
Research Article
Parameter Interval Estimation of System Reliability for
Repairable Multistate Series-Parallel System with Fuzzy Data

Wimonmas Bamrungsetthapong and Adisak Pongpullponsak

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Correspondence should be addressed to Adisak Pongpullponsak; adisak.pon@kmutt.ac.th

Received 12 February 2014; Revised 10 April 2014; Accepted 24 April 2014; Published 22 May 2014

Academic Editor: Nirupam Chakraborti

Copyright © 2014 W. Bamrungsetthapong and A. Pongpullponsak. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

The purpose of this paper is to create an interval estimation of the fuzzy system reliability for the repairable multistate series–
parallel system (RMSS). Two-sided fuzzy confidence interval for the fuzzy system reliability is constructed. The performance of
fuzzy confidence interval is considered based on the coverage probability and the expected length. In order to obtain the fuzzy
system reliability, the fuzzy sets theory is applied to the system reliability problem when dealing with uncertainties in the RMSS.
The fuzzy number with a triangular membership function is used for constructing the fuzzy failure rate and the fuzzy repair rate in
the fuzzy reliability for the RMSS.The result shows that the good interval estimator for the fuzzy confidence interval is the obtained
coverage probabilities the expected confidence coefficient with the narrowest expected length. The model presented herein is an
effective estimationmethod when the sample size is 𝑛 ≥ 100. In addition, the optimal 𝛼-cut for the narrowest lower expected length
and the narrowest upper expected length are considered.

1. Introduction

Most researches on reliability theory involve traditional
binary reliability models where each component in a system
basically consists of two functional states, perfect function-
ality and complete failure. However, in the system reliability
of multistate components, the entire system performance will
be considered from different performance levels and several
failure modes. The evolution of such a system is represented
by a continuous-time discrete state stochastic process. The
multistate system is widely used in various industrial areas
such as power generation systems, computer systems, and
transportation systems (Lisnianki and Levitin [1]). Compared
with a binary systemmodel, amultistate system (MSS)model
provides amore flexible tool for representing engineering sys-
tems in real life as first introduced in [2–4]. Recent research
has focused on reliability evaluation and optimization ofMSS
[5–7]. In conventionalmultistate theory, it is assumed that the
exact probability of each component state is given. However,
with the progress of modern industrial technologies, the
product development cycles have become shorter, while
the lifetime of products has become longer [8]. In many

highly reliable applications, there may be only a few available
observations of the system’s failures. Therefore, it may be
difficult to obtain sufficient data to estimate the precise values
of the probabilities and performance levels of these systems.
Moreover, the inaccuracy of systemmodels, caused by human
errors, is difficult to quantify using conventional reliability
theory alone [9]. In light of these significant challenges, new
techniques are needed to solve these fundamental problems
related to reliability.

More recently, fuzzy reliability theory has been developed
on the basis of fuzzy theory (Zadeh [10]). Presently, the appli-
cations of fuzzy idea in reliability theory that deal with the
problem of lacking of inaccuracy or fluctuation data can be
seen in many areas. In reliability analysis, many theories and
methods have been constructed to facilitate the multistate
system reliability assessment such as the universal generating
function (Levitin [11]) and the multistate weight system (Li
and Zuo [12]). Ding and Lisnianski [13] proposed the fuzzy
universal generating function method to derive the fuzzy
probability distribution and fuzzy system availability of the
overall system when the component’s performance rate and
state probabilities take fuzzy values. Liu et al. [14] investigated

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 275374, 10 pages
http://dx.doi.org/10.1155/2014/275374



2 The Scientific World Journal

the dynamic fuzzy system state probabilities, fuzzy availabil-
ity, and fuzzy performance rewards of a multistate system
under a continuous-time Markov model. Liu and Huang [15]
proposed the fuzzy multistate system that has extended the
multistate system model to the cases that the transition and
performance rates of multistate elements are uncertain.

This research considers the problem of interval esti-
mation of fuzzy system reliability when the parameter of
interest is fuzzy and the data are observations from fuzzy
random variables. A random sample of fuzzy data set is
generated in constructing a fuzzy confidence interval. In
some studies on fuzzy confidence interval, Corral and Gil
[16] considered the problem of constructing confidence
interval using fuzzy data without considering any fuzzy
random variables. Geyer and Meeden [17] introduced a
fuzzy confidence interval that is the optimality of UMP and
UMPU test. Viertl [18] investigated statistical inference about
an unknown parameter based on fuzzy observations and
developed testing hypothesis for crisp parameter based on
fuzzy data. Wu [19] proposed an approach based on fuzzy
randomvariables for constructing a fuzzy confidence interval
for an unknown fuzzy parameter. Škrjanc [20] introduced a
method to define a fuzzy confidence interval that combines
a fuzzy identification methodology with some idea from
applied statistics in finding the confidence interval defined
by the lower and upper fuzzy bounds. Chachi and Taheri [21]
proposed amethod to construct the one-sided and two-sided
fuzzy confidence intervals for an unknown fuzzy parameter
based on normal fuzzy random variable. Škrjanc [22] pre-
sented a new method of confidence interval identification
for Takagi-Sugeno fuzzy models in the case of the data
with regionally changeable variance. The method combines
a fuzzy identification methodology with some ideas from
applied statistics. Some studies showed that much research
proposed an approach based on fuzzy data for constructing
a fuzzy confidence interval, but without considering the
performance analysis of interval estimator. Then the perfor-
mance of fuzzy confidence interval will be assessed based
on the coverage probability and the expected length in this
research.

In this research, the fuzzy system reliability of RMSS is
constructed, where the fuzzy failure rate and the fuzzy repair
rate for each component are the triangular fuzzy number.
An approach to construct interval estimation of the fuzzy
system reliability of RMSS which subsequently will be used
in estimation of the fuzzy confidence interval of fuzzy system
reliability is developed. Finally, the analytic expression to find
the coverage probability and the expected length that it is
used to interpret the efficiency of fuzzy confidence interval
are presented.

2. Materials and Methods

2.1. Markov Model for Multistate Element. A Markov model
has been used for evaluating the expected number of failures
at an arbitrary time interval in many practical cases and can
be described as a Poisson process (Lisnianki and Levitin [1]).

Definition 1 (see Ibe [23]). A stochastic process {𝑋(𝑡) | 𝑡 ≥ 0}

is a continuous-time Markov chain if, for all 𝑡, Δ𝑡 ≥ 0 and
nonnegative integers 𝑖, 𝑗, 𝑘,

𝑃 [𝑋 (𝑡 + Δ𝑡) = 𝑗 | 𝑋 (Δ𝑡) = 𝑖, 𝑋 (𝑢) = 𝑘, 0 ≤ 𝑢 ≤ Δ𝑡]

= 𝑃 [𝑋 (𝑡 + Δ𝑡) = 𝑗 | 𝑋 (Δ𝑡) = 𝑖] .

(1)

This means that in a continuous-time Markov chain the
conditional probability of the future state at time 𝑡 + Δ𝑡 given
the present state at 𝑠 and all part state depends only on the
present state and is independent of the past. If in addition
𝑃[𝑋(𝑡 + Δ𝑡) = 𝑗 | 𝑋(Δ𝑡) = 𝑖] is dependent on 𝑠, then
the process {𝑋(𝑡) | 𝑡 ≥ 0} is said to be time homogeneous
or have the time homogeneity property. Time homogeneous
Markov chains have stationary transition probabilities. Let
𝑃
𝑖𝑗
(𝑡) = 𝑃[𝑋(𝑡 + Δ𝑡) = 𝑗 | 𝑋(Δ𝑡) = 𝑖] be the probability that

a Markov chain in state 𝑖 will be in state 𝑗 after an additional
time 𝑡. Thus, the 𝑃

𝑖𝑗
(𝑡) is the transition probability function

that satisfies the condition 0 ≤ 𝑃
𝑖𝑗
(𝑡) ≤ 1. Also, ∑

𝑗
𝑃
𝑖𝑗
(𝑡) = 1.

2.2. Kolmogorov Differential Equations. Using a set of differ-
ential equations to find 𝑃

𝑖𝑗
(𝑡) (Rausand and Hoyland [24]), it

is start by considering the Chapman-Kolmogorov equations

𝑃
𝑖𝑗 (
𝑡 + Δ𝑡) =

𝑟

∑

𝑘=0

𝑃
𝑖𝑘 (

Δ𝑡) 𝑃𝑘𝑗 (
𝑡) . (2)

The interval of (0, 𝑡+Δ𝑡) is split into two parts. First, consider
a transition from state 𝑖 to state 𝑘 in the small interval (0 , Δ𝑡)

and then a transition from state 𝑘 to state 𝑗 in the rest of the
interval. It is seen that

�̇�
𝑖𝑗 (
𝑡) =

𝑟

∑

𝑘=0

𝑘 ̸= 𝑖

𝛼
𝑖𝑘
𝑃
𝑘𝑗 (

𝑡) − 𝛼
𝑖
𝑃
𝑖𝑗 (
𝑡) =

𝑟

∑

𝑘=0

𝛼
𝑖𝑘
𝑃
𝑘𝑗 (

𝑡) , (3)

where 𝛼
𝑖𝑖

= −𝛼
𝑖
and the following notation for the time

derivative �̇�
𝑖𝑗
(𝑡) = (𝑑/𝑑𝑥)𝑃

𝑖𝑗
(𝑡) is introduced. The differ-

ential equation (3) is known as the Kolmogorov backward
equations. They are called backward equations because we
start with a transition back by the start of the interval. The
Kolmogorov backward equations may also be written in
matrix format as

̇P (𝑡) = A ⋅ P (𝑡) . (4)

Likewise, split the time interval (0, 𝑡 + Δ𝑡) into two parts.
Consider a transition from 𝑖 to 𝑘 in the interval (0, 𝑡) and then
a transition from 𝑘 to 𝑗 in the small interval (𝑡, 𝑡 + Δ𝑡). It is
seen that

�̇�
𝑖𝑗 (
𝑡) =

𝑟

∑

𝑘=0

𝑘 ̸= 𝑗

𝛼
𝑘𝑗
𝑃
𝑖𝑘 (

𝑡) − 𝛼
𝑗
𝑃
𝑖𝑗 (
𝑡) =

𝑟

∑

𝑘=0

𝛼
𝑘𝑗
𝑃
𝑖𝑘 (

𝑡) , (5)

where, as before, 𝛼
𝑗𝑗

= −𝛼
𝑗
. The differential equation

(5) is known as the Kolmogorov forward equations. The
interchange of the limit and the sum above does not hold in
all cases but is always valid when the state space is finite.
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Figure 1: The state-space diagram of repairable multistate element
with minor failures and minor repairs.

Consider the following:

̇P (𝑡) = P (𝑡) ⋅ A. (6)

For the Markov processes, the backward and the for-
ward equations have the same unique solution P(𝑡), where
∑
𝑟

𝑗=0
𝑃
𝑖𝑗
(𝑡) = 1 for all 𝑖 in𝑋.

2.3. Repairable Multistate Elements. In this section, the
repairable multistate element assumes that minor failures can
happen and minor repairs can be done (Xie et al. [25]). A
minor failure is a failure that causes the element transition
from state 𝑖 to state 𝑖 − 1 denoted by 𝜆

𝑖,𝑖−1
. On the other hand,

a minor repair is a repair that causes the element transition
from state 𝑖 − 1 to state 𝑖 denoted by 𝜇

𝑖−1,𝑖
. It is actually a birth

and death process as presented in Figure 1.
TheChapman-Kolmogorov equations for the general case

are as follows:

𝑑𝑃
1 (
𝑡)

𝑑𝑡

= − 𝜇
1,2
𝑃
1 (
𝑡) + 𝜆

2,1
𝑃
2 (
𝑡) ,

𝑑𝑃
2 (
𝑡)

𝑑𝑡

= 𝜇
1,2
𝑃
1 (
𝑡) − (𝜆

2,1
+ 𝜇
2,3
) 𝑃
2 (
𝑡) + 𝜆

3,2
𝑃
3 (
𝑡) ,

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ,

𝑑𝑃
𝑘 (
𝑡)

𝑑𝑡

= 𝜇
𝑘−1,𝑘

𝑃
𝑘−1 (

𝑡) − 𝜆
𝑘,𝑘−1

𝑃
𝑘 (
𝑡) .

(7)

Assume that the initial state is in the state 𝑘 with the
best performance. Therefore, by solving (7) of differential
equations under the initial condition 𝑃

𝑘
(0) = 1, 𝑃

𝑘−1
(0) =

𝑃
𝑘−2

(0) = ⋅ ⋅ ⋅ = 𝑃
1
(0) = 0. The unreliability function for

the multistate element will be a sum of the probabilities of
the unacceptable states 1, . . . , 𝑖. Therefore reliability function
is given by

𝑅repair (𝑡) = 1 −

𝑖

∑

𝑗=1

𝑃
𝑗 (
𝑡) . (8)

2.4. Basic Concept of Fuzzy Set Theory. The basic concepts
which are used for analysing the fuzzy system reliability are
discussed in this section. In classical set theory, an element
𝑥 in a universe 𝑈 may or may not be a membership of some
crisp set 𝐴. This binary membership can be represented by
the following indicator function:

𝜒
𝐴 (

𝑥) = {

1 if 𝑥 ∈ 𝐴

0 if 𝑥 ∉ 𝐴.

(9)

L M U
0

1
𝜉Ã

Figure 2: Fuzzy input membership function (the triangular mem-
bership function).

Zadeh’s [10] extended the notation of binary membership
to accommodate various degrees of membership on the real
continuous interval [0, 1] and defined the fuzzy set 𝐴 by the
membership function 𝜉

𝐴
(𝑥) ∈ [0, 1], given that 𝜉

𝐴
(𝑥) is

the degree of membership of element 𝑥 in fuzzy set 𝐴 =

{(𝑥, 𝜉
𝐴
(𝑥)); 𝑥 ∈ 𝑋} . Consider a closed interval of real

numbers [𝑎, 𝑏] = {𝑥 ∈ R | 𝑎 ≤ 𝑥 ≤ 𝑏} ∀𝑎, 𝑏 ∈ R. The
following are formulas for four basic arithmetic operations
on closed intervals of real numbers (Ross [26]):

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] ,

[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐] ,

[𝑎, 𝑏] ⋅ [𝑐, 𝑑] = [min (𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑) ,max (𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)] ,

[𝑎, 𝑏]

[𝑐, 𝑑]

=

[𝑎, 𝑏]

[1/𝑐, 1/𝑑]

when 0 ∈ [𝑐, 𝑑] .

(10)

The triangular membership function of fuzzy set 𝐴 is given
by

𝜉
𝐴
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0; 𝑥 < 𝐿

𝑥 − 𝐿

𝑀 − 𝐿

; 𝐿 ≤ 𝑥 ≤ 𝑀

𝑈 − 𝑥

𝑈 −𝑀

; 𝑀 ≤ 𝑥 ≤ 𝑈

0; 𝑥 > 𝑈.

(11)

LetR be a universal set of real numbers and 𝐴 a fuzzy subset
of R. 𝐴 is referred to as triangular fuzzy number (TFN) as
shown in Figure 2, denoted by 𝐴 = (𝐿,𝑀,𝑈). Let 𝐴

𝛼
be the

𝛼-cut level, so we have

𝐴
𝛼
= [𝐴
𝐿

𝛼
, 𝐴
𝑈

𝛼
]

= [𝐿 + 𝛼 (𝑀 − 𝐿) , 𝑈 − 𝛼 (𝑈 −𝑀)] ; ∀𝛼 ∈ [0, 1] .

(12)

2.5. Repairable Fuzzy Multistate Elements. Based on the
conventional multistate elements, the state space diagram
of a repairable multistate system takes the form presented
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in Figure 1 where state 𝑘 is the best state and state 1 is the
worst state. The minor failures between states 𝑖 and 𝑖 − 1

are determined by fuzzy value ̃𝜆
𝑖,𝑖−1

. And the minor repairs
between states 𝑖 − 1 and 𝑖 are determined by fuzzy value 𝜇

𝑖−1,𝑖
.

With the fuzzy transition intensities, the state probability of
elements at time 𝑡 must also be a fuzzy value �̃�

𝑖
(𝑡), and then

the Chapman-Kolmogorov equation with fuzzy transition
intensities can be written as
𝑑�̃�
1 (
𝑡)

𝑑𝑡

= − 𝜇
1,2
�̃�
1 (
𝑡) +

̃
𝜆
2,1
�̃�
2 (
𝑡) ,

𝑑�̃�
2 (
𝑡)

𝑑𝑡

= 𝜇
1,2
�̃�
1 (
𝑡) − (

̃
𝜆
2,1

+ 𝜇
2,3
) �̃�
2 (
𝑡) +

̃
𝜆
3,2
�̃�
3 (
𝑡) ,

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

𝑑�̃�
𝑘 (
𝑡)

𝑑𝑡

= 𝜇
𝑘−1,𝑘

�̃�
𝑘−1 (

𝑡) −
̃
𝜆
𝑘,𝑘−1

�̃�
𝑘 (
𝑡) ,

(13)

where the initial conditions are �̃�
𝑘
(0) = 1 and �̃�

𝑘−1
(0) =

�̃�
𝑘−2

(0) = ⋅ ⋅ ⋅ = �̃�
1
(0) = 0. The unreliability function for the

multistate element will be a sum of the probabilities of the
unacceptable states 1, . . . , 𝑖 (∑𝑖

𝑗=1
𝑃
𝑗
(𝑡)). Laplace transform is

adopted to transform (13) into linear equation as follows:

𝑠�̃�
1 (
𝑠) = − 𝜇

1,2
�̃�
1 (
𝑠) +

̃
𝜆
2,1
�̃�
2 (
𝑠) ,

𝑠�̃�
2 (
𝑠) = 𝜇

1,2
�̃�
1 (
𝑠) − (

̃
𝜆
2,1

+ 𝜇
2,3
) �̃�
2 (
𝑠) +

̃
𝜆
3,2
�̃�
3 (
𝑠) ,

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

𝑠�̃�
𝑘 (
𝑠) − 1 = 𝜇

𝑘−1,𝑘
�̃�
𝑘−1 (

𝑠) −
̃
𝜆
𝑘,𝑘−1

�̃�
𝑘 (
𝑠) ,

(14)

where 𝑠�̃�
𝑖
(𝑠) − �̃�

𝑖
(0) = 𝐿[𝑑�̃�

𝑖
(𝑡)/𝑑𝑡]. Given that �̃�

𝑖
(𝑠) is a

function of ̃𝜆, 𝜇, and 𝑠, then the inverse Laplace transform
is executed to get the �̃�

𝑖
(𝑡) in time domain:

�̃�
𝑖 (
𝑡) = 𝐿

−1
[�̃�
𝑖 (
𝑠)] = �̃�

∗

𝑖
(
̃
𝜆, 𝑡) , (15)

where 𝐿−1[⋅] is an inverse Laplace operator and �̃�
𝑖
(𝑡) is a func-

tion in terms of fuzzy variables ̃𝜆 = {
̃
𝜆
𝑘,𝑘−1

, . . . ,
̃
𝜆
𝑖,𝑗
, . . . ,

̃
𝜆
2,1
}

and 𝜇 = {𝜇
𝑘−1,𝑘

, . . . , 𝜇
𝑗,𝑖
, . . . , 𝜇

1,2
} at any time 𝑡.The fuzzy state

probabilities can be obtained in the form of �̃�
𝑖
(𝑡) at the 𝛼-cut

level:

�̃�
𝑖𝛼 (

𝑡) = [�̃�
𝐿

𝑖𝛼
(𝑡) , �̃�
𝑈

𝑖𝛼
(𝑡)] ; 𝑡 ≥ 0, 0 ≤ 𝛼 ≤ 1, (16)

where �̃�
𝐿

𝑖𝛼
(𝑡) = min �̃�

∗

𝑖
(𝜆, 𝑡; 𝜇

𝜆𝑖,𝑗
(𝜆
𝑖,𝑗
) ≥ 𝛼) and �̃�

𝑈

𝑖𝛼
(𝑡) =

max �̃�
∗

𝑖
(𝜆, 𝑡; 𝜇

𝜆𝑖,𝑗
(𝜆
𝑖,𝑗
) ≥ 𝛼).

Then the fuzzy reliability of repairable multistate element
is given by

[�̃�
𝐿

𝛼
(𝑡) , �̃�
𝑈

𝛼
(𝑡)] = [1 −

𝑛

∑

𝑖=1

�̃�
𝑈

𝑖𝛼
(𝑡) , 1 −

𝑛

∑

𝑖=1

�̃�
𝐿

𝑖𝛼
(𝑡)] . (17)

The fuzzy state probabilities can be obtained in the form that
�̃�
𝑖𝛼
(𝑡) = [�̃�

𝐿

𝑖𝛼
(𝑡), �̃�
𝑈

𝑖𝛼
(𝑡)] at the 𝛼-cut level where 𝛼 ∈ [0, 1]. Let

𝐹
𝑖𝛼
(𝑡) be fuzzy unreliability functions of repairable multistate

element in each element ( 𝐹
𝑖𝛼
(𝑡) = 1 − �̃�

𝑖𝛼
(𝑡)).

· · ·
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Figure 3: Fuzzy series-parallel system.
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Figure 4: Two-sized 100(1 − 𝛾)% confidence intervals for fuzzy
parameter.

2.6. Multistate Element under Series-Parallel System. In this
section, analysis of the fuzzy system reliability using the
repairable multistate element with series-parallel system will
be demonstrated. Figure 3 represents a system containing
𝑚 subsystem connection in series where each subsystem
consists of 𝑘 components in parallel. Let �̃�

𝑖𝑗 be a fuzzy
reliability function and 𝐹

𝑖𝑗 a fuzzy unreliability function of
subsystem 𝑖, which is connected in series, and component
𝑗, which is connected in parallel (𝑖 = 1, 2, . . . , 𝑚 and 𝑗 =

1, 2, . . . , 𝑘), respectively. Let a failure rate and a repair rate be
represented by ̃𝜆𝑖𝑗 and 𝜇𝑖𝑗 at time 𝑡, respectively.

Then the fuzzy system reliability of repairable multistate
series-parallel system (RMSS) at time 𝑡 is given by

�̃�
(sp)𝛼

=

𝑚

∏

𝑖=1

[

[

(1 −

𝑘

∏

𝑗=1

(1 − (�̃�
𝑖𝑗
)

𝐿

𝛼
)) ,(1 −

𝑘

∏

𝑗=1

(1 − (�̃�
𝑖𝑗
)

𝑈

𝛼
))

]

]

,

𝛼 ∈ [0, 1] .

(18)

2.7. Fuzzy Confidence Interval Probability for Fuzzy Parameter.
The interval estimation of the fuzzy system reliability of
RMSS is constructed by extending the concepts of two-sided
100(1 − 𝛾)% confidence interval of the real parameters to the
case where both parameter and random variables are fuzzyas
shown in Figure 4.
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According to Wu [19], 𝑅
1
, . . . , 𝑅

𝑛
are independent and

identically distributed random variables. Let 𝐿(R) and 𝑈(R)
be two statistics such that 𝐿(R) ≤ 𝑈(R), where R =

(𝑅
1
, . . . , 𝑅

𝑛
). If the random interval [𝐿(R), 𝑈(R)] satisfies

𝑃[𝐿(R) ≤ 𝜃 ≤ 𝑈(R)] = 1 − 𝛾, then [𝐿(r), 𝑈(r)]
is a confidence interval for 𝜃 with confidence coefficient
1 − 𝛾, where r = (𝑟

1
, . . . , 𝑟

𝑛
) and each 𝑟

𝑖
is an observed

value of 𝑅
𝑖
when 𝑖 = 1, 2, . . . , 𝑛. It can be applied to

fuzzy confidence interval. Let �̃�
1
, . . . , �̃�

𝑛
be independent and

identically distributed fuzzy random variables with fuzzy
parameter ̃

𝜃. Let 𝑟
𝑖
be the observed value of �̃�

𝑖
for 𝑖 =

1, 2, . . . , 𝑛, where each 𝑟
𝑖
is a fuzzy number for 𝑖 = 1, 2, . . . , 𝑛.

Therefore, 𝑟𝐿
𝑖𝛼
and 𝑟
𝑈

𝑖𝛼
are the observed values of �̃�𝐿

𝑖𝛼
and �̃�

𝑈

𝑖𝛼

for 𝛼 ∈ [0, 1]. Then �̃�
𝐿

1𝛼
, �̃�
𝐿

2𝛼
, . . . , �̃�

𝐿

𝑛𝛼
and �̃�

𝑈

1𝛼
, �̃�
𝑈

2𝛼
, . . . , �̃�

𝑈

𝑛𝛼

are identically distributed fuzzy random variables. Suppose
that the distribution of �̃�

𝑖
is unknown for 𝑖 = 1, 2, . . . , 𝑛.Then

the approximate fuzzy confidence interval can be constructed
using the central limit theorem when the sample size 𝑛 is
sufficiently large (Ross [27]). Let �̃�

1
, . . . , �̃�

𝑛
be independent

and identically distributed fuzzy random variables. There
exists a unique fuzzy number 𝐸(�̃�) = (𝐸(�̃�

𝐿

𝛼
), 𝐸(�̃�

𝑈

𝛼
)) where

�̃� = (�̃�
𝐿

𝛼
, �̃�
𝑈

𝛼
) for all 𝛼 ∈ [0, 1]; then 𝐸(�̃�) is called the

expectation of �̃�. Suppose that 𝐸(�̃�) = 𝜇
𝑅
, 𝐸(�̃�𝐿
𝛼
) = (𝜇

𝑅
)
𝐿

𝛼
,

and 𝐸(�̃�𝑈
𝛼
) = (𝜇

𝑅
)
𝑈

𝛼
, respectively. Therefore �̃�𝐿

𝑖𝛼
and �̃�𝑈

𝑖𝛼
have

finite expectations (𝜇
𝑅
)
𝐿

𝛼
and (𝜇

𝑅
)
𝑈

𝛼
with unknown variances

for 𝑖 = 1, 2, . . . , 𝑛 and 𝛼 ∈ [0, 1].
Let �̃�𝐿
𝛼
= (1/𝑛)∑

𝑛

𝑖=1
�̃�
𝐿

𝑖𝛼
and �̃�

𝑈

𝛼
= (1/𝑛)∑

𝑛

𝑖=1
�̃�
𝑈

𝑖𝛼
and let

𝑆
2

𝛼𝐿
= (1/𝑛)∑

𝑛

𝑖=1
(�̃�
𝐿

𝑖𝛼
− �̃�
𝐿

𝛼
)

2

an 𝑆2
𝛼𝑈

= (1/𝑛)∑
𝑛

𝑖=1
(�̃�
𝑈

𝑖𝛼
− �̃�
𝑈

𝛼
)

2

.
It is shown that 𝑆2

𝛼𝐿
→ Var(�̃�𝐿

𝑖𝛼
) and 𝑆

2

𝛼𝑈
→ Var(�̃�𝑈

𝑖𝛼
)

as → ∞. The central limit theorem gives that √𝑛(�̃�𝐿
𝛼
−

(𝜇
𝑅
)
𝐿

𝛼
)/𝑆
𝛼𝐿

as well as√𝑛(�̃�𝑈
𝛼
− (𝜇
𝑅
)
𝑈

𝛼
)/𝑆
𝛼𝑈

has approximately
𝑁(0, 1) distribution. Therefore the approximate 100(1 − 𝛾)%
fuzzy confidence interval for (𝜇

𝑅
)
𝐿

𝛼
and (𝜇

𝑅
)
𝑈

𝛼
is given by

[�̃�
𝐿

𝛼
− 𝑧
𝛾/2

𝑆
𝛼𝐿

√𝑛

, �̃�
𝐿

𝛼
+ 𝑧
𝛾/2

𝑆
𝛼𝐿

√𝑛

] ≡ [𝐿 (�̃�
𝐿

𝛼
) , 𝑈 (�̃�

𝐿

𝛼
)] , (19)

[�̃�
𝑈

𝛼
− 𝑧
𝛾/2

𝑆
𝛼𝑈

√𝑛

, �̃�
𝑈

𝛼
+ 𝑧
𝛾/2

𝑆
𝛼𝑈

√𝑛

] ≡ [𝐿 (�̃�
𝑈

𝛼
) , 𝑈 (�̃�

𝑈

𝛼
)] , (20)

respectively.
We assign [𝐿(�̃�𝐿

𝛼
), 𝑈(�̃�

𝐿

𝛼
)] as lower fuzzy confidence inter-

val and [𝐿(�̃�𝑈
𝛼
), 𝑈(�̃�

𝑈

𝛼
)] as upper fuzzy confidence interval.

2.8. Coverage Probability and Expected Length of Fuzzy Con-
fidence Interval. For an interval estimator [𝐿(R), 𝑈(R)] of a
true parameter 𝜃, the coverage probability of [𝐿(R), 𝑈(R)] is
the probability that the random interval [𝐿(R), 𝑈(R)] covers
𝜃. It is denoted by 𝑃(𝜃 ∈ [𝐿(R), 𝑈(R)]). In this research, the
performance of fuzzy confidence interval is assessed based on
the coverage probability and the expected length.The analytic
expressions for the coverage probability of fuzzy confidence
interval of true parameter 𝜇

𝑅𝛼
= [(𝜇
𝑅
)
𝐿

𝛼
, (𝜇
𝑅
)
𝑈

𝛼
] are derived.

Let 𝑃((𝜇
𝑅
)
𝐿

𝛼
∈ [𝐿(�̃�

𝐿

𝛼
), 𝑈(�̃�

𝐿

𝛼
)]) and 𝑃((𝜇

𝑅
)
𝑈

𝛼
∈ [𝐿(�̃�

𝑈

𝛼
),

𝑈(�̃�
𝑈

𝛼
)]) be the coverage probability of fuzzy confidence inter-

val [𝐿(�̃�𝐿
𝛼
), 𝑈(�̃�

𝐿

𝛼
)] and [𝐿(�̃�𝑈

𝛼
), 𝑈(�̃�

𝑈

𝛼
)], respectively.Then the

lower coverage probability of fuzzy confidence interval of
(𝜇
𝑅
)
𝐿

𝛼
is given by

𝑃 ((𝜇
𝑅
)
𝐿

𝛼
∈ [𝐿 (�̃�

𝐿

𝛼
) , 𝑈 (�̃�

𝐿

𝛼
)])

= 𝑃 [𝐿 (�̃�
𝐿

𝛼
) < (𝜇

𝑅
)
𝐿

𝛼
< 𝑈 (�̃�

𝐿

𝛼
)]

= 𝑃 [𝐴 < 𝑍 < 𝐵]

= 𝐸 [𝐼
{𝐴<𝑍<𝐵} (

𝜏)] ,

(21)

where

𝐼
{𝐴<𝑍<𝐵} (

𝜏) = {

1, if 𝜏 ∈ {𝐴 < 𝑍 < 𝐵}

0, otherwise ,
(22)

where 𝐴 = �̃�
𝐿

𝛼
− 𝑈(�̃�

𝐿

𝛼
)/(𝑆
𝛼𝐿
/√𝑛), 𝐵 = �̃�

𝐿

𝛼
− 𝐿(�̃�

𝐿

𝛼
)/(𝑆
𝛼𝐿
/√𝑛),

and 𝑍 is the standard normal distribution.
Likewise, the upper coverage probability of fuzzy confi-

dence interval of (𝜇
𝑅
)
𝑈

𝛼
is given by

𝑃 ((𝜇
𝑅
)
𝑈

𝛼
∈ [𝐿 (�̃�

𝑈

𝛼
) , 𝑈 (�̃�

𝑈

𝛼
)])

= 𝑃 [𝐿 (�̃�
𝑈

𝛼
) < (𝜇

𝑅
)
𝑈

𝛼
< 𝑈 (�̃�

𝑈

𝛼
)]

= 𝑃 [𝐶 < 𝑧 < 𝐷]

= 𝐸 [𝐼
{𝐶<𝑍<𝐷} (

𝜏)] ,

(23)

where

𝐼
{𝐶<𝑍<𝐷} (

𝜏) = {

1, if 𝜏 ∈ {𝐶 < 𝑍 < 𝐷}

0, otherwise,
(24)

where𝐶 = �̃�
𝑈

𝛼
−𝑈(�̃�

𝑈

𝛼
)/(𝑆
𝛼𝑈
/√𝑛),𝐷 = �̃�

𝑈

𝛼
−𝐿(�̃�
𝑈

𝛼
)/(𝑆
𝛼𝑈
/√𝑛),

and 𝑍 is the standard normal distribution.

2.9. General Procedure for Investigating the Coverage Prob-
abilities and Expected Length for Fuzzy Confidence Interval
of Fuzzy System Reliability. In this section, the coverage
probability and expected length for fuzzy system reliability of
RMSS is investigated. Suppose that fuzzy parameter (popula-
tion mean) is denoted by 𝜇

𝑅𝛼
= [(𝜇
𝑅
)
𝐿

𝛼
, (𝜇
𝑅
)
𝑈

𝛼
]. A method to

calculate the fuzzy coverage probability and expected length
for 𝜇
𝑅𝛼

is demonstrated as follows.

Step 1. Generate fuzzy random variables from normal dis-
tribution with �̃�

𝐿

1𝛼
, �̃�
𝐿

2𝛼
, . . . , �̃�

𝐿

𝑛𝛼
∼ 𝑁((𝜇

𝑅
)
𝐿

𝛼
, 𝜎
2
) and �̃�

𝑈

1𝛼
,

�̃�
𝑈

2𝛼
, . . . , �̃�

𝑈

𝑛𝛼
∼ 𝑁((𝜇

𝑅
)
𝑈

𝛼
, 𝜎
2
).The sample sizes of this example

are 𝑛 = 30, 50, 100, 150, 200 and 𝜎2 = 1 for 𝛼 ∈ [0, 1].

Step 2. Compute fuzzy sample mean [�̃�
𝐿

𝛼
, �̃�
𝑈

𝛼
] and fuzzy

sample variance [𝑆2
𝛼𝐿
, 𝑆
2

𝛼𝑈
] for 𝛼 ∈ [0, 1].

Step 3. Compute fuzzy confidence intervals of 𝜇
𝑅

=

[(𝜇
𝑅
)
𝐿

𝛼
, (𝜇
𝑅
)
𝑈

𝛼
] for 𝛼 ∈ [0, 1], the lower fuzzy confidence

interval [𝐿(�̃�
𝐿

𝛼
), 𝑈(�̃�

𝐿

𝛼
)], and the upper fuzzy confidence

interval [𝐿(�̃�𝑈
𝛼
), 𝑈(�̃�

𝑈

𝛼
)].



6 The Scientific World Journal

Step 4. Compute the fuzzy coverage probability (𝐶𝑃
𝛼
) and the

expected length (𝐸𝐿
𝛼
) for 𝛼 ∈ [0, 1],

CP
𝛼
= (Number of times that the fuzzy confidence

interval covers the true parameter in each 𝛼-cut)

× 𝑚
−1
,

𝐸𝐿
𝛼
=

∑
𝑚

𝑖=1
𝑈
𝑖
− 𝐿
𝑖

𝑚

,

(25)

where 𝑈
𝑖
is the lower fuzzy confidence interval and 𝐿

𝑖
is

the upper fuzzy confidence interval at repeated time 𝑖, 𝑖 =

1, 2, . . . , 𝑚.

Step 5. Repeat Steps 2–4 for a given condition.

After receiving the coverage probabilities and the
expected length of the fuzzy confidence interval, the next
step is to consider the sample size (𝑛) that gives the coverage
probability higher than the expected confidence coefficient,
where the number of repeatition is 𝑚 = 10, 000. The 𝑍-test
statistic hypothesis testing is used in confirming the level of
the coverage probability as follows:

𝐻
0
: the coverage probability is not less than the expected
confidence coefficient (𝐶𝑃 ≥ 𝐶𝑃

0
),

𝐻
1
: the coverage probability is lower than the expected
confidence coefficient (𝐶𝑃 < 𝐶𝑃

0
),

when the significance level is 𝛾 = 0.95 and the test statistic

𝑍 =

𝐶𝑃 − 𝐶𝑃
0

√𝐶𝑃
0
(1 − 𝐶𝑃

0
) /𝑚

. (26)

Since the criterion in the test is 𝑍 < −𝑍
𝛾
, the hypothesis 𝐻

0

cannot be rejected if

𝐶𝑃 ≥ 𝐶𝑃
0
− 𝑍
𝛾
√
𝐶𝑃
0
(1 − 𝐶𝑃

0
)

𝑚

,
(27)

where 𝐶𝑃 is the coverage probability,𝐶𝑃 is the coverage
probability estimated from this study,𝐶𝑃

0
is the expected

confidence coefficient, and𝑚 is the repeated time.

3. Numerical Example and Results

In this section, a RMSS which consists of 3 subsystems in
series and 2 components in each subsystem in parallel is
considered. In each element, it has repairable multistate with
a fuzzy failure rate and a fuzzy repair rate as shown in
Figure 5. Since a failure rate and a repair rate cannot be
recorded precisely due to human errors, machine errors, or
some unexpected situations, triangular fuzzy numbers are
used to describe the fuzzy failure rate and fuzzy repair rate.
The parameters of these functions are shown in Table 1.

Table 1: Triangular fuzzy number of fuzzy failure rates and fuzzy
repair rates (per year).

Subsystem 1
Fuzzy failure rate Fuzzy repair rate

̃
𝜆
11

2,1
= (0.20, 0.25, 0.35) 𝜇

11

1,2
= (0.015, 0.020, 0.025)

̃
𝜆
12

2,1
= (0.30, 0.35, 0.40) 𝜇

12

1,2
= (0.010, 0.015, 0.020)

Subsystem 2
Fuzzy failure rate Fuzzy repair rate

̃
𝜆
21

2,1
= (0.22, 0.25, 0.30) 𝜇

21

1,2
= (0.025, 0.030, 0.035)

̃
𝜆
22

2,1
= (0.20, 0.25, 0.35) 𝜇

22

1,2
= (0.022, 0.025, 0.030)

Subsystem 3
Fuzzy failure rate Fuzzy repair rate

̃
𝜆
13

2,1
= (0.15, 0.20, 0.22) 𝜇

13

1,2
= (0.012, 0.015, 0.022)

̃
𝜆
23

2,1
= (0.28, 0.35, 0.39) 𝜇

23

1,2
= (0.018, 0.020, 0.025)

ForMarkovmodel, the Chapman-Kolmogorov equations
of each element can be written as

𝑑�̃�
𝑖𝑗

1
(𝑡)

𝑑𝑡

= −𝜇
𝑖𝑗

1,2
�̃�
𝑖𝑗

1
(𝑡) +

̃
𝜆
𝑖𝑗

2,1
�̃�
𝑖𝑗

2
(𝑡)

𝑑�̃�
𝑖𝑗

2
(𝑡)

𝑑𝑡

= 𝜇
𝑖𝑗

1,2
�̃�
𝑖𝑗

1
(𝑡) −

̃
𝜆
𝑖𝑗

2,1
�̃�
𝑖𝑗

2
(𝑡) .

for 𝑖 = 1, 2, 3, 𝑗 = 1, 2,

(28)

where �̃�
𝑖𝑗

1
(𝑡) is probabilities of good function and �̃�

𝑖𝑗

2
(𝑡) is

probabilities of fail function with fuzzy failure rate (
̃
𝜆
𝑖𝑗
)

and fuzzy repair rate (𝜇
𝑖𝑗
) for each element in multistate

model. Using the inverse Laplace transform, the fuzzy state
probabilities are obtained as functions of time 𝑡 in the form
of

�̃�
𝑖𝑗

1
(𝑡) =

̃
𝜆
𝑖𝑗

2,1

̃
𝜆
𝑖𝑗

2,1
+ 𝜇
𝑖𝑗

1,2

(𝑒
−(�̃�
𝑖𝑗

2,1
+𝜇
𝑖𝑗

1,2
)⋅𝑡
− 1) �̃�

𝑖𝑗

2
(𝑡)

=

𝜇
𝑖𝑗

1,2

̃
𝜆
𝑖𝑗

2,1
+ 𝜇
𝑖𝑗

1,2

+

̃
𝜆
𝑖𝑗

2,1

̃
𝜆
𝑖𝑗

2,1
+ 𝜇
𝑖𝑗

1,2

𝑒
−(�̃�
𝑖𝑗

2,1
+𝜇
𝑖𝑗

1,2
)⋅𝑡

for 𝑖 = 1, 2, 3, 𝑗 = 1, 2.

(29)

From Figure 5, fuzzy reliability functions and fuzzy unrelia-
bility functions of repairable for each element are given by

�̃�
𝑖𝑗
(𝑡) = �̃�

𝑖𝑗

2
(𝑡) ,

𝐹
𝑖𝑗
(𝑡) = �̃�

𝑖𝑗

1
(𝑡)

for 𝑖 = 1, 2, 3, 𝑗 = 1, 2,

(30)

where 𝐹
𝑖𝑗
(𝑡) is fuzzy unreliability function of repairable

multistate system at subsystem 𝑖 connected in series and
component 𝑗 connected in parallel, respectively. Suppose that
̃
𝜆
𝑖𝑗

2,1
and 𝜇𝑖𝑗

2,1
are triangular membership function in each 𝛼 ∈
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12

12

12

12

12

12

State 1: fail function, state 2: good function

�̃�
11

2,1 �̃�
21

2,1 �̃�
31

2,1

�̃�
32

2,1�̃�
22

2,1�̃�
12

2,1

�̃�111,2

�̃�121,2 �̃�221,2

�̃�311,2�̃�211,2

�̃�321,2

Figure 5: Multistate system and state diagrams for RMSS.

Table 2: The fuzzy parameter of fuzzy system reliability for RMSS
in each 𝛼 ∈ [0, 1].

𝛼-cut �̃�
𝐿

𝑠𝛼
(𝑡) = (𝜇

𝑅
)
𝐿

𝛼
�̃�
𝑈

𝑠𝛼
(𝑡) = (𝜇

𝑅
)
𝑈

𝛼

0 0.5357 0.9587
0.1 0.5825 0.9530
0.2 0.6257 0.9465
0.3 0.6654 0.9392
0.4 0.7016 0.9310
0.5 0.7346 0.9219
0.6 0.7644 0.9116
0.7 0.7913 0.9001
0.8 0.8155 0.8872
0.9 0.8371 0.8727
1 0.8565 0.8565

[0, 1], as shown in Table 1. It can be written in the form of
𝛼-cut as follows:

[(
̃
𝜆
𝑖𝑗

2,1
)

𝐿

𝛼
, (
̃
𝜆
𝑖𝑗

2,1
)

𝑈

𝛼
] = [𝑎

𝑖𝑗
+ 𝛼 (𝑏

𝑖𝑗
− 𝑎
𝑖𝑗
) , 𝑐
𝑖𝑗
− 𝛼 (𝑐

𝑖𝑗
− 𝑏
𝑖𝑗
)] ,

[(𝜇
𝑖𝑗

2,1
)

𝐿

𝛼
, (𝜇
𝑖𝑗

2,1
)

𝑈

𝛼
] = [𝑒

𝑖𝑗
+ 𝛼 (𝑒

𝑖𝑗
− 𝑑
𝑖𝑗
) , 𝑓
𝑖𝑗
− 𝛼 (𝑓

𝑖𝑗
− 𝑒
𝑖𝑗
)] .

(31)

From the example system in Figure 6, RMSS with fuzzy
failure rate (̃𝜆𝑖𝑗

2,1
)
𝛼
and a fuzzy repair rate (𝜇𝑖𝑗

2,1
)
𝛼
are consid-

ered. The fuzzy system reliability in each 𝛼 ∈ [0, 1] is given
by

�̃�
𝑠𝛼

= [�̃�
𝐿

𝑠𝛼
(𝑡) , �̃�
𝑈

𝑠𝛼
(𝑡)]

=

3

∏

𝑖=1

[

[

[1, 1]𝛼
−
[

[

2

∏

𝑗=1

(1 − (�̃�
𝑖𝑗
)

𝑈

𝛼
) ,

2

∏

𝑗=1

(1 − �̃�
𝑖𝑗
)

𝐿

𝛼

]

]

]

]

.

(32)

Substituting fuzzy reliability function (�̃�𝑖𝑗(𝑡)) in each element
into (32), then the fuzzy system reliability of RMSS is shown
in Table 2.

Suppose that fuzzy system reliability for RMSS in Table 2
is the fuzzy parameter (population mean) denoted by 𝜇

𝑅𝛼
=

[(𝜇
𝑅
)
𝐿

𝛼
, (𝜇
𝑅
)
𝑈

𝛼
]. The confidence coefficient with 𝛾 = 0.95 is

defined and fuzzy randomvariables fromnormal distribution
are generated by using MATLAB [28]. Then the fuzzy
coverage probability and the expected length for 𝜇

𝑅𝛼
are

shown in Figure 6.
After receiving the coverage probabilities and the

expected length of fuzzy confidence interval, the next step is
to compare the values between fuzzy coverage probabilities
and the expected confidence coefficient by the test of
hypothesis. In this example, let𝑚 = 10, 000 and the criterion
used in comparing the coverage probability at significance
level 95% will be

𝐶𝑃 ≥ 0.95 − 1.645√
0.95 (1 − 0.95)

10, 000

= 0.9464. (33)

Considering a fuzzy confidence interval at 𝛼-cut which
gives the coverage probability higher than 0.9464 at signifi-
cant level 95%will be the coverage probability that is covered
in the expected confidence coefficient. Then only the cov-
erage probability that is covered in the expected confidence
coefficient will be used in the most appropriate expected
length estimation. In addition, the fuzzy confidence interval
of the 𝛼 − cut which gives the narrowest expected length
is considered as the most appropriate expected length. Both
lower and upper fuzzy coverage probabilities and expected
lengths results are shown in Tables 3 and 4, respectively.

4. Numerical Results

From the numerical example, the fuzzy reliability for the
RMSS is calculated. Estimation of fuzzy confidence interval
for fuzzy system reliability model (𝜇

𝑅
) in each 𝛼 ∈ [0, 1]

revealed that the fuzzy confidence interval can be divided into
2 parts which are lower fuzzy confidence interval and upper
fuzzy confidence interval as shown in Figure 6.

From Figure 6, the lower bound and upper bound of the
fuzzy parameter are estimated at a 95% significance level.
Next, the performance of the estimated parameter of the
fuzzy confidence interval of fuzzy system reliability model is
considered. The coverage probability and expected length is
used in calculationwith the abovemethodwith repeated time
at𝑚 = 10, 000.

In Figure 7(a), it is seen that at the sample size 𝑛 =

30, 50 (𝑛 < 100) there are some𝛼-cut that give lower coverage
probability covering in the expected confidence coefficient



8 The Scientific World Journal

Table 3: Lower fuzzy coverage probabilities and lower expected lengths for 95% confidence interval where𝑚 = 10,000 and ̂CP ≥ 0.9464.

𝛼-cut 𝑛 = 30 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 200

Lower CP Lower EL Lower CP Lower EL Lower CP Lower EL Lower CP Lower EL Lower CP Lower EL
0 0.9402 0.7091 0.9456 0.5524 0.9485 0.3908 0.9532 0.3196 0.9500 0.2769
0.1 0.9377 0.7102 0.9426 0.5518 0.9472 0.3908 0.9494 0.3199 0.9464 0.2769
0.2 0.9390 0.7089∗ 0.9440 0.5516 0.9467 0.3909 0.9466 0.3196 0.9487 0.2768
0.3 0.9425 0.7090 0.9443 0.5518 0.9489 0.3908 0.9465 0.3196 0.9467 0.2768
0.4 0.9443 0.7100 0.9409 0.5521 0.9518 0.3914 0.9467 0.3201 0.9491 0.2772
0.5 0.9414 0.7093 0.9441 0.5513∗ 0.9493 0.3908 0.9465 0.3195 0.9468 0.2767
0.6 0.9411 0.7088 0.9409 0.5516 0.9466 0.3913 0.9504 0.3196 0.9502 0.2769
0.7 0.9387 0.7101 0.9465 0.5520 0.9480 0.3911 0.9476 0.3195 0.9467 0.2769
0.8 0.9460 0.7109 0.9396 0.5515 0.9469 0.3911 0.9482 0.3194 0.9477 0.2770
0.9 0.9417 0.7090 0.9477 0.5513∗ 0.9466 0.3907∗ 0.9481 0.3193∗ 0.9475 0.2766∗

1 0.9408 0.7102 0.9442 0.5515 0.9510 0.3908 0.9511 0.3198 0.9555 0.2769
Coverage probabilities that are higher than the expected confidence coefficient are shown in bold numbers.
∗The narrowest expected length.

Table 4: Upper fuzzy coverage probabilities and upper expected lengths for 95% confidence interval where𝑚 = 10,000 and ĈP ≥ 0.9464.

𝛼-cut 𝑛 = 30 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 200

Upper CP Upper EL Upper CP Upper EL Upper CP Upper EL Upper CP Upper EL Upper CP Upper EL
0 0.9392 0.7092 0.9460 0.5514 0.9469 0.3908 0.9465 0.3197 0.9501 0.2769
0.1 0.9435 0.7112 0.9466 0.5511 0.9466 0.3910 0.9494 0.3194 0.9482 0.2768
0.2 0.9404 0.7117 0.9482 0.5516 0.9475 0.3909 0.9483 0.3196 0.9465 0.2768
0.3 0.9360 0.7098 0.9425 0.5516 0.9470 0.3914 0.9477 0.3197 0.9470 0.2771
0.4 0.9384 0.7092 0.9441 0.5506∗ 0.9484 0.3911 0.9475 0.3193 0.9470 0.2767
0.5 0.9411 0.7101 0.9444 0.5514 0.9465 0.3912 0.9474 0.3197 0.9477 0.2769
0.6 0.9420 0.7101 0.9410 0.5517 0.9509 0.3908 0.9465 0.3196 0.9467 0.2768
0.7 0.9426 0.7084 0.9421 0.5511 0.9477 0.3906∗ 0.9466 0.3191∗ 0.9474 0.2765∗

0.8 0.9400 0.7096 0.9425 0.5514 0.9475 0.3910 0.9508 0.3195 0.9466 0.2768
0.9 0.9387 0.7075∗ 0.9436 0.5522 0.9469 0.3907 0.9509 0.3198 0.9475 0.2768
1 0.9453 0.7103 0.9412 0.5509 0.9466 0.3907 0.9489 0.3195 0.9525 0.2767
Coverage probabilities that are higher than the expected confidence coefficient are shown in bold numbers.
∗The narrowest expected length.
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Figure 6: Fuzzy 95% confidence intervals for fuzzy parameter 𝜇
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= [(𝜇
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)
𝑈

𝛼
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Figure 7: Boxplots of the lower and upper fuzzy coverage probability with sample size 𝑛 = 30, 50, 100, 150, and 200 at significance level
95%.

when 𝐶𝑃 ≥ 0.9464. However, if considering, at sample
size 𝑛 = 100, 150, 200 (𝑛 ≥ 100), the lower coverage
probability of every 𝛼 ∈ [0, 1] is covering in the expected
confidence coefficient, likewise, Figure 7(b) shows that at
the sample size 𝑛 = 30, 50 (𝑛 < 100) there are only few
𝛼-cut numbers that contain upper coverage probability in the
expected confidence coefficient at ̂C𝑃 ≥ 0.9464, but, at the
sample size = 100, 150, 200 (𝑛 ≥ 100), the upper coverage
probability of every𝛼 ∈ [0, 1] is in the expected confidence
coefficient.

Then only the coverage probability that is covered in the
expected confidence coefficient will be used in estimation
of the most appropriate expected length. The result shows
that the fuzzy confidence interval at 𝛼-cut = 0.9 gives
the narrowest lower expected length. It is considered as
the most appropriate lower expected length. It is also seen
that the fuzzy confidence interval at 𝛼-cut = 0.7 gives the
narrowest upper expected length. It is considered as the most
appropriate upper expected length as shown in Tables 3 and
4.

It seems that at the larger sample size (𝑛) more 𝛼-cut
numbers are obtained for the estimated parameter of the
fuzzy confidence interval of fuzzy system reliability model.
The good interval estimator for the fuzzy confidence interval
is the obtained coverage probabilities that can cover the
expected confidence coefficient 𝐶𝑃 ≥ 0.9464 with the
narrowest expected length.

5. Conclusions and Discussions

This paper presents an innovative modeling approach when
dealing with uncertainties in the RMSS. The Markov process
for the RMSS with a fuzzy failure rate and a fuzzy repair
rate is considered and the fuzzy system reliability is con-
structed. Interval estimation of the fuzzy system reliability
model is constructed by extending the concepts of two-sided
100(1 − 𝛾)% confidence interval of the true parameters to the
case where both parameter and random variables are fuzzy
based on the central limit theorem. Recently, much research
proposed an approach based on fuzzy data for constructing
a fuzzy confidence interval, but without considering the
performance analysis of interval estimator. In this research,
the performance of fuzzy confidence interval is assessed
based on the coverage probability and the expected length.

From the study, it is seen that estimation of the fuzzy
confidence interval of fuzzy system reliability for RMSS will
be effective when the sample size is 𝑛 ≥ 100. This results
in lower coverage probability and upper coverage probability
which covered in the expected confidence coefficient at
𝛼 ∈ [0, 1] and the narrowest lower expected length when
𝛼-cut = 0.9 and the narrowest upper expected length
when 𝛼-cut = 0.7. Accordingly, we conclude that the
model presented herein is an effective estimation method at
𝛼-cut = 0.9 and 𝛼-cut = 0.7. This study is suitable for
the system reliability of multistate system where the accurate
data are fuzzy values. In further work, fuzzy confidence
intervals of system reliability for more complex systems are
created. In particular, performance of interval estimator is
also being considered based on the coverage probability and
the expected length.
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