]
the transformation T
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Figure 2: System configuration 𝐵 in normal form (a), Jordan form (b), and first and second equivalent.

Analogically for the second equivalent system the matrix
T
𝐼𝐼
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The three-dimensional perspective views on the chaotic
state space attractors together with plane projections for each

dynamical system mentioned above and obtained by using
Mathcad with build-in fourth-order Runge-Kutta numerical
integrationmethod are shown in Figures 1 and 2, respectively.
For these simulations final time equals 𝑡max = 1000 with
time step 𝑡step = 0.01. The initial conditions were set: x

0𝐴
=

(0.1, 0, 0)
𝑇 and x

0𝐵
= (0.1, 0, 0)

𝑇. Note that LTC operation is
demonstrated by means of Figure 3.

4. Strategic Trajectories

Before starting with description of the procedure for finding
some strategic orbit in the sense of Shilnikov, the results (5)
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Figure 3: Geometrical visualization of LTC between equivalent
systems; see text.

and (6) prompted that both essential conditions desired by ST
are satisfied simultaneously for system of classes 𝐴 and 𝐵:
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. (12)

Remember that this condition itself does not guarantee
the presence of chaotic behavior; ST requires also strategic
orbit associated with some fixed point. The problem with
searching for specific state trajectory can be effectively con-
verted into optimization task [18]. The basic form of the

vector field with de facto two linear segments significantly
simplifies the algebraic set of the fitness functions for opti-
mization.The process of derivation of such set is described in
step-by-step manner in paper [19]. The optimization routine
seeks through parameter space, alters the eigenvalues, and
rotates the corresponding eigenspaces simultaneously.

The goal function value is minimized and penalized if
geometry of the vector field or desired property of the system
changes. It is preserved by choosing the suitable guess values
as well as by the restrictions on the parameter space under
inspection. The geometric structures like points, lines, and
planes important for optimization are defined in Figure 4.

4.1. Homoclinic Tangle. By definition, the homoclinic orbit is
forwards and backwards asymptotic to the same equilibrium
point. Due to the vector filed symmetry there is always a
pair of the homoclinic tangles. Therefore we can focus on
homoclinic orbit associated with fixed point x

−
located in

segment 𝐷
−
.

Following full integrationmethod described in [20] tends
to be very time consuming and, as a part of an optimization
routine, it can diverge even in the case if homoclinic orbit
exists. Our problem should be addressed separately for
dynamical system cases 𝐴 and 𝐵.

In case 𝐵 let further investigation be focused on homoclic
orbit associated with fixed point x

−
. Since we have unstable

eigenvector we can start with numerical integration in the
intersection of this eigenvector and boundary plane. Dynam-
ical flow became a part of optimization procedure which will
be stopped as soon as trajectory leaves segment 𝐷

+
. This

corresponds to the uniquemappingwhich should be satisfied:
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where 𝛼 is arbitrary value.
In the case 𝐴, the situation is analogical, except that

backward integration instead of standard is performed. To get
homoclinic connection there must exist a mapping (13) but
for times 𝑡 < 0.

Final trajectory will consist of three pieces; free-motion
in one segment of the vector field and forced motions
along unstable eigenspace (forward integration) and stable
eigenspace (backward integration) in the other segment.
Utilizing this concept the new set of the parameters for system
case 𝐴 has been found as 𝜑

1
= 0.63339561, 𝜑

2
= 1.00676348,

𝜉
1

= −1.29333691, 𝜉
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+ (1 ⋅ 10
−10

, 0, 0)
𝑇, fourth order Runge-Kutta

build-in MATLAB function integration with variable step
(initial step ℎ = 1 ⋅ 10

−6) and with maximal step ℎ = 1 ⋅ 10
−2,

and final value of fitness function 1.3 ⋅ 10
−3.

Similarly for dynamical system case B we get
𝜑
1

= 0.715499177650, 𝜑
2

= 0.577154986868, 𝜉
1

=

1.284935534298, 𝜉
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x
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/𝜉
1
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𝑇

− (1 ⋅ 10
−8

, 0, 0)
𝑇, fourth order Runge-

Kutta build-in MATLAB function integration with variable
step (initial step ℎ = 1 ⋅ 10

−6) and with maximal step
ℎ = 1 ⋅ 10

−2, and final value of fitness function 7.62 ⋅ 10
−4. The

numerically integrated trajectories are provided in Figure 5.
A careful reader can raise an objection that integration as

a part of optimization can be removed by solving a system
of the linear differential equations. This is possible although
the resulting analytical formulas are quite complicated. By
considering known initial conditions and substituting desired
line-type intersection it is possible to separate internal system
parameters 𝜑

1
, 𝜑
2
, 𝜉
1
, and 𝜉

2
. Thus this approach also cannot

provide a time required for trajectory to leave affine segment
under inspection.

4.2. Heteroclinic Tangle. Theheteroclinic orbit can be consid-
ered as a generalization of a saddle loop. In fact, searching for
the heteroclinic connection is a two-dimensional problem.
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(a) (b)

Figure 4: The geometric structures important for optimization, starting situation, and systems 𝐴 (a) and 𝐵 (b), where boundary planes are
white, fixed points are black dots, eigenvectors are green, eigenplanes are gray, intersections of eigenvectors and boundary planes are red
crosses, and intersections of eigenplanes and boundary plane are blue lines.

(a) (b)

Figure 5: Trajectory close to the homoclinic orbit for dynamical system case 𝐴 (a) and case 𝐵 (b).

(a) (b)

Figure 6: Trajectory close to the heteroclinic orbit for dynamical system cases 𝐴 (a) and 𝐵 (b).

Since objective functions are known analytically MATLAB
and build-in gradient-based technique has been utilized.The
fitness function for this geometric structure is minimization
of distance between point 𝑋 and line 𝑌 such that
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2
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)
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(14)

where 𝜔 is an imaginary part of the complex eigenvector and
𝜎 represents its real part and auxiliary constants. Although
the analytic solution can be derived the timenecessary for this

unique mapping is unknown. Thus a numerical integration
process should be a part of the optimization with the initial
conditions set in vicinity of some fixed point.

For the first sign case of the differential equations (1) one
can found the following set of the parameters: 𝜑

1
= −0.6261,

𝜑
2

= 0.9536, 𝜉
1

= −1.2655, and 𝜉
2

= 1.9937. Analogically
for case 𝐵 sign variant we get 𝜑

1
= −0.6378, 𝜑

2
= 0.6011,

𝜉
1
= 1.3156, and 𝜉

2
= −2.1697.

The strategic orbits are unstable such that for numerical
integration the initial conditions must be chosen carefully.
For the strategic orbits, the process of numerical integration
must begin in the close neighborhood of the fixed point.
Using time-forward integration the state point goes into the
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Figure 7: The graphical illustration of the basin of attraction for chaotic attractor, system case 𝐴. These slices are 𝑥-𝑧 projections of cross-
sections with the 𝑦-axis. Black region represents initial condition inside basin of attraction. All other trajectories tend to infinity.

direction of unstable manifold towards the opposite equilib-
rium. The saddle loop is finished by using time-backward
numerical integration.The resulting state trajectories for both
sets of the parameters are given in Figure 6. Despite being
structurally unstable, these trajectories can be constructed
and destructed via amanipulationwith vector field geometry,
that is, by changing the internal system parameters. Recently
it has been verified that inverse approach can be used; starting
with the satisfaction of one ST the original mathematical
model can be derived [21].

5. Overall Numerical Analysis

Although studied dynamical system is algebraically quite
simple, it is nonlinear and chaotic. Therefore there is no
closed-form analytic solution. Thus the analysis is restricted
to the numerical procedures mostly based on integration of
the state space trajectory. This process is also involved in
the routine for calculation of the spectrum of the LE [22].
These real numbers measure the average ratio of exponential
separation between trajectories in the state space. For chaotic
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motion it is necessary to have one positive LE; the sum of
all LE must be negative since the dynamics is dissipative
due to the parameter 𝜑

1
> 0. This concept has been

used to prove that the region for chaos is wide enough
to preserve some structural stability [23] of the desired
strange attractor; such form of stability allows developing the
electronic circuits with the same dynamics [24]. The routine
for LE spectrum computation can be effectively utilized also
for the purpose of detecting chaos in the general class of
arbitrary-order dynamical systems; for further details see
[25]. Due to discontinuity in the system the derivations in
Jacobi matrix have to be threated in order to determine
Lyapunov exponents correctly. We obtained more precise
results by using sigmoid function with extreme value of 𝛾

as defined in [26]. One other possible demonstration dealing
with discontinuity in the forced system can be found in [27].

The remaining question which should be answered is the
following: how many attractors are available for the nominal
set of the parameters and show the associated basins of
attractions. The most straightforward approach to visualize
these subspaces is by means of repeated integrations. The

grid for the initial condition was a cube with edge lengths
𝛿 ∈ (−2, 2) with 400 points. Due to the symmetry of
the vector field two mirrored strange attractors are highly
expected. It eventually turns out that the system case 𝐴 has
only unbounded solution or chaotic attractor; trivial fixed
point solution is out of question. These results are visible in
Figure 7. For the system case 𝐵 two chaotic attractors have
been found; see Figure 8.

The graphical illustration of the sensitivity to initial
conditions can be seen in Figure 9. The total number of
random generations is 10 ⋅ 10

3 with standard deviation 𝜎 =

0.01 around initial point 𝑥
0𝐴𝐵

= (0, 0, 0)
𝑇, total time 𝑇end =

100, and integration step ℎ = 0.01.

6. Circuitry Implementation

In order to evaluate geometrical structural stability of equa-
tions a new circuit (not presented so far for (1)) was assembled
and measured. The circuit synthesis methods dedicated to
modeling the nonlinear dynamical systems are well-known
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(a) (b)

Figure 9: The graphical illustration of the sensitivity to initial conditions. Where the total number of random generations is 10 ⋅ 10
3 with

standard deviation 𝜎 = 0.01 around initial point 𝑥
0𝐴𝐵

= (0, 0, 0)
𝑇, total time 𝑇end = 100, and integration step ℎ = 0.01. On the left there is

case A and on the right there is case 𝐵. The green points represent initial conditions, red color is a final point, and gray is original attractor.

C1

C2

C3

+

+−

−

Ra

Rc

R2

R1

Figure 10: The circuitry implementation of chaotic oscillator for case 𝐴.

and commonly used [28, 29]. Assume canonical (in the
sense of minimum circuit components) network shown in
Figure 10 which represents a parallel connection of the third-
order linear admittance and two-segment piecewise-linear
resistor. The straightforward analysis gives us admittance
function in Laplace transform, namely,

𝑌 (𝑠) = 𝑠
3
+ 𝜑
1
𝑠
2
𝜑
2
𝑠

≈ 𝑐
1
𝑐
2
𝑐
3
𝑟
1
𝑟
2
𝑠
3
+ 𝑐
1
𝑐
2
(𝑟
1
+ 𝑟
2
) 𝑠
2
+ (𝑐
1
+ 𝑐
2
) 𝑠,

(15)

where resistors and capacitors have normalized values so
far. To obtain the real passive element values let consider
impedance normalization factor 𝜉

𝐼
and frequency norm 𝜉

𝐹
.

By comparing the individual coefficients (15) with (1) we get
following simple relationships

𝐶
1
= 𝐶
2
=

𝜑
2

2𝜉
𝐼
𝜉
𝐹

, 𝐶
3
=

𝜑
2

2

𝜑
2

1
𝜉
𝐼
𝜉
𝐹

, 𝑅
1
= 𝑅
2
=

2𝜑
1
𝜉
𝐼

𝜑
2

2

.

(16)

The amper-voltage characteristics of nonlinear resistor
can be defined by two equations depending on the sign of
input voltage, in detail:

𝐼 = 𝑓 (𝑉) = −(

1

𝑟
𝑎

+

1

𝑟
𝑐

)𝑉 +

𝑉Sat
𝑟
𝑎

sign (𝑉) , (17)

where 𝑉sat ≈ 13V represents a saturation voltage of the
used operational amplifier TL082 and orientation of current
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1 21.00V
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(a)
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1 2500mV 500mV

RollDelayedMain
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XY

(c)

1 2

RollDelayedMain
Horizontal mode
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RollDelayedMain
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RollDelayedMain
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XY1.00V 1.00V
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Figure 11: Several examples of the laboratorymeasurements (for case𝐴): double-scroll attractor (a,b), single-scroll (c), AV curve of nonlinear
resistor including saturation (d), limit cycle (e), and period doubling (f).

is outwards the resistor. In fact note that due to saturation
in practice the function has four segments. By adopting the
numerical constants (2) and norms 𝜉

𝐼
= 10
4 and 𝜉

𝐹
= 10
4 we

get the final values of the passive elements to generate double-
scroll attractor:

𝐶
1
= 𝐶
2
= 5 nF, 𝐶

3
= 27 nF, 𝑅

1
= 𝑅
2
= 12 kΩ,

𝑅
𝑎

= 65 kΩ, 𝑅
𝑐
= 9.6 kΩ.

(18)
The experimental verification (measurements) of this

chaotic oscillator is provided by means of Figure 11. Note that
proposed circuitry represents only case 𝐴 dynamical system
(2). Variant 𝐵 can be modeled by using slightly modified
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𝜎C = 0.2 𝜎R = 0.2

𝜎C = 0.1 𝜎R = 0.05

𝜎C = 0.05 𝜎R = 0.05 𝜎C = 0.05 𝜎R = 0.01 𝜎C = 0.01 𝜎R = 0.05 𝜎C = 0.01 𝜎R = 0.01

𝜎C = 0.05 𝜎R = 0.1 𝜎C = 0.01 𝜎R = 0.1

𝜎C = 0.2 𝜎R = 0.1 𝜎C = 0.1 𝜎R = 0.2 𝜎C = 0.1 𝜎R = 0.1

𝜎C = 0.1 𝜎R = 0.01

Figure 12: Monte Carlo analysis (for case 𝐴) for various standard deviations (Gaussian distributed) around nominal values (2) for resistors
𝜎
𝑅
and capacitors 𝜎

𝐶
. Graphs can be understood as histograms in %, where the sum of values in histogram represents 100%. Dark magenta

denotes fixed point solution, pink color is a limit cycle, yellow is chaotic motion, and brown color marks unbounded trajectories.

nonlinear resistor. Transformation from normal form into
voltages across capacitors is represented by square regular
matrix:

T(

𝑥

𝑦

𝑧

) = (

𝑢
𝑐
1

𝑢
𝑐
2

𝑢
𝑐
3

) , T = (

−1 𝑐
2
(𝑟
1
+ 𝑟
2
) 𝑐
2
𝑐
3
𝑟
1
𝑟
2

1 0 0

0 𝑐
2
𝑟
1

0

) .

(19)

Figure 12 give an idea if uncertainties in values of the
passive components are capable to destruct chaotic nature
of circuit. It is obvious that 1% tolerances cannot cause such
changes, but 10% tolerances can lead to death of double-
scroll in about 8% of cases. The total number of turns for
each histogram is 10000 (for case 𝐴) with initial conditions
i
𝑐
= (0.1, 0, 0)

𝑇.

7. Conclusion

This contribution addresses problems associated with com-
plete analysis of the third-order dynamical system with
single jump-type nonlinearity. The dynamical system under
inspection belongs to the generalized class of the Chuas
equations published in [26]. The existence of the Shilnikov
chaos has been proved by using optimization and numerical
integration. The specialty of given dynamical system is in
changing the sign of nonlinear function; the homoclinic
orbits or heteroclinic orbits appear.That has not been demon-
strated yet. However the electronic circuit capable to model
the nonlinear behavior near the strategic orbits has not been
presented so far.

There are many unsolved topics involving dynamical
systems with possible chaotic solution. A fraction of them
are mentioned in the paper [30]; but personal experience and
attempts to solve real specific system necessarily unfoldmany
others. The universality of chaotic behavior is uncovered in
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[31] where several examples from different scientific fields are
provided.

Achieved results can be generalized for multiscroll spiral
attractors [7, 32].

The shape of the strange attractors generated by system
cases 𝐴 and 𝐵 suggests that there are the same sources of
chaos, perturbed heteroclinic orbit (double-scroll attractor).
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