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The complex process planning problem is modeled as a combinatorial optimization problem with constraints in this paper. An ant
colony optimization (ACO) approach has been developed to deal with process planning problem by simultaneously considering
activities such as sequencing operations, selecting manufacturing resources, and determining setup plans to achieve the optimal
process plan. A weighted directed graph is conducted to describe the operations, precedence constraints between operations, and
the possible visited path between operation nodes. A representation of process plan is described based on the weighted directed
graph. Ant colony goes through the necessary nodes on the graph to achieve the optimal solution with the objective of minimizing
total production costs (TPC). Two cases have been carried out to study the influence of various parameters of ACO on the system
performance. Extensive comparative experiments have been conducted to demonstrate the feasibility and efficiency of the proposed
approach.

1. Introduction

Process planning is the function which translates the
design requirements into the detailed technologically feasi-
ble instructions, which involves selecting machining oper-
ations, sequencing these operations, choosing manufactur-
ing resources, determining setup plans, machining param-
eters, and so forth. These activities must be carried out
simultaneously to achieve an optimal process plan. But,
due to the complexity of part structures and variability of
machining environment, process planning is well known
as a complicated decision-making process. Computer-aided
process planning (CAPP) system will assist human planners
in completing the process planning, which is an essential
component for linking the various models and processes in
a computer-integrated manufacturing system (CIMS) [1].

With the development of computer technologies, CAPP
has received much attention during the last three decades
and played an increasingly important role in a CIMS [2].
The initial “variant” CAPP systems are based on the group
technology (GT) coding and classification system. A base-
line process plan for a part family has been defined in

such systems. According to the part code, approximately
90% of the process plans can be yielded automatically
while the remaining 10% is achieved through modifying
the process plans manually. The application of artificial
intelligence in CAPP system accelerates the generation of
a complete process plan, namely, from the variant CAPP
system to the generative CAPP system. A generative CAPP
system consists of three main consecutive activities: (1)
identifying manufacturing features, (2) determining feasible
machining operation and available machining resources, and
(3) selecting machining operation and machining resources
and sequencing machining operations [3, 4]. This paper
focuses on the solution of the third activity and presents
an ACO approach to solve the process planning prob-
lem.

The rest of this paper is organized as follows. Section 2
introduces previous related work. Process planning problem
is described in Section 3. The proposed ACO approach for
process planning is given in Section 4. In Section 5, simu-
lation experiments are made and the results are discussed
comparedwith other approaches. Finally, Section 6 concludes
the present study and outlines the future study.
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2. Previous Related Works

In the past three decades, many optimization approaches
have been developed and widely applied for solving pro-
cess planning problem, such as knowledge-based reasoning
approach [5, 6], graph manipulation [7, 8], the genetic
algorithm (GA) [9–11], tabu search approach (TS) [4, 12],
simulated annealing (SA) algorithm [3, 13], particle swarm
optimization (PSO) [14, 15], artificial neural networks [16],
ant colony optimization (ACO) [17, 18], and artificial immune
system (AIS) [19].

Usher and Sharma [5] proposed an approach of intelligent
reasoning based on the feathers of part. Many constraints
and criteria were present in operation planning, which were
analyzed intelligently to generate the potential operation
plans. Usher and Bowden [1] apply an improved operation
sequence coding of genetic algorithms for process planning
problem, which can determine optimal operation sequences
for parts of varying complexity. Zhang et al. [10] proposed
a GA for a novel computer-aided process planning (CAPP)
model in a job shop manufacturing environment. GA is
used to select machining resources and sequence operations
simultaneously. The dynamic status of machining resources
in the job shop and alternative optimal plans are not taken
into account. Li et al. [4] consider the process planning
problem as a constraint-based optimization problem and
propose a tabu search-based approach to solve it. In the
proposed optimization approach, precedence constraints
between features and their related operations are defined
and classified according to their effects on the plan feasi-
bility and processing quality. Ma et al. [13] modeled the
constraints of process planning problems in a concurrent
manner. Precedence relationships among all the operations
are used to generate the entire solution space with multiple
planning tasks. Based on the proposed model, they used an
algorithm based on simulated annealing (SA) to search for
the optimal solution. Guo et al. [14] proposed a PSO approach
to operation planning problem. The initial process plans
randomly generated are encoded into particles of the PSO
algorithm. To avoid falling into local optimal and improve
the particles’ movements, several new operators have been
developed. Penalty strategy is used considering the evaluation
of infeasible particles. Krishna and Mallikarjuna Rao [17]
proposed a novel approach to apply the ant colony algorithm
as a global search technique for process planning problem by
considering various feasibility constraints. Chan et al. model
themachine tool selection and operation allocation of flexible
manufacturing systems and solve process problem by a fuzzy
goal—programming approach based on artificial immune
systems.

Recently, to improve the quality of results and efficiency
of the search, many hybrid approaches are developed for
process planning problem, for example, GA + SA [3], graph
manipulation + GA [8], and local search algorithm + PSO
[20]. Li et al. [3] developed a hybrid genetic algorithm and
a simulated annealing approach for optimizing process plans
for prismatic parts. They modeled the process planning as
a combinatorial optimization problem with constraints. The
evaluation criterion was the combination of machine costs,

cutting tool costs, machine change costs, tool change, and
setup costs. Ding et al. [20] proposed a hybrid approach to
incorporate a genetic algorithm, neural network, and analyti-
cal hierarchical process (AHP) for process planning problem.
A globally optimized fitness function is defined including
the evaluation of manufacturing rules using AHP, calculation
of cost and time, and determination of relative weights
using neural network techniques. Huang et al. [8] model the
process planning problem as a combinatorial optimization
problem with constraints and developed a hybrid graph and
genetic algorithm (GA) approach. In the approach, graph
theory accompanied with matrix theory is embedded into
the main frame of GA. The precedence constraints between
operations are formulated in an operation precedence graph
(OPG). An improved GA was applied to solve process
planning problem based on the operation precedence graph
(OPG). Wang et al. [21] proposed an optimization approach
based on particle swarm optimization (PSO) to solve the
process planning problem and introduced a novel solution
representation scheme for the application of PSO. In the
hybrid approach, two kinds of local search algorithms are
incorporated and interweavedwith PSOevolution to improve
the best solution in each generation.

Although significant improvements have been achieved
for process planning problem, there still remains potential
for further improvement [22]. For example, optimization
approach needs to be improved to be more efficient, and a
more reasonable constraint modeling and handling mecha-
nism needs to be developed; also, some practical manufac-
turing environment should be considered, and the approach
should provide the multiple alternative optimal plans.

3. Process Planning Problem Description

3.1. Process Plan Representation. In CAD systems, a part
is generally described by features with specific machining
meanings, such as planes, chamfers, holes, slots, and steps.
Given a part and a set ofmanufacturing resources, the process
planning problem of CAPP can be described as follows.

The CAD information of part is read before process
planning. Then, the machining method of each feature is
selected according to the attributes of different features,
which can be expressed by the various operations eventually.
So, it is necessary to determine one or several operations for
each feature in advance. The operations consist of machines,
cutting tools, and tool approach directions (TAD). A TAD is
defined as a direction from which a cutting tool can access
a feature [7, 10]. For each feature of part, the selection of
machines, cutting tools, and TADs is based on the feature
geometry and available machining resources. For a part
with 𝑚 feathers, the relationships between part, feather, and
operation are shown in Figure 1.

An example part is shown in Figure 2. The part includes
six feathers: F1 (a step), F2 (two holes arranged in a replicated
feature), F3 (a through hole), F4 (a slot), F5 (a chamfer),
and F6 (two blind holes arranged in a replicated feature).
Some feathers may have more than one machining method.
Each machining method has different selection of machines,
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Figure 2: An example part.

cutting tools, and TADs. For the example part, the feather of
F3 may have two different machining methods of drilling→
reaming and drilling→ grinding. However, it is possible to
have different combination of machines, cutting tools, and
TAD even though the selection is overlapped [11]. For any
part, TAD includes six directions, that is, +𝑋, −𝑋, +𝑌, −𝑌,
+𝑍, and −𝑍. However, it is common that some TAD will be
likely to be discarded for the interference between feathers.
For example, the drilling of F6 has two possible TADs, that
is, −𝑋 and +𝑋, because the tool cannot access the hole from
the direction of −𝑋, and the TAD of −𝑋 will be discarded.
The features and their valid TADs can be recognized using
a geometric reasoning approach [23, 24]. The final result of
operation selection for the example part is shown in Table 1.
“Op” represents operation; for example, “Op

1
” represents

operation 1. There is only 1 operation for the feathers of F1,
F4, and F5 and 2 operations for the feathers of F2, F3, and F6.

3.2. Precedence Constraints. Process planning involves deter-
mining in what order to perform a set of selected operations
such that the resulting order satisfies the precedence con-
straints.These constraints are established by considering both
a large number of geometrical interactions and technological
requirements between the various factors [1, 3, 8, 25], which
cause process planning to become more complicated. The
constraints can be divided into the feasibility constraints

and optimality constraints [1]. A feasible process plan is
deemed to be one which does not violate any of the feasibility
constraints. The optimality constraints affect the quality,
cost, and efficiency of a feasible process plan, which may
be violated at certain times in cases of contradictions to
some feasibility constraints. Faheem et al. indicate constraint
affecting the generation of process plans which can be
classified as “hard” or “soft” constraints [25]. Hard constraints
affect the manufacturing feasibility and a process plan should
be consistent with these constraints. Soft constraints only
affect the quality, cost, or efficiency of a feasible process
plan. Many constraints and rules have been proposed and
summarized [1, 4, 9, 10]. These precedence constraints are
summarized as follows [18].

Rule 1. Primary surfaces prior to secondary surface.

Rule 2. Planes prior to its associated features.

Rule 3. Rough machining operation prior to finishing
machining operation.

Rule 4. Datum surfaces prior to its associated features.

Rule 5. Some good manufacturing practice. For example,
features related to thin wall should bemachined first; features
that caused tool damage and failure of clamping potentially
should be machined before or later, and feathers that affect
the cost or the quality of machining should bemachined first.

These constraints between machining operations can be
used to constrain the search in a smaller space and enhance
search efficiency. Some examples of the above precedence
constraints for the example part in Figure 2 are illustrated in
Table 2.

3.3. Process Plan Evaluation Criterion. The most common
evaluation criteria for process plan include minimum num-
ber of setups, shortest process time, andminimummachining
cost. Váncza and Márkus used number of setups, number
of tool changes, and total cost of individual operations as
evaluation criteria [9]. Usher and Sharma used number
of setups, continuity of motion, and loose precedence as
evaluation criteria [5]. Zhang et al. used machine costs,
cutting tool costs, number of machine changes, number of
tool changes, and number of setups as evaluation criteria
[10]. Many evaluation criteria have been proposed, which
include process time, number of setups, number of tool
changes, number of machine changes, continuity of motion,
and total cost of individual operations. Because the detailed
information on machining parameters is not available at this
stage, the total machining time cannot be used for plan
evaluation. In this paper, five cost evaluation criteria are
adopted and are similar to the criteria in paper [3, 4].

(1) Total machine cost (TMC) is

TMC =

𝑛

∑

𝑖=1

MC
𝑖
, (1)
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Table 1: Operation selection for the example part.

Feathers Operations Machines Tools TADs
F1 Milling (Op1) Vertical milling machine (M1) Milling cutter (T1) +X, +Z

F2 Drilling (Op2) Vertical milling machine (M1) Drill (T2)
−Z

Tapping (Op3) Drilling press (M2) Tapping tool (T3)

F3 Drilling (Op4) Vertical milling machine (M1) Drill (T4)
−X

Reaming (Op5) Drilling press (M2) Reamer (T5)
F4 Milling (Op6) Vertical milling machine (M1) Slot cutter (T6) +Z
F5 Milling (Op7) Vertical milling machine (M1) Chamfer cutter (T7) −Z, +Y

F6 Drilling (Op8) Vertical milling machine (M1) Drill (T8) +X
Reaming (Op9) Drilling press (M2) Reamer (T9)

Table 2: Precedence constraints between operations.

Features Operations Precedence constraints description

F1 Op1
Op1 is prior to Op2 and Op3 for Rule 2.
Op1 is prior to Op4 and Op5 for Rule 5.

F2 Op2 Op2 is prior to Op3 for Rule 3.

F3

Op4 Op4 is prior to Op5 for Rule 3.

Op4, Op5
Op4 and Op5 are prior to Op6 for Rule 5.
Op4 and Op5 are prior to Op7 for Rule 5.

F4 Op6 Op6 is prior to Op2 and Op3 for Rule 4.

F6
Op8 Op8 is prior to Op9 for Rule 3.

Op8, Op9 Op8 and Op8 are prior to Op7 for Rule 5.

Table 3: Definition of a tool change.

Conditions of machining two consecutive
operations Tool change

Same tool and same machine No
Same tool and different machines Yes
Different tools and same machine Yes
Different tools and different machines Yes

Table 4: Definition of a setup change.

Conditions of machining two consecutive
operations Setup change

Same TAD and same machine No
Same TAD and different machines Yes
Different TADs and same machine Yes
Different TADs and different machines Yes

where 𝑛 is the total number of operations and MC
𝑖
is

the machine cost of the 𝑖th machine for an operation,
a constant for a specific machine.

(2) Total tool cost (TTC) is

TTC =

𝑛

∑

𝑖=1

TC
𝑖
, (2)

where TC
𝑖
is the tool cost of the 𝑖th tool for an

operation, a constant for a specific tool.

(3) Total machine change cost (TMCC): a machine
change is needed when two adjacent operations are
executed on different machines

TMCC = MCC ∗NMC, (3)

where MCC is the machine change cost and NMC
is the number of machine changes, which can be
calculated by

NMC =

𝑛−1

∑

𝑖=1

Ω
1
(𝑀
𝑖+1
,𝑀
𝑖
) , (4)

where 𝑀
𝑖
is the machine for the 𝑖th operation and

Ω
1
(𝑥, 𝑦) is a judging function:

Ω
1
(𝑥, 𝑦) = {

1 𝑥 ̸= 𝑦,

0 𝑥 = 𝑦.

(5)

(4) Total tool change cost (TTCC): a tool change is
defined in Table 3 [3]

TTCC = TCC ∗NTC, (6)

where TCC is the tool change cost and NTC is the
number of tool changes, which can be calculated by

NTC =

𝑛−1

∑

𝑖=1

Ω
2
(Ω
1
(𝑀
𝑖+1
,𝑀
𝑖
) , Ω
1
(𝑇
𝑖+1
, 𝑇
𝑖
)) , (7)

where𝑇
𝑖
is the 𝑖th tool.Ω

2
(𝑥, 𝑦) is a judging function:

Ω
2
(𝑥, 𝑦) = {

0 𝑥 = 𝑦 = 0,

1 otherwise.
(8)

(5) Total setup cost (TSCC): a setup change is defined in
Table 4 [3]

TSCC = SCC ∗NSC, (9)

where SCC is the setup cost and NSC is the number
of setups, which can be calculated by

NSC =

𝑛−1

∑

𝑖=1

Ω
2
(Ω
1
(𝑀
𝑖+1
,𝑀
𝑖
) , Ω
1
(TAD

𝑖+1
,TAD

𝑖𝑖
)) + 1,

(10)

where TAD
𝑖
is the 𝑖th TAD.
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Table 5: Cost indexes for the example part in Figure 2.

MC TC MCC TCC SCC
M1 M2 T1 T2 T3 T4 T5 T6 T7 T8 T9
40 10 10 3 7 3 8 10 10 3 8 300 60 20

Table 6: An optimal process plan for the example part in Figure 2.

Operation Op1 Op8 Op9 Op4 Op5 Op6 Op7 Op2 Op3
Machine M1 M1 M1 M1 M1 M1 M1 M1 M1
Tool T1 T8 T9 T4 T5 T6 T7 T2 T3
TAD +X +X +X −X −X +Z −Z −Z −Z

NMC = 0, NCC = 8, NSC = 4. TMC = 360, TTC = 62, TMCC = 0, TTCC = 480, TSCC = 80, TPC = 982.

(6) Total production cost (TPC) is

TPC = 𝑤
1
∗ TMC + 𝑤

2
∗ TTC + 𝑤

3
∗ TMCC

+ 𝑤
4
∗ TTCC + 𝑤

5
∗ TSCC.

(11)

In (11), TPC is total production cost. 𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, and

𝑤
5
are weights of TMC, TTC, TMCC, TTCC, andTSCC,

respectively. These weights can be assigned referring to the
active situations, which provide the flexibility to customize
the optimization objective function according to various
situations. The different values of 𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, and 𝑤

5

constitute the flexible combination to meet the requirement
of process planning in different manufacturing environment.
The detailed method of setting these parameters is given in
the subsequent sections.

4. The Proposed ACO Algorithm

4.1. Graph-Based Representation of Process Plan. The pro-
posed ACO algorithm basically generates solutions by stan-
dard ACO procedures [26]. To construct a feasible process
plan with the ACO approach, the process planning problem
has to be visualized and represented by a weighted directed
graph [27].

The weighted graph is denoted by 𝐷 = (𝑂,𝐴, 𝐵), where
𝑂 is a set of nodes, 𝐴 is a set of directed arcs, and 𝐵 is
a set of undirected arcs. The nodes of 𝑂 stand for all of
the operations Op

𝑖
, and 𝐴 corresponds to the precedence

constraints between the operations of the parts. 𝐵 represents
the set of arcs connecting all possible combination of the
nodes. Both 𝐴 and 𝐵 represent possible paths for ants
travelling from one node to another. The ants are basically
free to travel along the paths unless there is a precedence
constraint specified by 𝐴. Figure 3 is the weighted graph for
the example in Figure 2.

The approach in this paper applying the ACO algorithm
for process planning is to search for a path in a weighted
graph (Figure 3), where all necessary nodes have to be
visited to complete the process plan to minimize TPC. The
characteristic of this approach is to construct process plans
from an autocatalytic process, in which artificial ants favor
the process plan with smaller TPC and they will deposit more
pheromones on the visited paths so that there is a higher

probability for the following ants to continue choosing the
better paths.

4.2. Initialization. Before starting the ACO for process plan-
ning, the ant colony was placed on the initial node. The
selection of the initial node determines which features can be
machined firstly, which affects the result of process planning
and the performance of ACO. Only these operations attached
to the features with no precedent features may be selected as
the initial node. For the example part in Figure 2, only F1 has
no precedent features, so Op

1
will be allowed to be the first

visited node. In fact it is difficult to select the initial node from
many operation nodes, because the initial node is not unique
in most of the process planning. In this paper a dummy node
Op
𝑑
, acting as the initial node, is added to the weighted graph

to connect the first feasible operations of the parts, as shown
in Figure 3. In addition, the undirected arc is added from the
initial node to the possibly first visited operation nodes. The
number of ants (𝐾) in the colony is arbitrary, and it can be set
as a parameter, which is allowed to be adjusted in accordance
with the scale of the problem and the performance of the
algorithm.

4.3. Iteration. For the ant 𝑘, a path will be achieved after
traversing all the nodes in a weighted graph, which represents
the one of feasible process plans. To choose the next visiting
node, the ant 𝑘 is guided by the heuristic information 𝜂

𝑢V
on the node and the pheromone amount 𝜏

𝑢V on the arc
linking the source node 𝑢 and possible destination node V.
The heuristic information 𝜂

𝑢V can reflect the attractiveness of
the next visiting node for the ant 𝑘. Whenminimizing TPC is
used to be objective function for process planning, MC and
TC of the operation node will be treated to calculate 𝜂

𝑢V. The
heuristic information 𝜂

𝑢V can be given as follows:

𝜂
𝑢V =

𝐸

PC
, (12)

where 𝐸 is a positive constant, and it can be set by trial and
error. PC is the processing cost of the selected node operation
and it is calculated as follows:

PC = 𝑤
1
∗MC + 𝑤

2
∗ TC. (13)
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Table 7: Features, operations, and machining information of the sample part.

Features Feature descriptions Operations TADs Machines Tools
F1 Planar surface Milling (Op1) +𝑍 M2, M3 T6, T7, T8
F2 Planar surface Milling (Op2) −𝑍 M2, M3 T6, T7, T8
F3 Two pockets arranged as a replicated feature Milling (Op3) +𝑋 M2, M3 T6, T7, T8
F4 Four holes arranged as a replicated feature Drilling (Op4) +𝑍, −𝑍 M1, M2, M3 T2
F5 A step Milling (Op5) +𝑋, −𝑍 M2, M3 T6, T7
F6 A protrusion (rib) Milling (Op6) +𝑌, −𝑍 M2, M3 T7, T8
F7 A boss Milling (Op7) −𝑎 M2, M3 T7, T8

F8 A compound hole
Drilling (Op8) −𝑎 M1, M2, M3 T2, T3, T4
Reaming (Op9) M1, M2, M3 T9
Boring (Op10) M2, M3 T10

F9 A protrusion (rib) Milling (Op11) −𝑌, −𝑍 M2, M3 T7, T8

F10 A compound hole
Drilling (Op12) −𝑍 M1, M2, M3 T2, T3, T4
Reaming (Op13) M1, M2, M3 T9
Boring (Op14) M3, M4 T10

F11 Nine holes arranged Drilling (Op15) −𝑍 M1, M2, M3 T1
Tapping (Op16) M1, M2, M3 T5

F12 A pocket Milling (Op17) −𝑋 M2, M3 T7, T8
F13 A step Milling (Op18) −𝑋, −𝑍 M2, M3 T6, T7

F14 A compound hole Teaming (Op19) +𝑍 M1, M2, M3 T9
Boring (Op20) M3, M4 T10

Opd

Op1
(M1, T1, +X)

(M1, T1, +X)

Op2
(M1, T2, −Z)

(M2, T2, −Z)

Op3
(M1, T3, −Z)

(M2, T3, −Z)

Op6
(M1, T6, +Z)

Op5
(M1, T5, +X)

(M2, T5, +X)

Op4
(M1, T4, +X)

(M2, T4, +X)

Op7
(M1, T7, −Z)

(M1, T7, +Y)

Op8
(M1, T8, +X)

(M2, T8, +X)

Op9
(M2, T9, +X)

(M2, T9, +X)

Figure 3: A disjunctive weighted directed graph for the example part.



The Scientific World Journal 7

a

R1

R1

x
z

y

4
17 63

6

90

40

1616

6 8

32

2
2

A

A

B

B
C

D

18

12

4

26

10

6

22
10

6

R7

4

D0.02//
0.02 C

0.01 C

//

2

A-A

B-B

18

18

82

1.
5

F2 F10 F11

F12

F13

F6
F14

F1F3

F4
F5

F8

F7
F9

𝜙18

𝜙20

R10

R11

45∘
±0.01

4
0
±
0.
01

4 × 𝜙2
9 × 𝜙1

20 ± 0.01

R10 ± 0.01

3
0
±
0.
02
5

76 ± 0.025

Figure 4: A sample part.

Equation (12) shows that the nodes with the smaller
processing cost have the higher heuristic information amount
and these nodes have more attraction for the ant 𝑘.

The pheromone amount 𝜏
𝑢V can reflect the attractiveness

of the arc accessing to the destination node from the current
node, which specifies how good the previous process plans
are for the following ants. It will be updated according to

the value of TPC of the process plan achieved by the ant 𝑘.
The pheromone amount 𝜏

𝑢V can be given as follows:

𝜏
𝑘

𝑢V = (1 − 𝜌) ∗ 𝜏
𝑘

𝑢V + Δ𝜏
𝑘

𝑢V, (14)

where 𝜌 is an evaporation coefficient of the pheromone on
the arc linking the source node 𝑢 and possible destination
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Table 8: Available machining resources and costs in a workshop
environment.

Number Types MC
Machines

M1 Drilling press 10
M2 Three-axis vertical milling machine 40
M3 CNC 3-axis vertical milling machine 100
M4 Boring machine 60

Number Types TC
Tools

T1 Drill 1 7
T2 Drill 2 5
T3 Drill 3 3
T4 Drill 4 8
T5 Tapping tool 7
T6 Mill 1 10
T7 Mill 2 15
T8 Mill 2 30
T9 Ream 15
T10 Boring tool 20

MCC = 160, SCC = 100, TCC = 20

node V. Δ𝜏𝑘
𝑢V is the quantity of the pheromone trail on the

arc(𝑢, V) generated by the ant 𝑘 after each iteration. Also, it
can be given as

Δ𝜏
𝑘

𝑢V =
{

{

{

𝑄

TPC
if ant 𝑘 passes the arc (𝑢, V) ,

0 otherwise,
(15)

where 𝑄 is a positive constant. Before ant colony begins the
iteration, the pheromone amount on every arc is set to be 𝜏

0

initially.
The heuristic information and the pheromone amount

constructed a probability of moving from a node to another
node for an ant. The more the pheromone amount on
the arc and the heuristic information on the node, the
higher the selective probability. For the ant 𝑘, the selective
probability 𝑝

𝑘

𝑢V from the source node 𝑢 to the destination
node V can be given as follows:

𝑝
𝑘

𝑢V =

{
{
{

{
{
{

{

[𝜏
𝑢V]
𝛼

[𝜂
𝑘

𝑢V]
𝛽

∑
𝑤∈𝑆𝑘

[𝜏
𝑢𝑤
]
𝛼

[𝜂
𝑘

𝑢𝑤
]
𝛽

V ∈ 𝑆
𝑘
,

0 V ∉ 𝑆
𝑘
,

(16)

where 𝛼 and 𝛽 denote the weighting parameters controlling
the relative importance of the pheromone amount and the
heuristic information, respectively. 𝑆

𝑘
represents the set of

nodes allowed to be visited at the next step for the ant 𝑘.

4.4. Termination. If all of the ants almost constructed the
same process plans repeatedly at the early stage of the
ACO algorithm, the algorithm would fall into the local
convergence, which leads to failure in the exploration of new
paths for the subsequent iteration. Once the algorithm falls

into the local convergence, the output of process planning
would not be the optimal result, even far from the optimal
results. To void the local convergence, the parameter of𝑀

𝑟𝑝𝑡

controlling the repeated number of the same process plan
is set in advance. When the adjacent two-process plan is
completely the same, the variable of 𝑆

𝑟𝑝𝑡
will increase by 1;

otherwise 𝑆
𝑟𝑝𝑡

will be reset to be 0.When 𝑆
𝑟𝑝𝑡

reaches to𝑀
𝑟𝑝𝑡
,

it means that no improvement on the solutions is made in
the recent iterations. The ants may have converged to local
optimal results. In addition, the local convergence occurs at
the early stage of the ACO algorithm. To prevent the quick
convergence, the maximum iteration 𝑀

𝑖𝑡𝑒
is set in advance.

Obviously, with the number of iterations 𝑆
𝑖𝑡𝑒
increasing, even

approaching to the 𝑀
𝑖𝑡𝑒
, the 𝑀

𝑟𝑝𝑡
will increase and can be

calculated as follows:

𝑀
𝑟𝑝𝑡

= 𝑆
𝑖𝑡𝑒
∗ 𝑞 ∗

𝑆
𝑖𝑡𝑒

𝑀
𝑖𝑡𝑒

, (17)

where 𝑞 is random number, 𝑞 ∈ (0, 1).
If the two events of 𝑆

𝑟𝑝𝑡
= 𝑀

𝑟𝑝𝑡
and 𝑆

𝑖𝑡𝑒
< 𝑀

𝑖𝑡𝑒

are satisfied simultaneously, it is considered that the local
convergence occurs and the algorithmwill be restarted. If the
only event of 𝑆

𝑖𝑡𝑒
= 𝑀
𝑖𝑡𝑒
is satisfied, the resulting process plan

will be output and algorithm will be terminated.

5. Experiments and Results

5.1. Walkthrough Example. When ACO is applied in process
planning, those parameters including 𝐾, 𝜌, 𝛼, 𝛽, 𝐸, 𝑄, 𝜏

0

have to be adjusted according to the situation to achieve the
optimal process plan. The example part in Figure 2 is used to
illustrate the proposed ACO approach. All the cost indexes
are shown in Table 5 and it is assumed that all the machines
and tools are available; namely, 𝑤

1
–𝑤
5
in (11) and (13) are set

as 1.
A lot of preliminary experiments are dominated to test

the effect of various parameters. In each experiment, one
parameter is changed and the other parameters were fixed,
and the effect of the changed parameter on the algorithm
properties was analyzed at different levels. The resulting
process plan is shown in Table 6 by the proposed ACO
approach at the value of𝐾 = 5, 𝜌 = 0.8, 𝛼 = 2, 𝛽 = 1, 𝐸 = 45,
𝑄 = 1000, 𝜏

0
= 1,𝑀

𝑖𝑡𝑒
= 50.

5.2. Simulation Experiments. More complex process plan-
ning problems are considered in extensive simulation exper-
iments. A sample part taken from the work of Li et al. [3, 4]
is used to test the proposed ACO approach (Figure 4). The
part consists of 14 defined manufacturing features, including
planes, holes, and pockets. The detailed information of fea-
tures, operations, manufacturing resources, and precedence
relationship of the part is given in Tables 7, 8, and 9.

The above simulation experiment for the example part
in Figure 2 shows that the selection of parameters is very
important to the quality of the results. For the sample example
in Figure 4, the method of determining those parameters is
more complex, due to the enlargement of the problem size.
It is assumed that all the machines and tools are available;
namely, 𝑤

1
–𝑤
5
in (11) and (13) are set as 1.
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Table 9: Precedence relationship between features and operations.

Features Operation Precedence constraints description
F1 Milling (Op1) F1 (Op1) is the datum face for the part; hence, it is machined before all features
F2 Milling (Op2) F2 (Op2) is before F10 (Op12, Op13, Op14) and F11 (Op15, Op16) for Rule 2
F3 Milling (Op3)
F4 Drilling (Op4)
F5 Milling (Op5) F5 (Op5) is before F4 (Op4) and F7 (Op7) for Rule 4
F6 Milling (Op6) F6 (Op6) is before F10 (Op12, Op13, Op14) for Rule 4
F7 Milling (Op7) F7 (Op7) is before F8 (Op8, Op9, Op10) for Rule 4

F8
Drilling (Op8)
Reaming (Op9) Op8 is before (Op9 and Op10); Op9 is before Op10 for Rule 3
Boring (Op10)

F9 Milling (Op11) F9 (Op11) is before F10 (Op12, Op13, Op14) for Rule 4

F10
Drilling (Op12) Op12 is before Op13 and Op14; Op13 is before Op14 for Rule 3; F10 (Op12, Op13, Op14) is before F11

(Op15, Op16) for Rule 4;Op12 of F10 is before F14 (Op19, Op20)
Reaming (Op13)
Boring (Op14)

F11 Drilling (Op15) Op15 is before Op16 for Rule 3Tapping (Op16)
F12 Milling (Op17)
F13 Milling (Op18) F13 (Op18) is before Op4 and Op17 for Rule 2 and Rule 1, respectively

F14 Reaming (Op19) Op19 is before Op20 for Rule 3Boring (Op20)

Table 10: Four of the fifty process plans.

Process plan 1
Operation 1 2 18 11 6 12 13 19 17 3 5 7 8 9 10 20 14 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 1 1 1
Tool 7 7 7 7 7 3 9 9 7 7 7 7 3 9 10 10 10 2 1 5
TAD +𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 +𝑍 −𝑋 +𝑋 +𝑋 −𝑎 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 10, NSC = 9, TMCC = 320, TTCC = 200, TSCC = 900, TMC = 750, TTC = 265, TPC = 2435
Process plan 2

Operation 1 11 6 2 12 18 13 19 17 3 5 7 8 9 10 20 14 15 16 4
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 1 1 1
Tool 7 7 7 7 3 6 9 9 7 7 7 7 3 9 10 10 10 1 5 2
TAD +𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 +𝑍 −𝑋 +𝑋 +𝑋 −𝑎 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 11, NSC = 9, TMCC = 320, TTCC = 220, TSCC = 900, TMC = 750, TTC = 260, TPC = 2450
Process plan 3

Operation 1 5 3 18 6 2 11 12 13 17 7 8 9 19 14 20 10 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1
Tool 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 2 1 5
TAD +𝑍 +𝑋 +𝑋 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑋 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 +𝑍 −𝑎 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 9, NSC = 10, TMCC = 320, TTCC = 200, TSCC = 1000, TMC = 770, TTC = 237, TPC =2527
Process plan 4

Operation 1 3 5 6 2 18 11 12 13 17 7 8 9 19 14 20 10 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1
Tool 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 2 1 5
TAD +𝑍 +𝑋 +𝑋 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑍 −𝑋 −𝑎 −𝑎 −𝑎 +𝑍 −𝑍 +𝑍 −𝑎 −𝑍 −𝑍 −𝑍

NMC = 2, NTC = 9, NSC = 10, TMCC = 320, TTCC = 200, TSCC = 1000, TMC = 770, TTC = 237, TPC = 2527
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Table 11: Average results of simulation experiment.

Type Mean Maximum Minimum Standard deviation
TMC 754.2 800 750 9.82
TTC 261.88 267 237 7.63
TMCC 320 320 320 320
TTCC 202 220 180 10.77
TSCC 918 1000 900 38.42
TPC 2456.1 2527.0 2435.0 37.98

Table 12: Results compared to other algorithms for the sample part in Figure 4.

Condition Proposed approach ACO TS SA GA
(1)

Mean 2456.1 2490.0 2609.6 2668.5 2796.0
Maximum 2527.0 2500.0 2690.0 2829.0 2885.0
Minimum 2435.0 2450.0 2527.0 2535.0 2667.0

(2)
Mean 2115.4 2117.0 2208.0 2287.0 2370.0
Maximum 2380.0 2120.0 2390.0 2380.0 2580.0
Minimum 2090.0 2090.0 2120.0 2120.0 2220.0

(3)
Mean 2600 2600.0 2630.0 2630.0 2705.0
Maximum 2740.0 2600.0 2740.0 2740.0 2840.0
Minimum 2580.0 2600.0 2580.0 2590.0 2600.0

The sample example is solved by the ACO approach
with the varied values of 𝐾 ∈ {5, 10, 20, 40}, 𝜌 ∈

{0.05, 0.1, 0.25, 0.5, 0.8}, 𝛼 ∈ {0.5, 1, 5, 10}, 𝛽 ∈ {0.5, 1, 5, 10},
𝐸 ∈ {50, 55, 65, 80}, 𝑄 ∈ {1500, 2000, 2500, 3000}, and𝑀

𝑖𝑡𝑒
∈

{100, 2000, 300, 400} and with the fixed value of 𝜏
0
= 1. 50

trials were separately conducted to evaluate the performance
of the proposed approach. Experimental observation has
shown that 𝐾 = 10, 𝜌 = 0.8, 𝛼 = 1, 𝛽 = 1, 𝐸 = 80,
𝑄 = 3000, 𝜏

0
= 1, and𝑀

𝑖𝑡𝑒
= 200 are the best choices of these

parameters. Four of the process plans generated are listed in
Table 10. The best process plan (minimal TPC) is shown as
process plan 1 in Table 10. The average result of 50 trials is
shown in Table 11.

5.3. Comparative Tests. Three conditions are used to test the
proposed algorithm for the sample parts [3, 4].

(1) Allmachines and tools are available, and𝑤
1
–𝑤
5
in (11)

and (13) are set as 1.
(2) Allmachines and tools are available, and𝑤

2
= 𝑤
5
= 0,

𝑤
1
= 𝑤
3
= 𝑤
4
= 1.

(3) Machine M2 and tool T7 are down, 𝑤
2
= 𝑤
5
= 0,

𝑤
1
= 𝑤
3
= 𝑤
4
= 1.

In Table 12, the TPC generated by the proposed ACO is
compared with those of GA and SA approaches by Li et al.
[3] and TS by Li et al. [4], as well as the ACO by Liu et al. [18].

Under condition (1), a lower TPC (2435.0) has been
found using the proposed ACO approach, and themean TPC
(2456.1) is better than the costs of the other four algorithms.
Under condition (2), theminimumTPC (2090) is the same as

the ACO [6]. Under condition (3), the minimumTPC (2580)
is the same as the TS [4]. The mean TPC generated by the
proposed approach is better than the other four algorithms
under the three conditions.

6. Conclusions

A graph-based ACO approach is developed to solve the
process planning optimization problem against process con-
straints for prismatic parts, which considers the selec-
tion of machine resources, determining process operation,
and sequencing operation according to machine cost. The
approach is characterized by the following aspects.

(1) A graph-based representation of process plan is
proposed. A weighted directed graph is used to represent
process planning problem. The graph includes nodes set,
directed arcs set, and undirected arcs set, which stand for
operations, precedence constraints between the operations,
and possible visited path connecting the nodes, respectively.

(2) A lower TPC is found by the proposed approach for
the sample part, which means that the optimal process plan
is generated by now under the same conditions. Compar-
ing with the other algorithms, the proposed approach has
generated the better process plan results under the three
conditions.

In the further study, a deep discussion of selecting
the ACO approach parameters is conducted. In addition,
the multiobjective optimization will be incorporated into
the ACO approach for handling the multiobjective process
planning problem.
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